9
0
Fork 0

ppc 8xxx: DIMM parameters calculation

This code calculates the DIMM characteritics i.e DIMM
organization parameters and timings for DDR2 memory based on
SPD data.

It also provides a function to find out the lowest common DIMM
parameters to be used for all DIMMs.

This code is based on the equivalent files in directory
arch/powerpc/cpu/mpc8xxx/ddr from U-Boot version git-a71d45d.

Signed-off-by: Renaud Barbier <renaud.barbier@ge.com>
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
This commit is contained in:
Renaud Barbier 2013-06-26 18:33:43 +01:00 committed by Sascha Hauer
parent c6594ae1a3
commit 8567f00489
2 changed files with 517 additions and 0 deletions

View File

@ -0,0 +1,303 @@
/*
* Copyright 2008 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
#include <common.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
/*
* Calculate the Density of each Physical Rank.
* Returned size is in bytes.
*
* Table comes from Byte 31 of JEDEC SPD Spec.
*
* DDR II
* Bit Size Size
* --- -----
* 7 high 512MB
* 6 256MB
* 5 128MB
* 4 16GB
* 3 8GB
* 2 4GB
* 1 2GB
* 0 low 1GB
*
* Reorder Table to be linear by stripping the bottom
* 2 or 5 bits off and shifting them up to the top.
*
*/
static uint64_t compute_ranksize(uint32_t mem_type, unsigned char row_dens)
{
uint64_t bsize;
bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
bsize <<= 27ULL;
return bsize;
}
/*
* Convert a two-nibble BCD value into a cycle time.
* While the spec calls for nano-seconds, picos are returned.
*/
static uint32_t convert_bcd_tenths_to_cycle_time_ps(uint32_t spd_val)
{
uint32_t tenths_ps[16] = {
0,
100,
200,
300,
400,
500,
600,
700,
800,
900,
250,
330,
660,
750,
0,
0
};
uint32_t whole_ns = (spd_val & 0xF0) >> 4;
uint32_t tenth_ns = spd_val & 0x0F;
uint32_t ps = (whole_ns * 1000) + tenths_ps[tenth_ns];
return ps;
}
static uint32_t convert_bcd_hundredths_to_cycle_time_ps(uint32_t spd_val)
{
uint32_t tenth_ns = (spd_val & 0xF0) >> 4;
uint32_t hundredth_ns = spd_val & 0x0F;
uint32_t ps = (tenth_ns * 100) + (hundredth_ns * 10);
return ps;
}
static uint32_t byte40_table_ps[8] = {
0,
250,
330,
500,
660,
750,
0,
0
};
static uint32_t
compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
{
uint32_t trfc_ps;
trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000;
trfc_ps += byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
return trfc_ps;
}
static uint32_t
compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
{
uint32_t trc_ps;
trc_ps = (trc * 1000);
trc_ps += byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
return trc_ps;
}
/*
* Determine Refresh Rate.
* Table from SPD Spec, Byte 12, converted to picoseconds and
* filled in with "default" normal values.
*/
static uint32_t determine_refresh_rate_ps(const uint32_t spd_refresh)
{
uint32_t refresh_time_ps[8] = {
15625000, /* 0 Normal 1.00x */
3900000, /* 1 Reduced .25x */
7800000, /* 2 Extended .50x */
31300000, /* 3 Extended 2.00x */
62500000, /* 4 Extended 4.00x */
125000000, /* 5 Extended 8.00x */
15625000, /* 6 Normal 1.00x filler */
15625000, /* 7 Normal 1.00x filler */
};
return refresh_time_ps[spd_refresh & 0x7];
}
/*
* The purpose of this function is to compute a suitable
* CAS latency given the DRAM clock period. The SPD only
* defines at most 3 CAS latencies. Typically the slower in
* frequency the DIMM runs at, the shorter its CAS latency can.
* be. If the DIMM is operating at a sufficiently low frequency,
* it may be able to run at a CAS latency shorter than the
* shortest SPD-defined CAS latency.
*
* If a CAS latency is not found, 0 is returned.
*
* Do this by finding in the standard speed table the longest
* tCKmin that doesn't exceed the value of mclk_ps (tCK).
*
* An assumption made is that the SDRAM device allows the
* CL to be programmed for a value that is lower than those
* advertised by the SPD. This is not always the case,
* as those modes not defined in the SPD are optional.
*
* CAS latency de-rating based upon values JEDEC Standard No. 79-2C
* Table 40, "DDR2 SDRAM standard speed bins and tCK, tRCD, tRP, tRAS,
* and tRC for corresponding bin"
*
* ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
* Not certain if any good value exists for CL=2
*/
/* CL2 CL3 CL4 CL5 CL6 CL7 */
uint16_t ddr2_speed_bins[] = { 0, 5000, 3750, 3000, 2500, 1875 };
uint32_t compute_derated_DDR2_CAS_latency(uint32_t mclk_ps)
{
const uint32_t num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
uint32_t lowest_tCKmin_found = 0, lowest_tCKmin_CL = 0, i, x;
for (i = 0; i < num_speed_bins; i++) {
x = ddr2_speed_bins[i];
if (x && (x <= mclk_ps) && (x >= lowest_tCKmin_found)) {
lowest_tCKmin_found = x;
lowest_tCKmin_CL = i + 2;
}
}
return lowest_tCKmin_CL;
}
/*
* compute_dimm_parameters for DDR2 SPD
*
* Compute DIMM parameters based upon the SPD information in SPD.
* Writes the results to the dimm_params_s structure pointed by pdimm.
*/
uint32_t
compute_dimm_parameters(const generic_spd_eeprom_t *spdin,
struct dimm_params_s *pdimm)
{
const struct ddr2_spd_eeprom_s *spd = spdin;
uint32_t retval;
if (!spd->mem_type) {
memset(pdimm, 0, sizeof(struct dimm_params_s));
goto error;
}
if (spd->mem_type != SPD_MEMTYPE_DDR2)
goto error;
retval = ddr2_spd_checksum_pass(spd);
if (retval)
goto spd_err;
/*
* The part name in ASCII in the SPD EEPROM is not null terminated.
* Guarantee null termination here by presetting all bytes to 0
* and copying the part name in ASCII from the SPD onto it
*/
memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
/* DIMM organization parameters */
pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
pdimm->data_width = spd->dataw;
pdimm->primary_sdram_width = spd->primw;
pdimm->ec_sdram_width = spd->ecw;
/* These are all the types defined by the JEDEC DDR2 SPD 1.3 spec */
switch (spd->dimm_type) {
case DDR2_SPD_DIMMTYPE_RDIMM:
case DDR2_SPD_DIMMTYPE_72B_SO_RDIMM:
case DDR2_SPD_DIMMTYPE_MINI_RDIMM:
/* Registered/buffered DIMMs */
pdimm->registered_dimm = 1;
break;
case DDR2_SPD_DIMMTYPE_UDIMM:
case DDR2_SPD_DIMMTYPE_SO_DIMM:
case DDR2_SPD_DIMMTYPE_MICRO_DIMM:
case DDR2_SPD_DIMMTYPE_MINI_UDIMM:
/* Unbuffered DIMMs */
pdimm->registered_dimm = 0;
break;
case DDR2_SPD_DIMMTYPE_72B_SO_CDIMM:
default:
goto error;
}
pdimm->n_row_addr = spd->nrow_addr;
pdimm->n_col_addr = spd->ncol_addr;
pdimm->n_banks_per_sdram_device = spd->nbanks;
pdimm->edc_config = spd->config;
pdimm->burst_lengths_bitmask = spd->burstl;
pdimm->row_density = spd->rank_dens;
/*
* Calculate the Maximum Data Rate based on the Minimum Cycle time.
* The SPD clk_cycle field (tCKmin) is measured in tenths of
* nanoseconds and represented as BCD.
*/
pdimm->tCKmin_X_ps
= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
pdimm->tCKmin_X_minus_1_ps
= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
pdimm->tCKmin_X_minus_2_ps
= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
pdimm->tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);
/*
* Compute CAS latencies defined by SPD
* The SPD caslat_X should have at least 1 and at most 3 bits set.
*
* If cas_lat after masking is 0, the __ilog2 function returns
* 255 into the variable. This behavior is abused once.
*/
pdimm->caslat_X = __ilog2(spd->cas_lat);
pdimm->caslat_X_minus_1 = __ilog2(spd->cas_lat
& ~(1 << pdimm->caslat_X));
pdimm->caslat_X_minus_2 = __ilog2(spd->cas_lat & ~(1 << pdimm->caslat_X)
& ~(1 << pdimm->caslat_X_minus_1));
pdimm->caslat_lowest_derated
= compute_derated_DDR2_CAS_latency(get_memory_clk_period_ps());
pdimm->tRCD_ps = spd->trcd * 250;
pdimm->tRP_ps = spd->trp * 250;
pdimm->tRAS_ps = spd->tras * 1000;
pdimm->tWR_ps = spd->twr * 250;
pdimm->tWTR_ps = spd->twtr * 250;
pdimm->tRFC_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
pdimm->tRRD_ps = spd->trrd * 250;
pdimm->tRC_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
pdimm->tIS_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
pdimm->tIH_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
pdimm->tDS_ps
= convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
pdimm->tDH_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
pdimm->tRTP_ps = spd->trtp * 250;
pdimm->tDQSQ_max_ps = spd->tdqsq * 10;
pdimm->tQHS_ps = spd->tqhs * 10;
return 0;
error:
return 1;
spd_err:
return 2;
}

View File

@ -0,0 +1,214 @@
/*
* Copyright 2008-2012 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
#include <common.h>
#include <config.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
static unsigned int common_burst_length(
const struct dimm_params_s *dimm_params,
const unsigned int number_of_dimms)
{
unsigned int i, temp;
temp = 0xff;
for (i = 0; i < number_of_dimms; i++)
if (dimm_params[i].n_ranks)
temp &= dimm_params[i].burst_lengths_bitmask;
return temp;
}
/* Compute a CAS latency suitable for all DIMMs */
static unsigned int compute_lowest_caslat(
const struct dimm_params_s *dimm_params,
const unsigned int number_of_dimms)
{
uint32_t temp1, temp2, i, not_ok, lowest_good_caslat,
tCKmin_X_minus_1_ps, tCKmin_X_minus_2_ps;
const unsigned int mclk_ps = get_memory_clk_period_ps();
/*
* Step 1: find CAS latency common to all DIMMs using bitwise
* operation.
*/
temp1 = 0xFF;
for (i = 0; i < number_of_dimms; i++)
if (dimm_params[i].n_ranks) {
temp2 = 0;
temp2 |= 1 << dimm_params[i].caslat_X;
temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
/*
* FIXME: If there was no entry for X-2 (X-1) in
* the SPD, then caslat_X_minus_2
* (caslat_X_minus_1) contains either 255 or
* 0xFFFFFFFF because that's what the __ilog2
* function returns for an input of 0.
* On 32-bit PowerPC, left shift counts with bit
* 26 set (that the value of 255 or 0xFFFFFFFF
* will have), cause the destination register to
* be 0. That is why this works.
*/
temp1 &= temp2;
}
/*
* Step 2: check each common CAS latency against tCK of each
* DIMM's SPD.
*/
lowest_good_caslat = 0;
temp2 = 0;
while (temp1) {
not_ok = 0;
temp2 = __ilog2(temp1);
for (i = 0; i < number_of_dimms; i++) {
if (!dimm_params[i].n_ranks)
continue;
if (dimm_params[i].caslat_X == temp2) {
if (mclk_ps >= dimm_params[i].tCKmin_X_ps)
continue;
else
not_ok++;
}
if (dimm_params[i].caslat_X_minus_1 == temp2) {
tCKmin_X_minus_1_ps =
dimm_params[i].tCKmin_X_minus_1_ps;
if (mclk_ps >= tCKmin_X_minus_1_ps)
continue;
else
not_ok++;
}
if (dimm_params[i].caslat_X_minus_2 == temp2) {
tCKmin_X_minus_2_ps
= dimm_params[i].tCKmin_X_minus_2_ps;
if (mclk_ps >= tCKmin_X_minus_2_ps)
continue;
else
not_ok++;
}
}
if (!not_ok)
lowest_good_caslat = temp2;
temp1 &= ~(1 << temp2);
}
return lowest_good_caslat;
}
/*
* compute_lowest_common_dimm_parameters()
*
* Determine the worst-case DIMM timing parameters from the set of DIMMs
* whose parameters have been computed into the array pointed to
* by dimm_params.
*/
unsigned int
compute_lowest_common_dimm_parameters(const struct dimm_params_s *dimm,
struct common_timing_params_s *out,
const unsigned int number_of_dimms)
{
const uint32_t mclk_ps = get_memory_clk_period_ps();
uint32_t temp1, i;
struct common_timing_params_s tmp = {0};
tmp.tCKmax_ps = 0xFFFFFFFF;
temp1 = 0;
for (i = 0; i < number_of_dimms; i++) {
if (dimm[i].n_ranks == 0) {
temp1++;
continue;
}
/*
* Find minimum tCKmax_ps to find fastest slow speed,
* i.e., this is the slowest the whole system can go.
*/
tmp.tCKmax_ps = min(tmp.tCKmax_ps, dimm[i].tCKmax_ps);
/* Find maximum value to determine slowest speed, delay, etc */
tmp.tCKmin_X_ps = max(tmp.tCKmin_X_ps, dimm[i].tCKmin_X_ps);
tmp.tCKmax_max_ps = max(tmp.tCKmax_max_ps, dimm[i].tCKmax_ps);
tmp.tRCD_ps = max(tmp.tRCD_ps, dimm[i].tRCD_ps);
tmp.tRP_ps = max(tmp.tRP_ps, dimm[i].tRP_ps);
tmp.tRAS_ps = max(tmp.tRAS_ps, dimm[i].tRAS_ps);
tmp.tWR_ps = max(tmp.tWR_ps, dimm[i].tWR_ps);
tmp.tWTR_ps = max(tmp.tWTR_ps, dimm[i].tWTR_ps);
tmp.tRFC_ps = max(tmp.tRFC_ps, dimm[i].tRFC_ps);
tmp.tRRD_ps = max(tmp.tRRD_ps, dimm[i].tRRD_ps);
tmp.tRC_ps = max(tmp.tRC_ps, dimm[i].tRC_ps);
tmp.tIS_ps = max(tmp.tIS_ps, dimm[i].tIS_ps);
tmp.tIH_ps = max(tmp.tIH_ps, dimm[i].tIH_ps);
tmp.tDS_ps = max(tmp.tDS_ps, dimm[i].tDS_ps);
tmp.tDH_ps = max(tmp.tDH_ps, dimm[i].tDH_ps);
tmp.tRTP_ps = max(tmp.tRTP_ps, dimm[i].tRTP_ps);
tmp.tQHS_ps = max(tmp.tQHS_ps, dimm[i].tQHS_ps);
tmp.refresh_rate_ps = max(tmp.refresh_rate_ps,
dimm[i].refresh_rate_ps);
/* Find maximum tDQSQ_max_ps to find slowest timing. */
tmp.tDQSQ_max_ps = max(tmp.tDQSQ_max_ps, dimm[i].tDQSQ_max_ps);
}
tmp.ndimms_present = number_of_dimms - temp1;
if (temp1 == number_of_dimms)
return 0;
temp1 = common_burst_length(dimm, number_of_dimms);
tmp.all_DIMMs_burst_lengths_bitmask = temp1;
tmp.all_DIMMs_registered = 0;
tmp.lowest_common_SPD_caslat = compute_lowest_caslat(dimm,
number_of_dimms);
/*
* Compute a common 'de-rated' CAS latency.
*
* The strategy here is to find the *highest* de-rated cas latency
* with the assumption that all of the DIMMs will support a de-rated
* CAS latency higher than or equal to their lowest de-rated value.
*/
temp1 = 0;
for (i = 0; i < number_of_dimms; i++)
temp1 = max(temp1, dimm[i].caslat_lowest_derated);
tmp.highest_common_derated_caslat = temp1;
temp1 = 1;
for (i = 0; i < number_of_dimms; i++)
if (dimm[i].n_ranks &&
!(dimm[i].edc_config & EDC_ECC)) {
temp1 = 0;
break;
}
tmp.all_DIMMs_ECC_capable = temp1;
if (mclk_ps > tmp.tCKmax_max_ps)
return 1;
/*
* AL must be less or equal to tRCD. Typically, AL would
* be AL = tRCD - 1;
*
* When ODT read or write is enabled the sum of CAS latency +
* additive latency must be at least 3 cycles.
*
*/
if ((tmp.lowest_common_SPD_caslat < 4) && (picos_to_mclk(tmp.tRCD_ps) >
tmp.lowest_common_SPD_caslat))
tmp.additive_latency = picos_to_mclk(tmp.tRCD_ps) -
tmp.lowest_common_SPD_caslat;
memcpy(out, &tmp, sizeof(struct common_timing_params_s));
return 0;
}