9
0
Fork 0
barebox/drivers/net/fec_imx27.c

650 lines
16 KiB
C
Raw Normal View History

/*
* (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
* (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#define DEBUG
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <init.h>
#include <miiphy.h>
#include <driver.h>
#include <miiphy.h>
#include <fec.h>
#include "fec_imx27.h"
#include <asm/io.h>
#include <asm/arch/imx-regs.h>
#include <clock.h>
#include <asm/arch/clock.h>
#include <xfuncs.h>
#define CONFIG_PHY_ADDR 1 /* FIXME */
typedef struct {
uint8_t data[1500]; /* actual data */
int length; /* actual length */
int used; /* buffer in use or not */
uint8_t head[16]; /* MAC header(6 + 6 + 2) + 2(aligned) */
} NBUF;
/*
* MII-interface related functions
*/
static int fec_miiphy_read(struct miiphy_device *mdev, uint8_t phyAddr,
uint8_t regAddr, uint16_t * retVal)
{
struct eth_device *edev = mdev->edev;
fec_priv *fec = (fec_priv *)edev->priv;
uint32_t reg; /* convenient holder for the PHY register */
uint32_t phy; /* convenient holder for the PHY */
uint64_t start;
/*
* reading from any PHY's register is done by properly
* programming the FEC's MII data register.
*/
writel(FEC_IEVENT_MII, &fec->eth->ievent);
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | phy | reg, &fec->eth->mii_data);
/*
* wait for the related interrupt
*/
start = get_time_ns();
while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
if (is_timeout(start, MSECOND)) {
printf("Read MDIO failed...\n");
return -1;
}
}
/*
* clear mii interrupt bit
*/
writel(FEC_IEVENT_MII, &fec->eth->ievent);
/*
* it's now safe to read the PHY's register
*/
*retVal = readl(&fec->eth->mii_data);
return 0;
}
static int fec_miiphy_write(struct miiphy_device *mdev, uint8_t phyAddr,
uint8_t regAddr, uint16_t data)
{
struct eth_device *edev = mdev->edev;
fec_priv *fec = (fec_priv *)edev->priv;
uint32_t reg; /* convenient holder for the PHY register */
uint32_t phy; /* convenient holder for the PHY */
uint64_t start;
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
FEC_MII_DATA_TA | phy | reg | data, &fec->eth->mii_data);
/*
* wait for the MII interrupt
*/
start = get_time_ns();
while (!(readl(&fec->eth->ievent) & FEC_IEVENT_MII)) {
if (is_timeout(start, MSECOND)) {
printf("Write MDIO failed...\n");
return -1;
}
}
/*
* clear MII interrupt bit
*/
writel(FEC_IEVENT_MII, &fec->eth->ievent);
return 0;
}
static int fec_rx_task_enable(fec_priv *fec)
{
writel(1 << 24, &fec->eth->r_des_active);
return 0;
}
static int fec_rx_task_disable(fec_priv *fec)
{
return 0;
}
static int fec_tx_task_enable(fec_priv *fec)
{
writel(1 << 24, &fec->eth->x_des_active);
return 0;
}
static int fec_tx_task_disable(fec_priv *fec)
{
return 0;
}
/**
* Initialize receive task's buffer descriptors
* @param[in] fec all we know about the device yet
* @param[in] count receive buffer count to be allocated
* @param[in] size size of each receive buffer
* @return 0 on success
*
* For this task we need additional memory for the data buffers. And each
* data buffer requires some alignment. Thy must be aligned to a specific
* boundary each (4 byte).
*/
static int fec_rbd_init(fec_priv *fec, int count, int size)
{
int ix;
static int once = 0;
uint32_t p=0;
if (!once) {
/* reserve data memory and consider alignment */
p = (uint32_t)xzalloc(size * count + 0x04) + 0x03;
p &= ~0x03;
}
for (ix = 0; ix < count; ix++) {
if (!once) {
writel(p, &fec->rbd_base[ix].data_pointer);
p += size;
}
writew(FEC_RBD_EMPTY, &fec->rbd_base[ix].status);
writew(0, &fec->rbd_base[ix].data_length);
}
once = 1; /* malloc done now (and once) */
/*
* mark the last RBD to close the ring
*/
writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &fec->rbd_base[ix - 1].status);
fec->rbd_index = 0;
return 0;
}
/**
* Initialize transmit task's buffer descriptors
* @param[in] fec all we know about the device yet
*
* Transmit buffers are created externally. We only have to init the BDs here.
* Note: There is a race condition in the hardware. When only one BD is in
* use it must be marked with the WRAP bit to use it for every transmitt.
* This bit in combination with the READY bit results into double transmit
* of each data buffer. It seems the state machine checks READY earlier then
* resetting it after the first transfer.
* Using two BDs solves this issue.
*/
static void fec_tbd_init(fec_priv *fec)
{
writew(0x0000, &fec->tbd_base[0].status);
writew(FEC_TBD_WRAP, &fec->tbd_base[1].status);
fec->tbd_index = 0;
}
/**
* Mark the given read buffer descriptor as free
* @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
* @param[in] pRbd buffer descriptor to mark free again
*/
static void fec_rbd_clean(int last, FEC_BD *pRbd)
{
/*
* Reset buffer descriptor as empty
*/
if (last)
writew(FEC_RBD_WRAP | FEC_RBD_EMPTY, &pRbd->status);
else
writew(FEC_RBD_EMPTY, &pRbd->status);
/*
* no data in it
*/
writew(0, &pRbd->data_length);
}
static int fec_get_hwaddr(struct eth_device *dev, unsigned char *mac)
{
/* no eeprom */
return -1;
}
static int fec_set_hwaddr(struct eth_device *dev, unsigned char *mac)
{
fec_priv *fec = (fec_priv *)dev->priv;
//#define WTF_IS_THIS
#ifdef WTF_IS_THIS
uint32_t crc = 0xffffffff; /* initial value */
uint8_t currByte; /* byte for which to compute the CRC */
int byte; /* loop - counter */
int bit; /* loop - counter */
/*
* The algorithm used is the following:
* we loop on each of the six bytes of the provided address,
* and we compute the CRC by left-shifting the previous
* value by one position, so that each bit in the current
* byte of the address may contribute the calculation. If
* the latter and the MSB in the CRC are different, then
* the CRC value so computed is also ex-ored with the
* "polynomium generator". The current byte of the address
* is also shifted right by one bit at each iteration.
* This is because the CRC generatore in hardware is implemented
* as a shift-register with as many ex-ores as the radixes
* in the polynomium. This suggests that we represent the
* polynomiumm itself as a 32-bit constant.
*/
for (byte = 0; byte < 6; byte++) {
currByte = mac[byte];
for (bit = 0; bit < 8; bit++) {
if ((currByte & 0x01) ^ (crc & 0x01)) {
crc >>= 1;
crc = crc ^ 0xedb88320;
} else {
crc >>= 1;
}
currByte >>= 1;
}
}
crc = crc >> 26;
/*
* Set individual hash table register
*/
if (crc >= 32) {
fec->eth->iaddr1 = (1 << (crc - 32));
fec->eth->iaddr2 = 0;
} else {
fec->eth->iaddr1 = 0;
fec->eth->iaddr2 = (1 << crc);
}
#else
writel(0, &fec->eth->iaddr1);
writel(0, &fec->eth->iaddr2);
writel(0, &fec->eth->gaddr1);
writel(0, &fec->eth->gaddr2);
#endif
/*
* Set physical address
*/
writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], &fec->eth->paddr1);
writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
return 0;
}
static int fec_init(struct eth_device *dev)
{
fec_priv *fec = (fec_priv *)dev->priv;
/*
* Initialize RxBD/TxBD rings
*/
fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
fec_tbd_init(fec);
/*
* Clear FEC-Lite interrupt event register(IEVENT)
*/
writel(0xffffffff, &fec->eth->ievent);
/*
* Set interrupt mask register
*/
writel(0x00000000, &fec->eth->imask);
/*
* Set FEC-Lite receive control register(R_CNTRL):
*/
if (fec->xcv_type == SEVENWIRE) {
/*
* Frame length=1518; 7-wire mode
*/
writel(0x05ee0020, &fec->eth->r_cntrl); /* FIXME 0x05ee0000 */
} else {
/*
* Frame length=1518; MII mode;
*/
writel(0x05ee0024, &fec->eth->r_cntrl); /* FIXME 0x05ee0004 */
/*
* Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
* and do not drop the Preamble.
*/
writel(((imx_get_ahbclk() >> 20) / 5) << 1, &fec->eth->mii_speed); /* No MII for 7-wire mode */
}
/*
* Set Opcode/Pause Duration Register
*/
writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
writel(0x2, &fec->eth->x_wmrk);
/*
* Set multicast address filter
*/
writel(0x00000000, &fec->eth->gaddr1);
writel(0x00000000, &fec->eth->gaddr2);
/* size of each buffer */
writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
if (fec->xcv_type != SEVENWIRE)
miiphy_restart_aneg(&fec->miiphy);
return 0;
}
/**
* Start the FEC engine
* @param[in] dev Our device to handle
*/
static int fec_open(struct eth_device *edev)
{
fec_priv *fec = (fec_priv *)edev->priv;
writel(1 << 2, &fec->eth->x_cntrl); /* full-duplex, heartbeat disabled */
fec->rbd_index = 0;
/*
* Enable FEC-Lite controller
*/
writel(FEC_ECNTRL_ETHER_EN, &fec->eth->ecntrl);
/*
* Enable SmartDMA receive task
*/
fec_rx_task_enable(fec);
if (fec->xcv_type != SEVENWIRE) {
miiphy_wait_aneg(&fec->miiphy);
miiphy_print_status(&fec->miiphy);
}
return 0;
}
/**
* Halt the FEC engine
* @param[in] dev Our device to handle
*/
static void fec_halt(struct eth_device *dev)
{
fec_priv *fec = (fec_priv *)dev->priv;
int counter = 0xffff;
/*
* issue graceful stop command to the FEC transmitter if necessary
*/
writel(FEC_ECNTRL_RESET | readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl);
/*
* wait for graceful stop to register
*/
while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
; /* FIXME ensure time */
/*
* Disable SmartDMA tasks
*/
fec_tx_task_disable(fec);
fec_rx_task_disable(fec);
/*
* Disable the Ethernet Controller
* Note: this will also reset the BD index counter!
*/
writel(0, &fec->eth->ecntrl);
fec->rbd_index = 0;
fec->tbd_index = 0;
}
/**
* Transmit one frame
* @param[in] dev Our ethernet device to handle
* @param[in] eth_data Pointer to the data to be transmitted
* @param[in] data_length Data count in bytes
* @return 0 on success
*/
static int fec_send(struct eth_device *dev, void *eth_data, int data_length)
{
unsigned int status;
/*
* This routine transmits one frame. This routine only accepts
* 6-byte Ethernet addresses.
*/
fec_priv *fec = (fec_priv *)dev->priv;
/*
* Check for valid length of data.
*/
if ((data_length > 1500) || (data_length <= 0)) {
printf("Payload (%d) to large!\n");
return -1;
}
if ((uint32_t)eth_data & 0x0F)
printf("%s: Warning: Transmitt data not aligned!\n", __FUNCTION__);
/*
* Setup the transmitt buffer
* Note: We are always using the first buffer for transmission,
* the second will be empty and only used to stop the DMA engine
*/
writew(data_length, &fec->tbd_base[fec->tbd_index].data_length);
writel((uint32_t)eth_data, &fec->tbd_base[fec->tbd_index].data_pointer);
/*
* update BD's status now
* This block:
* - is always the last in a chain (means no chain)
* - should transmitt the CRC
* - might be the last BD in the list, so the address counter should
* wrap (-> keep the WRAP flag)
*/
status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
writew(status, &fec->tbd_base[fec->tbd_index].status);
/*
* Enable SmartDMA transmit task
*/
fec_tx_task_enable(fec);
/*
* wait until frame is sent .
*/
while (readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY) {
/* FIXME: Timeout */
}
/* for next transmission use the other buffer */
if (fec->tbd_index)
fec->tbd_index = 0;
else
fec->tbd_index = 1;
return 0;
}
/**
* Pull one frame from the card
* @param[in] dev Our ethernet device to handle
* @return Length of packet read
*/
static int fec_recv(struct eth_device *dev)
{
fec_priv *fec = (fec_priv *)dev->priv;
FEC_BD *rbd = &fec->rbd_base[fec->rbd_index];
unsigned long ievent;
int frame_length, len = 0;
NBUF *frame;
uint16_t bd_status;
uchar buff[FEC_MAX_PKT_SIZE];
/*
* Check if any critical events have happened
*/
ievent = readl(&fec->eth->ievent);
writel(ievent, &fec->eth->ievent);
if (ievent & (FEC_IEVENT_BABT | FEC_IEVENT_XFIFO_ERROR |
FEC_IEVENT_RFIFO_ERROR)) {
/* BABT, Rx/Tx FIFO errors */
fec_halt(dev);
fec_init(dev);
printf("some error: 0x%08x\n", ievent);
return 0;
}
if (ievent & FEC_IEVENT_HBERR) {
/* Heartbeat error */
writel(0x00000001 | readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl);
}
if (ievent & FEC_IEVENT_GRA) {
/* Graceful stop complete */
if (readl(&fec->eth->x_cntrl) & 0x00000001) {
fec_halt(dev);
writel(~0x00000001 & readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl);
fec_init(dev);
}
}
/*
* ensure reading the right buffer status
*/
bd_status = readw(&rbd->status);
if (!(bd_status & FEC_RBD_EMPTY)) {
if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
((readw(&rbd->data_length) - 4) > 14)) {
/*
* Get buffer address and size
*/
frame = (NBUF *)readl(&rbd->data_pointer);
frame_length = readw(&rbd->data_length) - 4;
/*
* Fill the buffer and pass it to upper layers
*/
memcpy(buff, frame->data, frame_length);
NetReceive(buff, frame_length);
len = frame_length;
} else {
if (bd_status & FEC_RBD_ERR) {
printf("error frame: 0x%08x 0x%08x\n", rbd, bd_status);
}
}
/*
* free the current buffer, restart the engine
* and move forward to the next buffer
*/
fec_rbd_clean(fec->rbd_index == (FEC_RBD_NUM - 1) ? 1 : 0, rbd);
fec_rx_task_enable(fec);
fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
}
return len;
}
int fec_probe(struct device_d *dev)
{
struct fec_platform_data *pdata = (struct fec_platform_data *)dev->platform_data;
struct eth_device *edev;
fec_priv *fec;
uint32_t base;
PCCR0 |= PCCR0_FEC_EN;
edev = (struct eth_device *)malloc(sizeof(struct eth_device));
dev->type_data = edev;
fec = (fec_priv*)malloc(sizeof(*fec));
edev->priv = fec;
edev->dev = dev;
edev->open = fec_open,
edev->init = fec_init,
edev->send = fec_send,
edev->recv = fec_recv,
edev->halt = fec_halt,
edev->get_ethaddr = fec_get_hwaddr,
edev->set_ethaddr = fec_set_hwaddr,
fec->eth = (ethernet_regs *)dev->map_base;
/* Reset chip. */
writel(FEC_ECNTRL_RESET, &fec->eth->ecntrl);
while(readl(&fec->eth->ecntrl) & 1) {
udelay(10);
}
/*
* reserve memory for both buffer descriptor chains at once
* Datasheet forces the startaddress of each chain is 16 byte aligned
*/
base = (uint32_t)xzalloc( (2 + FEC_RBD_NUM) * sizeof(FEC_BD) + 0x20 );
base += 0x0f;
base &= ~0x0f;
fec->rbd_base = (FEC_BD*)base;
base += FEC_RBD_NUM * sizeof(FEC_BD) + 0x0f;
base &= ~0x0f;
fec->tbd_base = (FEC_BD*)base;
writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
fec->xcv_type = pdata->xcv_type;
sprintf(dev->name, "FEC ETHERNET");
if (fec->xcv_type != SEVENWIRE) {
fec->miiphy.read = fec_miiphy_read;
fec->miiphy.write = fec_miiphy_write;
fec->miiphy.address = CONFIG_PHY_ADDR;
fec->miiphy.flags = pdata->xcv_type == MII10 ? MIIPHY_FORCE_10 : 0;
fec->miiphy.edev = edev;
miiphy_register(&fec->miiphy);
}
eth_register(edev);
return 0;
}
static struct driver_d imx27_driver = {
.name = "fec_imx27",
.probe = fec_probe,
.type = DEVICE_TYPE_ETHER,
};
static int fec_register(void)
{
register_driver(&imx27_driver);
return 0;
}
device_initcall(fec_register);
/**
* @file
* @brief Network driver for FreeScale's FEC implementation.
* This type of hardware can be found on i.MX27 CPUs
*/