/*--------------------------------------------- * ZUC / EEA3 / EIA3 : LTE security algorithm *--------------------------------------------*/ #include "core_pkbuf.h" #include "zuc.h" /*-------------------------------------------- * ZUC keystream generator algorithm *------------------------------------------*/ /* the state registers of LFSR */ static u32 LFSR_S0; static u32 LFSR_S1; static u32 LFSR_S2; static u32 LFSR_S3; static u32 LFSR_S4; static u32 LFSR_S5; static u32 LFSR_S6; static u32 LFSR_S7; static u32 LFSR_S8; static u32 LFSR_S9; static u32 LFSR_S10; static u32 LFSR_S11; static u32 LFSR_S12; static u32 LFSR_S13; static u32 LFSR_S14; static u32 LFSR_S15; /* the registers of F */ static u32 F_R1; static u32 F_R2; /* the outputs of BitReorganization */ static u32 BRC_X0; static u32 BRC_X1; static u32 BRC_X2; static u32 BRC_X3; /* the s-boxes */ static u8 S0[256] = { 0x3e,0x72,0x5b,0x47,0xca,0xe0,0x00,0x33,0x04,0xd1,0x54,0x98,0x09,0xb9,0x6d,0xcb, 0x7b,0x1b,0xf9,0x32,0xaf,0x9d,0x6a,0xa5,0xb8,0x2d,0xfc,0x1d,0x08,0x53,0x03,0x90, 0x4d,0x4e,0x84,0x99,0xe4,0xce,0xd9,0x91,0xdd,0xb6,0x85,0x48,0x8b,0x29,0x6e,0xac, 0xcd,0xc1,0xf8,0x1e,0x73,0x43,0x69,0xc6,0xb5,0xbd,0xfd,0x39,0x63,0x20,0xd4,0x38, 0x76,0x7d,0xb2,0xa7,0xcf,0xed,0x57,0xc5,0xf3,0x2c,0xbb,0x14,0x21,0x06,0x55,0x9b, 0xe3,0xef,0x5e,0x31,0x4f,0x7f,0x5a,0xa4,0x0d,0x82,0x51,0x49,0x5f,0xba,0x58,0x1c, 0x4a,0x16,0xd5,0x17,0xa8,0x92,0x24,0x1f,0x8c,0xff,0xd8,0xae,0x2e,0x01,0xd3,0xad, 0x3b,0x4b,0xda,0x46,0xeb,0xc9,0xde,0x9a,0x8f,0x87,0xd7,0x3a,0x80,0x6f,0x2f,0xc8, 0xb1,0xb4,0x37,0xf7,0x0a,0x22,0x13,0x28,0x7c,0xcc,0x3c,0x89,0xc7,0xc3,0x96,0x56, 0x07,0xbf,0x7e,0xf0,0x0b,0x2b,0x97,0x52,0x35,0x41,0x79,0x61,0xa6,0x4c,0x10,0xfe, 0xbc,0x26,0x95,0x88,0x8a,0xb0,0xa3,0xfb,0xc0,0x18,0x94,0xf2,0xe1,0xe5,0xe9,0x5d, 0xd0,0xdc,0x11,0x66,0x64,0x5c,0xec,0x59,0x42,0x75,0x12,0xf5,0x74,0x9c,0xaa,0x23, 0x0e,0x86,0xab,0xbe,0x2a,0x02,0xe7,0x67,0xe6,0x44,0xa2,0x6c,0xc2,0x93,0x9f,0xf1, 0xf6,0xfa,0x36,0xd2,0x50,0x68,0x9e,0x62,0x71,0x15,0x3d,0xd6,0x40,0xc4,0xe2,0x0f, 0x8e,0x83,0x77,0x6b,0x25,0x05,0x3f,0x0c,0x30,0xea,0x70,0xb7,0xa1,0xe8,0xa9,0x65, 0x8d,0x27,0x1a,0xdb,0x81,0xb3,0xa0,0xf4,0x45,0x7a,0x19,0xdf,0xee,0x78,0x34,0x60 }; static u8 S1[256] = { 0x55,0xc2,0x63,0x71,0x3b,0xc8,0x47,0x86,0x9f,0x3c,0xda,0x5b,0x29,0xaa,0xfd,0x77, 0x8c,0xc5,0x94,0x0c,0xa6,0x1a,0x13,0x00,0xe3,0xa8,0x16,0x72,0x40,0xf9,0xf8,0x42, 0x44,0x26,0x68,0x96,0x81,0xd9,0x45,0x3e,0x10,0x76,0xc6,0xa7,0x8b,0x39,0x43,0xe1, 0x3a,0xb5,0x56,0x2a,0xc0,0x6d,0xb3,0x05,0x22,0x66,0xbf,0xdc,0x0b,0xfa,0x62,0x48, 0xdd,0x20,0x11,0x06,0x36,0xc9,0xc1,0xcf,0xf6,0x27,0x52,0xbb,0x69,0xf5,0xd4,0x87, 0x7f,0x84,0x4c,0xd2,0x9c,0x57,0xa4,0xbc,0x4f,0x9a,0xdf,0xfe,0xd6,0x8d,0x7a,0xeb, 0x2b,0x53,0xd8,0x5c,0xa1,0x14,0x17,0xfb,0x23,0xd5,0x7d,0x30,0x67,0x73,0x08,0x09, 0xee,0xb7,0x70,0x3f,0x61,0xb2,0x19,0x8e,0x4e,0xe5,0x4b,0x93,0x8f,0x5d,0xdb,0xa9, 0xad,0xf1,0xae,0x2e,0xcb,0x0d,0xfc,0xf4,0x2d,0x46,0x6e,0x1d,0x97,0xe8,0xd1,0xe9, 0x4d,0x37,0xa5,0x75,0x5e,0x83,0x9e,0xab,0x82,0x9d,0xb9,0x1c,0xe0,0xcd,0x49,0x89, 0x01,0xb6,0xbd,0x58,0x24,0xa2,0x5f,0x38,0x78,0x99,0x15,0x90,0x50,0xb8,0x95,0xe4, 0xd0,0x91,0xc7,0xce,0xed,0x0f,0xb4,0x6f,0xa0,0xcc,0xf0,0x02,0x4a,0x79,0xc3,0xde, 0xa3,0xef,0xea,0x51,0xe6,0x6b,0x18,0xec,0x1b,0x2c,0x80,0xf7,0x74,0xe7,0xff,0x21, 0x5a,0x6a,0x54,0x1e,0x41,0x31,0x92,0x35,0xc4,0x33,0x07,0x0a,0xba,0x7e,0x0e,0x34, 0x88,0xb1,0x98,0x7c,0xf3,0x3d,0x60,0x6c,0x7b,0xca,0xd3,0x1f,0x32,0x65,0x04,0x28, 0x64,0xbe,0x85,0x9b,0x2f,0x59,0x8a,0xd7,0xb0,0x25,0xac,0xaf,0x12,0x03,0xe2,0xf2 }; /* the constants D */ static u32 EK_d[16] = { 0x44D7, 0x26BC, 0x626B, 0x135E, 0x5789, 0x35E2, 0x7135, 0x09AF, 0x4D78, 0x2F13, 0x6BC4, 0x1AF1, 0x5E26, 0x3C4D, 0x789A, 0x47AC }; /* ——————————————————————- */ /* c = a + b mod (2^31 – 1) */ u32 AddM(u32 a, u32 b) { u32 c = a + b; return (c & 0x7FFFFFFF) + (c >> 31); } /* LFSR with initialization mode */ #define MulByPow2(x, k) ((((x) << k) | ((x) >> (31 - k))) & 0x7FFFFFFF) void LFSRWithInitialisationMode(u32 u) { u32 f, v; f = LFSR_S0; v = MulByPow2(LFSR_S0, 8); f = AddM(f, v); v = MulByPow2(LFSR_S4, 20); f = AddM(f, v); v = MulByPow2(LFSR_S10, 21); f = AddM(f, v); v = MulByPow2(LFSR_S13, 17); f = AddM(f, v); v = MulByPow2(LFSR_S15, 15); f = AddM(f, v); f = AddM(f, u); /* update the state */ LFSR_S0 = LFSR_S1; LFSR_S1 = LFSR_S2; LFSR_S2 = LFSR_S3; LFSR_S3 = LFSR_S4; LFSR_S4 = LFSR_S5; LFSR_S5 = LFSR_S6; LFSR_S6 = LFSR_S7; LFSR_S7 = LFSR_S8; LFSR_S8 = LFSR_S9; LFSR_S9 = LFSR_S10; LFSR_S10 = LFSR_S11; LFSR_S11 = LFSR_S12; LFSR_S12 = LFSR_S13; LFSR_S13 = LFSR_S14; LFSR_S14 = LFSR_S15; LFSR_S15 = f; } /* LFSR with work mode */ void LFSRWithWorkMode() { u32 f, v; f = LFSR_S0; v = MulByPow2(LFSR_S0, 8); f = AddM(f, v); v = MulByPow2(LFSR_S4, 20); f = AddM(f, v); v = MulByPow2(LFSR_S10, 21); f = AddM(f, v); v = MulByPow2(LFSR_S13, 17); f = AddM(f, v); v = MulByPow2(LFSR_S15, 15); f = AddM(f, v); /* update the state */ LFSR_S0 = LFSR_S1; LFSR_S1 = LFSR_S2; LFSR_S2 = LFSR_S3; LFSR_S3 = LFSR_S4; LFSR_S4 = LFSR_S5; LFSR_S5 = LFSR_S6; LFSR_S6 = LFSR_S7; LFSR_S7 = LFSR_S8; LFSR_S8 = LFSR_S9; LFSR_S9 = LFSR_S10; LFSR_S10 = LFSR_S11; LFSR_S11 = LFSR_S12; LFSR_S12 = LFSR_S13; LFSR_S13 = LFSR_S14; LFSR_S14 = LFSR_S15; LFSR_S15 = f; } /* BitReorganization */ void BitReorganization() { BRC_X0 = ((LFSR_S15 & 0x7FFF8000) << 1) | (LFSR_S14 & 0xFFFF); BRC_X1 = ((LFSR_S11 & 0xFFFF) << 16) | (LFSR_S9 >> 15); BRC_X2 = ((LFSR_S7 & 0xFFFF) << 16) | (LFSR_S5 >> 15); BRC_X3 = ((LFSR_S2 & 0xFFFF) << 16) | (LFSR_S0 >> 15); } #define ROT(a, k) (((a) << k) | ((a) >> (32 - k))) /* L1 */ u32 L1(u32 X) { return (X ^ ROT(X, 2) ^ ROT(X, 10) ^ ROT(X, 18) ^ ROT(X, 24)); } /* L2 */ u32 L2(u32 X) { return (X ^ ROT(X, 8) ^ ROT(X, 14) ^ ROT(X, 22) ^ ROT(X, 30)); } #define MAKEU32(a, b, c, d) (((u32)(a) << 24) | ((u32)(b) << 16) | ((u32)(c) << 8) | ((u32)(d))) /* F */ u32 F() { u32 W, W1, W2, u, v; W = (BRC_X0 ^ F_R1) + F_R2; W1 = F_R1 + BRC_X1; W2 = F_R2 ^ BRC_X2; u = L1((W1 << 16) | (W2 >> 16)); v = L2((W2 << 16) | (W1 >> 16)); F_R1 = MAKEU32(S0[u >> 24], S1[(u >> 16) & 0xFF], S0[(u >> 8) & 0xFF], S1[u & 0xFF]); F_R2 = MAKEU32(S0[v >> 24], S1[(v >> 16) & 0xFF], S0[(v >> 8) & 0xFF], S1[v & 0xFF]); return W; } #define MAKEU31(a, b, c) (((u32)(a) << 23) | ((u32)(b) << 8) | (u32)(c)) /* initialize */ void zuc_initialize(u8* k, u8* iv) { u32 w, nCount; /* expand key */ LFSR_S0 = MAKEU31(k[0], EK_d[0], iv[0]); LFSR_S1 = MAKEU31(k[1], EK_d[1], iv[1]); LFSR_S2 = MAKEU31(k[2], EK_d[2], iv[2]); LFSR_S3 = MAKEU31(k[3], EK_d[3], iv[3]); LFSR_S4 = MAKEU31(k[4], EK_d[4], iv[4]); LFSR_S5 = MAKEU31(k[5], EK_d[5], iv[5]); LFSR_S6 = MAKEU31(k[6], EK_d[6], iv[6]); LFSR_S7 = MAKEU31(k[7], EK_d[7], iv[7]); LFSR_S8 = MAKEU31(k[8], EK_d[8], iv[8]); LFSR_S9 = MAKEU31(k[9], EK_d[9], iv[9]); LFSR_S10 = MAKEU31(k[10], EK_d[10], iv[10]); LFSR_S11 = MAKEU31(k[11], EK_d[11], iv[11]); LFSR_S12 = MAKEU31(k[12], EK_d[12], iv[12]); LFSR_S13 = MAKEU31(k[13], EK_d[13], iv[13]); LFSR_S14 = MAKEU31(k[14], EK_d[14], iv[14]); LFSR_S15 = MAKEU31(k[15], EK_d[15], iv[15]); /* set F_R1 and F_R2 to zero */ F_R1 = 0; F_R2 = 0; nCount = 32; while (nCount > 0) { BitReorganization(); w = F(); LFSRWithInitialisationMode(w >> 1); nCount --; } } void zuc_generate_key_stream(u32* pKeystream, u32 KeystreamLen) { int i; BitReorganization(); F(); /* discard the output of F */ LFSRWithWorkMode(); for (i = 0; i < KeystreamLen; i ++) { BitReorganization(); pKeystream[i] = F() ^ BRC_X3; LFSRWithWorkMode(); } } /* The ZUC algorithm, see ref. [3]*/ void ZUC(u8* k, u8* iv, u32* ks, u32 len) { /* The initialization of ZUC, see page 17 of ref. [3]*/ zuc_initialize(k, iv); /* The procedure of generating keystream of ZUC, see page 18 of ref. [3]*/ zuc_generate_key_stream(ks, len); } /* end of ZUC.c */ /*----------------------------------------------------- * EEA3 *---------------------------------------------------*/ /* * EEA3: LTE Encryption Algorithm 3 * EEA3.c */ void zuc_eea3(u8* CK, u32 COUNT, u32 BEARER, u32 DIRECTION, u32 LENGTH, u8* M, u8* C) { u32 *z, L, L8, i; u8 IV[16]; u32 lastbits = (8-(LENGTH%8))%8; L = (LENGTH+31)/32; z = (u32 *) core_malloc(L*sizeof(u32)); L8 = (LENGTH+7)/8; IV[0] = (COUNT>>24) & 0xFF; IV[1] = (COUNT>>16) & 0xFF; IV[2] = (COUNT>>8) & 0xFF; IV[3] = COUNT & 0xFF; IV[4] = ((BEARER << 3) | ((DIRECTION&1)<<2)) & 0xFC; IV[5] = 0; IV[6] = 0; IV[7] = 0; IV[8] = IV[0]; IV[9] = IV[1]; IV[10] = IV[2]; IV[11] = IV[3]; IV[12] = IV[4]; IV[13] = IV[5]; IV[14] = IV[6]; IV[15] = IV[7]; ZUC(CK, IV, z, L); for (i=0; i> (3-i%4)*8) & 0xff); } /* zero last bits of data in case its length is not word-aligned (32 bits) this is an addition to the C reference code, which did not handle it */ if (lastbits) i--; C[i] &= 0x100 - (1<>(32-ti)); return WORD; } u8 GET_BIT(u8 * DATA, u32 i) { return (DATA[i/8] & (1<<(7-(i%8)))) ? 1 : 0; } void zuc_eia3(u8* IK, u32 COUNT, u32 BEARER, u32 DIRECTION, u32 LENGTH, u8* M, u32* MAC) { u32 *z, N, L, T, i; u8 IV[16]; IV[0] = (COUNT>>24) & 0xFF; IV[1] = (COUNT>>16) & 0xFF; IV[2] = (COUNT>>8) & 0xFF; IV[3] = COUNT & 0xFF; IV[4] = (BEARER << 3) & 0xF8; IV[5] = IV[6] = IV[7] = 0; IV[8] = ((COUNT>>24) & 0xFF) ^ ((DIRECTION&1)<<7); IV[9] = (COUNT>>16) & 0xFF; IV[10] = (COUNT>>8) & 0xFF; IV[11] = COUNT & 0xFF; IV[12] = IV[4]; IV[13] = IV[5]; IV[14] = IV[6] ^ ((DIRECTION&1)<<7); IV[15] = IV[7]; N = LENGTH + 64; L = (N + 31) / 32; z = (u32 *) core_malloc(L*sizeof(u32)); ZUC(IK, IV, z, L); T = 0; for (i=0; i