9
0
Fork 0

crypto: sha1: switch to linux implementation

current implementation

$ ls -al build/versatilpb/arch/arm/pbl/zbarebox.bin
-rw-r--r-- 1 root root 211095 Mar 24 13:21 build/versatilpb/arch/arm/pbl/zbarebox.bin

linux generic implementation

$ ls -al build/versatilpb/arch/arm/pbl/zbarebox.bin
-rw-r--r-- 1 root root 210829 Mar 24 13:21 build/versatilpb/arch/arm/pbl/zbarebox.bin

on a compressed lzo barebox we will 266 bytes

Signed-off-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
This commit is contained in:
Jean-Christophe PLAGNIOL-VILLARD 2015-03-25 12:56:16 +01:00 committed by Sascha Hauer
parent c3fe3d7059
commit 144e104a1e
3 changed files with 357 additions and 285 deletions

View File

@ -1,311 +1,283 @@
/*
* Heiko Schocher, DENX Software Engineering, hs@denx.de.
* based on:
* FIPS-180-1 compliant SHA-1 implementation
* Cryptographic API.
*
* Copyright (C) 2003-2006 Christophe Devine
* SHA1 Secure Hash Algorithm.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License, version 2.1 as published by the Free Software Foundation.
* Derived from cryptoapi implementation, adapted for in-place
* scatterlist interface.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*/
/*
* The SHA-1 standard was published by NIST in 1993.
* Copyright (c) Alan Smithee.
* Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
* Copyright (c) Jean-Francois Dive <jef@linuxbe.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* http://www.itl.nist.gov/fipspubs/fip180-1.htm
*/
#include <common.h>
#include <digest.h>
#include <init.h>
#include <linux/string.h>
#include <asm/unaligned.h>
#include <asm/byteorder.h>
#include <crypto/sha.h>
#include <crypto/internal.h>
#define SHA1_SUM_POS -0x20
#define SHA1_SUM_LEN 20
#define SHA_WORKSPACE_WORDS 16
typedef struct
static int sha1_init(struct digest *desc)
{
uint32_t total[2]; /*!< number of bytes processed */
uint32_t state[5]; /*!< intermediate digest state */
uint8_t buffer[64]; /*!< data block being processed */
}
sha1_context;
struct sha1_state *ctx = digest_ctx(desc);
/*
* 32-bit integer manipulation macros (big endian)
*/
#define GET_UINT32_BE(n,b,i) (n) = be32_to_cpu(((uint32_t*)(b))[i / 4])
#define PUT_UINT32_BE(n,b,i) ((uint32_t*)(b))[i / 4] = cpu_to_be32(n)
ctx->count = 0;
/*
* SHA-1 context setup
*/
static void sha1_starts (sha1_context *ctx)
{
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xC3D2E1F0;
}
static void sha1_process (sha1_context *ctx, uint8_t data[64])
{
uint32_t temp, W[16], A, B, C, D, E;
GET_UINT32_BE (W[0], data, 0);
GET_UINT32_BE (W[1], data, 4);
GET_UINT32_BE (W[2], data, 8);
GET_UINT32_BE (W[3], data, 12);
GET_UINT32_BE (W[4], data, 16);
GET_UINT32_BE (W[5], data, 20);
GET_UINT32_BE (W[6], data, 24);
GET_UINT32_BE (W[7], data, 28);
GET_UINT32_BE (W[8], data, 32);
GET_UINT32_BE (W[9], data, 36);
GET_UINT32_BE (W[10], data, 40);
GET_UINT32_BE (W[11], data, 44);
GET_UINT32_BE (W[12], data, 48);
GET_UINT32_BE (W[13], data, 52);
GET_UINT32_BE (W[14], data, 56);
GET_UINT32_BE (W[15], data, 60);
#define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
#define R(t) ( \
temp = W[(t - 3) & 0x0F] ^ W[(t - 8) & 0x0F] ^ \
W[(t - 14) & 0x0F] ^ W[ t & 0x0F], \
( W[t & 0x0F] = S(temp,1) ) \
)
#define P(a,b,c,d,e,x) { \
e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
#define F(x,y,z) (z ^ (x & (y ^ z)))
#define K 0x5A827999
P (A, B, C, D, E, W[0]);
P (E, A, B, C, D, W[1]);
P (D, E, A, B, C, W[2]);
P (C, D, E, A, B, W[3]);
P (B, C, D, E, A, W[4]);
P (A, B, C, D, E, W[5]);
P (E, A, B, C, D, W[6]);
P (D, E, A, B, C, W[7]);
P (C, D, E, A, B, W[8]);
P (B, C, D, E, A, W[9]);
P (A, B, C, D, E, W[10]);
P (E, A, B, C, D, W[11]);
P (D, E, A, B, C, W[12]);
P (C, D, E, A, B, W[13]);
P (B, C, D, E, A, W[14]);
P (A, B, C, D, E, W[15]);
P (E, A, B, C, D, R (16));
P (D, E, A, B, C, R (17));
P (C, D, E, A, B, R (18));
P (B, C, D, E, A, R (19));
#undef K
#undef F
#define F(x,y,z) (x ^ y ^ z)
#define K 0x6ED9EBA1
P (A, B, C, D, E, R (20));
P (E, A, B, C, D, R (21));
P (D, E, A, B, C, R (22));
P (C, D, E, A, B, R (23));
P (B, C, D, E, A, R (24));
P (A, B, C, D, E, R (25));
P (E, A, B, C, D, R (26));
P (D, E, A, B, C, R (27));
P (C, D, E, A, B, R (28));
P (B, C, D, E, A, R (29));
P (A, B, C, D, E, R (30));
P (E, A, B, C, D, R (31));
P (D, E, A, B, C, R (32));
P (C, D, E, A, B, R (33));
P (B, C, D, E, A, R (34));
P (A, B, C, D, E, R (35));
P (E, A, B, C, D, R (36));
P (D, E, A, B, C, R (37));
P (C, D, E, A, B, R (38));
P (B, C, D, E, A, R (39));
#undef K
#undef F
#define F(x,y,z) ((x & y) | (z & (x | y)))
#define K 0x8F1BBCDC
P (A, B, C, D, E, R (40));
P (E, A, B, C, D, R (41));
P (D, E, A, B, C, R (42));
P (C, D, E, A, B, R (43));
P (B, C, D, E, A, R (44));
P (A, B, C, D, E, R (45));
P (E, A, B, C, D, R (46));
P (D, E, A, B, C, R (47));
P (C, D, E, A, B, R (48));
P (B, C, D, E, A, R (49));
P (A, B, C, D, E, R (50));
P (E, A, B, C, D, R (51));
P (D, E, A, B, C, R (52));
P (C, D, E, A, B, R (53));
P (B, C, D, E, A, R (54));
P (A, B, C, D, E, R (55));
P (E, A, B, C, D, R (56));
P (D, E, A, B, C, R (57));
P (C, D, E, A, B, R (58));
P (B, C, D, E, A, R (59));
#undef K
#undef F
#define F(x,y,z) (x ^ y ^ z)
#define K 0xCA62C1D6
P (A, B, C, D, E, R (60));
P (E, A, B, C, D, R (61));
P (D, E, A, B, C, R (62));
P (C, D, E, A, B, R (63));
P (B, C, D, E, A, R (64));
P (A, B, C, D, E, R (65));
P (E, A, B, C, D, R (66));
P (D, E, A, B, C, R (67));
P (C, D, E, A, B, R (68));
P (B, C, D, E, A, R (69));
P (A, B, C, D, E, R (70));
P (E, A, B, C, D, R (71));
P (D, E, A, B, C, R (72));
P (C, D, E, A, B, R (73));
P (B, C, D, E, A, R (74));
P (A, B, C, D, E, R (75));
P (E, A, B, C, D, R (76));
P (D, E, A, B, C, R (77));
P (C, D, E, A, B, R (78));
P (B, C, D, E, A, R (79));
#undef K
#undef F
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
}
/*
* SHA-1 process buffer
*/
static void sha1_update (sha1_context *ctx, uint8_t *input, uint32_t ilen)
{
uint32_t fill, left;
if (ilen <= 0)
return;
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += ilen;
ctx->total[0] &= 0xFFFFFFFF;
if (ctx->total[0] < ilen)
ctx->total[1]++;
if (left && ilen >= fill) {
memcpy ((void *) (ctx->buffer + left), (void *) input, fill);
sha1_process (ctx, ctx->buffer);
input += fill;
ilen -= fill;
left = 0;
}
while (ilen >= 64) {
sha1_process (ctx, input);
input += 64;
ilen -= 64;
}
if (ilen > 0) {
memcpy ((void *) (ctx->buffer + left), (void *) input, ilen);
}
}
static uint8_t sha1_padding[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/*
* SHA-1 final digest
*/
static void sha1_finish (sha1_context *ctx, uint8_t output[20])
{
uint32_t last, padn;
uint32_t high, low;
uint8_t msglen[8];
high = (ctx->total[0] >> 29)
| (ctx->total[1] << 3);
low = (ctx->total[0] << 3);
PUT_UINT32_BE (high, msglen, 0);
PUT_UINT32_BE (low, msglen, 4);
last = ctx->total[0] & 0x3F;
padn = (last < 56) ? (56 - last) : (120 - last);
sha1_update (ctx, sha1_padding, padn);
sha1_update (ctx, msglen, 8);
PUT_UINT32_BE (ctx->state[0], output, 0);
PUT_UINT32_BE (ctx->state[1], output, 4);
PUT_UINT32_BE (ctx->state[2], output, 8);
PUT_UINT32_BE (ctx->state[3], output, 12);
PUT_UINT32_BE (ctx->state[4], output, 16);
}
static int digest_sha1_init(struct digest *d)
{
sha1_starts(d->ctx);
ctx->state[0] = SHA1_H0;
ctx->state[1] = SHA1_H1;
ctx->state[2] = SHA1_H2;
ctx->state[3] = SHA1_H3;
ctx->state[4] = SHA1_H4;
return 0;
}
static int digest_sha1_update(struct digest *d, const void *data,
/*
* If you have 32 registers or more, the compiler can (and should)
* try to change the array[] accesses into registers. However, on
* machines with less than ~25 registers, that won't really work,
* and at least gcc will make an unholy mess of it.
*
* So to avoid that mess which just slows things down, we force
* the stores to memory to actually happen (we might be better off
* with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
* suggested by Artur Skawina - that will also make gcc unable to
* try to do the silly "optimize away loads" part because it won't
* see what the value will be).
*
* Ben Herrenschmidt reports that on PPC, the C version comes close
* to the optimized asm with this (ie on PPC you don't want that
* 'volatile', since there are lots of registers).
*
* On ARM we get the best code generation by forcing a full memory barrier
* between each SHA_ROUND, otherwise gcc happily get wild with spilling and
* the stack frame size simply explode and performance goes down the drain.
*/
#ifdef CONFIG_X86
#define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
#elif defined(CONFIG_ARM)
#define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
#else
#define setW(x, val) (W(x) = (val))
#endif
/* This "rolls" over the 512-bit array */
#define W(x) (array[(x)&15])
/*
* Where do we get the source from? The first 16 iterations get it from
* the input data, the next mix it from the 512-bit array.
*/
#define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
#define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
__u32 TEMP = input(t); setW(t, TEMP); \
E += TEMP + rol32(A,5) + (fn) + (constant); \
B = ror32(B, 2); } while (0)
#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E )
/**
* sha_transform - single block SHA1 transform
*
* @digest: 160 bit digest to update
* @data: 512 bits of data to hash
* @array: 16 words of workspace (see note)
*
* This function generates a SHA1 digest for a single 512-bit block.
* Be warned, it does not handle padding and message digest, do not
* confuse it with the full FIPS 180-1 digest algorithm for variable
* length messages.
*
* Note: If the hash is security sensitive, the caller should be sure
* to clear the workspace. This is left to the caller to avoid
* unnecessary clears between chained hashing operations.
*/
static void sha_transform(__u32 *digest, const char *data, __u32 *array)
{
__u32 A, B, C, D, E;
A = digest[0];
B = digest[1];
C = digest[2];
D = digest[3];
E = digest[4];
/* Round 1 - iterations 0-16 take their input from 'data' */
T_0_15( 0, A, B, C, D, E);
T_0_15( 1, E, A, B, C, D);
T_0_15( 2, D, E, A, B, C);
T_0_15( 3, C, D, E, A, B);
T_0_15( 4, B, C, D, E, A);
T_0_15( 5, A, B, C, D, E);
T_0_15( 6, E, A, B, C, D);
T_0_15( 7, D, E, A, B, C);
T_0_15( 8, C, D, E, A, B);
T_0_15( 9, B, C, D, E, A);
T_0_15(10, A, B, C, D, E);
T_0_15(11, E, A, B, C, D);
T_0_15(12, D, E, A, B, C);
T_0_15(13, C, D, E, A, B);
T_0_15(14, B, C, D, E, A);
T_0_15(15, A, B, C, D, E);
/* Round 1 - tail. Input from 512-bit mixing array */
T_16_19(16, E, A, B, C, D);
T_16_19(17, D, E, A, B, C);
T_16_19(18, C, D, E, A, B);
T_16_19(19, B, C, D, E, A);
/* Round 2 */
T_20_39(20, A, B, C, D, E);
T_20_39(21, E, A, B, C, D);
T_20_39(22, D, E, A, B, C);
T_20_39(23, C, D, E, A, B);
T_20_39(24, B, C, D, E, A);
T_20_39(25, A, B, C, D, E);
T_20_39(26, E, A, B, C, D);
T_20_39(27, D, E, A, B, C);
T_20_39(28, C, D, E, A, B);
T_20_39(29, B, C, D, E, A);
T_20_39(30, A, B, C, D, E);
T_20_39(31, E, A, B, C, D);
T_20_39(32, D, E, A, B, C);
T_20_39(33, C, D, E, A, B);
T_20_39(34, B, C, D, E, A);
T_20_39(35, A, B, C, D, E);
T_20_39(36, E, A, B, C, D);
T_20_39(37, D, E, A, B, C);
T_20_39(38, C, D, E, A, B);
T_20_39(39, B, C, D, E, A);
/* Round 3 */
T_40_59(40, A, B, C, D, E);
T_40_59(41, E, A, B, C, D);
T_40_59(42, D, E, A, B, C);
T_40_59(43, C, D, E, A, B);
T_40_59(44, B, C, D, E, A);
T_40_59(45, A, B, C, D, E);
T_40_59(46, E, A, B, C, D);
T_40_59(47, D, E, A, B, C);
T_40_59(48, C, D, E, A, B);
T_40_59(49, B, C, D, E, A);
T_40_59(50, A, B, C, D, E);
T_40_59(51, E, A, B, C, D);
T_40_59(52, D, E, A, B, C);
T_40_59(53, C, D, E, A, B);
T_40_59(54, B, C, D, E, A);
T_40_59(55, A, B, C, D, E);
T_40_59(56, E, A, B, C, D);
T_40_59(57, D, E, A, B, C);
T_40_59(58, C, D, E, A, B);
T_40_59(59, B, C, D, E, A);
/* Round 4 */
T_60_79(60, A, B, C, D, E);
T_60_79(61, E, A, B, C, D);
T_60_79(62, D, E, A, B, C);
T_60_79(63, C, D, E, A, B);
T_60_79(64, B, C, D, E, A);
T_60_79(65, A, B, C, D, E);
T_60_79(66, E, A, B, C, D);
T_60_79(67, D, E, A, B, C);
T_60_79(68, C, D, E, A, B);
T_60_79(69, B, C, D, E, A);
T_60_79(70, A, B, C, D, E);
T_60_79(71, E, A, B, C, D);
T_60_79(72, D, E, A, B, C);
T_60_79(73, C, D, E, A, B);
T_60_79(74, B, C, D, E, A);
T_60_79(75, A, B, C, D, E);
T_60_79(76, E, A, B, C, D);
T_60_79(77, D, E, A, B, C);
T_60_79(78, C, D, E, A, B);
T_60_79(79, B, C, D, E, A);
digest[0] += A;
digest[1] += B;
digest[2] += C;
digest[3] += D;
digest[4] += E;
}
static int sha1_update(struct digest *desc, const void *data,
unsigned long len)
{
sha1_update(d->ctx, (uint8_t*)data, len);
struct sha1_state *sctx = digest_ctx(desc);
unsigned int partial, done;
const u8 *src;
partial = sctx->count % SHA1_BLOCK_SIZE;
sctx->count += len;
done = 0;
src = data;
if ((partial + len) >= SHA1_BLOCK_SIZE) {
u32 temp[SHA_WORKSPACE_WORDS];
if (partial) {
done = -partial;
memcpy(sctx->buffer + partial, data,
done + SHA1_BLOCK_SIZE);
src = sctx->buffer;
}
do {
sha_transform(sctx->state, src, temp);
done += SHA1_BLOCK_SIZE;
src = data + done;
} while (done + SHA1_BLOCK_SIZE <= len);
memset(temp, 0, sizeof(temp));
partial = 0;
}
memcpy(sctx->buffer + partial, src, len - done);
return 0;
}
static int digest_sha1_final(struct digest *d, unsigned char *md)
static int sha1_final(struct digest *desc, unsigned char *md)
{
sha1_finish(d->ctx, md);
struct sha1_state *sctx = digest_ctx(desc);
__be32 *dst = (__be32 *)md;
u32 i, index, padlen;
__be64 bits;
static const u8 padding[64] = { 0x80, };
bits = cpu_to_be64(sctx->count << 3);
/* Pad out to 56 mod 64 */
index = sctx->count & 0x3f;
padlen = (index < 56) ? (56 - index) : ((64+56) - index);
sha1_update(desc, padding, padlen);
/* Append length */
sha1_update(desc, (const u8 *)&bits, sizeof(bits));
/* Store state in digest */
for (i = 0; i < 5; i++)
dst[i] = cpu_to_be32(sctx->state[i]);
/* Wipe context */
memset(sctx, 0, sizeof *sctx);
return 0;
}
@ -317,13 +289,13 @@ static struct digest_algo m = {
.priority = 0,
},
.init = digest_sha1_init,
.update = digest_sha1_update,
.final = digest_sha1_final,
.digest = digest_generic_digest,
.verify = digest_generic_verify,
.length = SHA1_SUM_LEN,
.ctx_length = sizeof(sha1_context),
.init = sha1_init,
.update = sha1_update,
.final = sha1_final,
.digest = digest_generic_digest,
.verify = digest_generic_verify,
.length = SHA1_DIGEST_SIZE,
.ctx_length = sizeof(struct sha1_state),
};
static int sha1_digest_register(void)

95
include/crypto/sha.h Normal file
View File

@ -0,0 +1,95 @@
/*
* Common values for SHA algorithms
*/
#ifndef _CRYPTO_SHA_H
#define _CRYPTO_SHA_H
#include <linux/types.h>
#define SHA1_DIGEST_SIZE 20
#define SHA1_BLOCK_SIZE 64
#define SHA224_DIGEST_SIZE 28
#define SHA224_BLOCK_SIZE 64
#define SHA256_DIGEST_SIZE 32
#define SHA256_BLOCK_SIZE 64
#define SHA384_DIGEST_SIZE 48
#define SHA384_BLOCK_SIZE 128
#define SHA512_DIGEST_SIZE 64
#define SHA512_BLOCK_SIZE 128
#define SHA1_H0 0x67452301UL
#define SHA1_H1 0xefcdab89UL
#define SHA1_H2 0x98badcfeUL
#define SHA1_H3 0x10325476UL
#define SHA1_H4 0xc3d2e1f0UL
#define SHA224_H0 0xc1059ed8UL
#define SHA224_H1 0x367cd507UL
#define SHA224_H2 0x3070dd17UL
#define SHA224_H3 0xf70e5939UL
#define SHA224_H4 0xffc00b31UL
#define SHA224_H5 0x68581511UL
#define SHA224_H6 0x64f98fa7UL
#define SHA224_H7 0xbefa4fa4UL
#define SHA256_H0 0x6a09e667UL
#define SHA256_H1 0xbb67ae85UL
#define SHA256_H2 0x3c6ef372UL
#define SHA256_H3 0xa54ff53aUL
#define SHA256_H4 0x510e527fUL
#define SHA256_H5 0x9b05688cUL
#define SHA256_H6 0x1f83d9abUL
#define SHA256_H7 0x5be0cd19UL
#define SHA384_H0 0xcbbb9d5dc1059ed8ULL
#define SHA384_H1 0x629a292a367cd507ULL
#define SHA384_H2 0x9159015a3070dd17ULL
#define SHA384_H3 0x152fecd8f70e5939ULL
#define SHA384_H4 0x67332667ffc00b31ULL
#define SHA384_H5 0x8eb44a8768581511ULL
#define SHA384_H6 0xdb0c2e0d64f98fa7ULL
#define SHA384_H7 0x47b5481dbefa4fa4ULL
#define SHA512_H0 0x6a09e667f3bcc908ULL
#define SHA512_H1 0xbb67ae8584caa73bULL
#define SHA512_H2 0x3c6ef372fe94f82bULL
#define SHA512_H3 0xa54ff53a5f1d36f1ULL
#define SHA512_H4 0x510e527fade682d1ULL
#define SHA512_H5 0x9b05688c2b3e6c1fULL
#define SHA512_H6 0x1f83d9abfb41bd6bULL
#define SHA512_H7 0x5be0cd19137e2179ULL
struct sha1_state {
u64 count;
u32 state[SHA1_DIGEST_SIZE / 4];
u8 buffer[SHA1_BLOCK_SIZE];
};
struct sha256_state {
u64 count;
u32 state[SHA256_DIGEST_SIZE / 4];
u8 buf[SHA256_BLOCK_SIZE];
};
struct sha512_state {
u64 count[2];
u64 state[SHA512_DIGEST_SIZE / 8];
u8 buf[SHA512_BLOCK_SIZE];
};
struct shash_desc;
extern int crypto_sha1_update(struct shash_desc *desc, const u8 *data,
unsigned int len);
extern int crypto_sha256_update(struct shash_desc *desc, const u8 *data,
unsigned int len);
extern int crypto_sha512_update(struct shash_desc *desc, const u8 *data,
unsigned int len);
#endif

View File

@ -127,4 +127,9 @@ static inline const char *digest_name(struct digest *d)
return d->algo->base.name;
}
static inline void* digest_ctx(struct digest *d)
{
return d->ctx;
}
#endif /* __SH_ST_DEVICES_H__ */