9
0
Fork 0

Merge branch 'for-next/marvell'

This commit is contained in:
Sascha Hauer 2014-12-08 14:53:59 +01:00
commit d3933bd350
8 changed files with 879 additions and 23 deletions

View File

@ -74,6 +74,11 @@ static int armada_370_xp_init_soc(struct device_node *root, void *context)
mvebu_set_memory(phys_base, phys_size);
/* Enable peripherals PUP */
reg = readl(ARMADA_XP_PUP_ENABLE_BASE);
reg |= GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN | NAND_PUP_EN | SPI_PUP_EN;
writel(reg, ARMADA_XP_PUP_ENABLE_BASE);
return 0;
}

View File

@ -30,6 +30,13 @@
#define SAR_TCLK_FREQ BIT(20)
#define SAR_HIGH 0x04
#define ARMADA_XP_PUP_ENABLE_BASE (ARMADA_370_XP_INT_REGS_BASE + 0x1864c)
#define GE0_PUP_EN BIT(0)
#define GE1_PUP_EN BIT(1)
#define LCD_PUP_EN BIT(2)
#define NAND_PUP_EN BIT(4)
#define SPI_PUP_EN BIT(5)
#define ARMADA_370_XP_SDRAM_BASE (ARMADA_370_XP_INT_REGS_BASE + 0x20000)
#define DDR_BASE_CS 0x180
#define DDR_BASE_CSn(n) (DDR_BASE_CS + ((n) * 0x8))

View File

@ -138,6 +138,12 @@ config DRIVER_NET_MPC5200
depends on ARCH_MPC5200
select PHYLIB
config DRIVER_NET_MVNETA
bool "Marvell NETA"
depends on ARCH_MVEBU
select PHYLIB
select MDIO_MVEBU
config DRIVER_NET_NETX
bool "Hilscher Netx ethernet driver"
depends on HAS_NETX_ETHER

View File

@ -19,6 +19,7 @@ obj-$(CONFIG_DRIVER_NET_KS8851_MLL) += ks8851_mll.o
obj-$(CONFIG_DRIVER_NET_MACB) += macb.o
obj-$(CONFIG_DRIVER_NET_MICREL) += ksz8864rmn.o
obj-$(CONFIG_DRIVER_NET_MPC5200) += fec_mpc5200.o
obj-$(CONFIG_DRIVER_NET_MVNETA) += mvneta.o
obj-$(CONFIG_DRIVER_NET_NETX) += netx_eth.o
obj-$(CONFIG_DRIVER_NET_ORION) += orion-gbe.o
obj-$(CONFIG_DRIVER_NET_RTL8139) += rtl8139.o

766
drivers/net/mvneta.c Normal file
View File

@ -0,0 +1,766 @@
/*
* (C) Copyright 2014 - Ezequiel Garcia <ezequiel.garcia@free-electrons.com>
*
* based on mvneta driver from linux
* (C) Copyright 2012 Marvell
* Rami Rosen <rosenr@marvell.com>
* Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
*
* based on orion-gbe driver from barebox
* (C) Copyright 2014
* Pengutronix, Michael Grzeschik <mgr@pengutronix.de>
* Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <common.h>
#include <init.h>
#include <io.h>
#include <net.h>
#include <of_net.h>
#include <sizes.h>
#include <asm/mmu.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/mbus.h>
/* Registers */
/* Rx queue */
#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
#define MVNETA_RXQ_BUF_SIZE_SHIFT 19
#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
#define MVNETA_PORT_RX_RESET 0x1cc0
#define MVNETA_MBUS_RETRY 0x2010
#define MVNETA_UNIT_INTR_CAUSE 0x2080
#define MVNETA_UNIT_CONTROL 0x20B0
#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
#define MVNETA_BASE_ADDR_ENABLE 0x2290
#define MVNETA_PORT_CONFIG 0x2400
#define MVNETA_DEF_RXQ(q) ((q) << 1)
#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
#define MVNETA_TX_UNSET_ERR_SUM BIT(12)
#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
MVNETA_DEF_RXQ_ARP(q) | \
MVNETA_DEF_RXQ_TCP(q) | \
MVNETA_DEF_RXQ_UDP(q) | \
MVNETA_DEF_RXQ_BPDU(q) | \
MVNETA_TX_UNSET_ERR_SUM | \
MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
#define MVNETA_PORT_CONFIG_EXTEND 0x2404
#define MVNETA_MAC_ADDR_LOW 0x2414
#define MVNETA_MAC_ADDR_HIGH 0x2418
#define MVNETA_SDMA_CONFIG 0x241c
#define MVNETA_SDMA_BRST_SIZE_16 4
#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
#define MVNETA_RX_NO_DATA_SWAP BIT(4)
#define MVNETA_TX_NO_DATA_SWAP BIT(5)
#define MVNETA_DESC_SWAP BIT(6)
#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
#define MVNETA_RX_MIN_FRAME_SIZE 0x247c
#define MVNETA_SERDES_CFG 0x24a0
#define MVNETA_SGMII_SERDES 0x0cc7
#define MVNETA_QSGMII_SERDES 0x0667
#define MVNETA_TYPE_PRIO 0x24bc
#define MVNETA_TXQ_CMD_1 0x24e4
#define MVNETA_TXQ_CMD 0x2448
#define MVNETA_TXQ_DISABLE_SHIFT 8
#define MVNETA_TXQ_ENABLE_MASK 0x000000ff
#define MVNETA_ACC_MODE 0x2500
#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
#define MVNETA_INTR_NEW_CAUSE 0x25a0
#define MVNETA_INTR_NEW_MASK 0x25a4
#define MVNETA_INTR_OLD_CAUSE 0x25a8
#define MVNETA_INTR_OLD_MASK 0x25ac
#define MVNETA_INTR_MISC_CAUSE 0x25b0
#define MVNETA_INTR_MISC_MASK 0x25b4
#define MVNETA_INTR_ENABLE 0x25b8
#define MVNETA_RXQ_CMD 0x2680
#define MVNETA_RXQ_DISABLE_SHIFT 8
#define MVNETA_RXQ_ENABLE_MASK 0x000000ff
#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
#define MVNETA_GMAC_CTRL_0 0x2c00
#define MVNETA_GMAC_CTRL_2 0x2c08
#define MVNETA_GMAC2_PCS_ENABLE BIT(3)
#define MVNETA_GMAC2_PORT_RGMII BIT(4)
#define MVNETA_GMAC2_PORT_RESET BIT(6)
#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
#define MVNETA_GMAC_AN_SPEED_EN BIT(7)
#define MVNETA_GMAC_CONFIG_FLOWCTRL BIT(8)
#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
#define MVNETA_GMAC_AN_FLOWCTRL_EN BIT(11)
#define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
#define MVNETA_MIB_COUNTERS_BASE 0x3080
#define MVNETA_MIB_LATE_COLLISION 0x7c
#define MVNETA_DA_FILT_SPEC_MCAST 0x3400
#define MVNETA_DA_FILT_OTH_MCAST 0x3500
#define MVNETA_DA_FILT_UCAST_BASE 0x3600
#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
#define MVNETA_TXQ_DEC_SENT_SHIFT 16
#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
#define MVNETA_PORT_TX_RESET 0x3cf0
#define MVNETA_TX_MTU 0x3e0c
#define MVNETA_TX_TOKEN_SIZE 0x3e14
#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
* layout of the transmit and reception DMA descriptors, and their
* layout is therefore defined by the hardware design
*/
#define MVNETA_TX_L3_OFF_SHIFT 0
#define MVNETA_TX_IP_HLEN_SHIFT 8
#define MVNETA_TX_L4_UDP BIT(16)
#define MVNETA_TX_L3_IP6 BIT(17)
#define MVNETA_TXD_IP_CSUM BIT(18)
#define MVNETA_TXD_Z_PAD BIT(19)
#define MVNETA_TXD_L_DESC BIT(20)
#define MVNETA_TXD_F_DESC BIT(21)
#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
MVNETA_TXD_L_DESC | \
MVNETA_TXD_F_DESC)
#define MVNETA_TX_L4_CSUM_FULL BIT(30)
#define MVNETA_TX_L4_CSUM_NOT BIT(31)
#define MVNETA_TXD_ERROR BIT(0)
#define TXD_ERROR_MASK 0x6
#define TXD_ERROR_SHIFT 1
#define MVNETA_RXD_ERR_CRC 0x0
#define MVNETA_RXD_ERR_SUMMARY BIT(16)
#define MVNETA_RXD_ERR_OVERRUN BIT(17)
#define MVNETA_RXD_ERR_LEN BIT(18)
#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
#define MVNETA_RXD_L3_IP4 BIT(25)
#define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
#define MVNETA_RXD_L4_CSUM_OK BIT(30)
#define MVNETA_MH_SIZE 2
#define TXQ_NUM 8
#define RX_RING_SIZE 4
#define TRANSFER_TIMEOUT (10 * MSECOND)
struct rxdesc {
u32 cmd_sts; /* Info about received packet */
u16 reserved1; /* pnc_info - (for future use, PnC) */
u16 data_size; /* Size of received packet in bytes */
u32 buf_phys_addr; /* Physical address of the buffer */
u32 reserved2; /* pnc_flow_id (for future use, PnC) */
u32 buf_cookie; /* cookie for access to RX buffer in rx path */
u16 reserved3; /* prefetch_cmd, for future use */
u16 reserved4; /* csum_l4 - (for future use, PnC) */
u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
};
struct txdesc {
u32 cmd_sts; /* Options used by HW for packet transmitting.*/
u16 reserverd1; /* csum_l4 (for future use) */
u16 byte_cnt; /* Data size of transmitted packet in bytes */
u32 buf_ptr; /* Physical addr of transmitted buffer */
u8 error; /* */
u8 reserved2; /* Reserved - (for future use) */
u16 reserved3; /* Reserved - (for future use) */
u32 reserved4[4]; /* Reserved - (for future use) */
};
struct mvneta_port {
void __iomem *reg;
struct device_d dev;
struct eth_device edev;
struct clk *clk;
struct txdesc *txdesc;
struct rxdesc *rxdesc;
int curr_rxdesc;
u8 *rxbuf;
phy_interface_t intf;
};
static void mvneta_conf_mbus_windows(struct mvneta_port *priv)
{
const struct mbus_dram_target_info *dram = mvebu_mbus_dram_info();
u32 win_enable, win_protect;
int i;
for (i = 0; i < 6; i++) {
writel(0, priv->reg + MVNETA_WIN_BASE(i));
writel(0, priv->reg + MVNETA_WIN_SIZE(i));
if (i < 4)
writel(0, priv->reg + MVNETA_WIN_REMAP(i));
}
win_enable = 0x3f;
win_protect = 0;
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
writel((cs->base & 0xffff0000) |
(cs->mbus_attr << 8) |
dram->mbus_dram_target_id,
priv->reg + MVNETA_WIN_BASE(i));
writel((cs->size - 1) & 0xffff0000,
priv->reg + MVNETA_WIN_SIZE(i));
win_enable &= ~(1 << i);
win_protect |= 3 << (2 * i);
}
writel(win_enable, priv->reg + MVNETA_BASE_ADDR_ENABLE);
}
static void mvneta_clear_mcast_table(struct mvneta_port *priv)
{
int offset;
for (offset = 0; offset <= 0xfc; offset += 4) {
writel(0, priv->reg + MVNETA_DA_FILT_UCAST_BASE + offset);
writel(0, priv->reg + MVNETA_DA_FILT_SPEC_MCAST + offset);
writel(0, priv->reg + MVNETA_DA_FILT_OTH_MCAST + offset);
}
}
/* Set unicast address */
static void mvneta_set_ucast_addr(struct mvneta_port *priv, u8 last_nibble)
{
unsigned int tbl_offset, reg_offset;
int queue = 0;
u32 val;
/* Locate the Unicast table entry */
last_nibble = (0xf & last_nibble);
/* offset from unicast tbl base */
tbl_offset = (last_nibble / 4) * 4;
/* offset within the above reg */
reg_offset = last_nibble % 4;
val = readl(priv->reg + MVNETA_DA_FILT_UCAST_BASE + tbl_offset);
val &= ~(0xff << (8 * reg_offset));
val |= ((0x01 | (queue << 1)) << (8 * reg_offset));
writel(val, priv->reg + MVNETA_DA_FILT_UCAST_BASE + tbl_offset);
}
static void mvneta_clear_ucast_addr(struct mvneta_port *priv, u8 last_nibble)
{
unsigned int tbl_offset, reg_offset;
u32 val;
/* Locate the Unicast table entry */
last_nibble = (0xf & last_nibble);
/* offset from unicast tbl base */
tbl_offset = (last_nibble / 4) * 4;
/* offset within the above reg */
reg_offset = last_nibble % 4;
val = readl(priv->reg + MVNETA_DA_FILT_UCAST_BASE + tbl_offset);
/* Clear accepts frame bit at specified unicast DA tbl entry */
val &= ~(0xff << (8 * reg_offset));
writel(val, priv->reg + MVNETA_DA_FILT_UCAST_BASE + tbl_offset);
}
static void mvneta_rx_unicast_promisc_clear(struct mvneta_port *priv)
{
u32 portcfg, val;
portcfg = readl(priv->reg + MVNETA_PORT_CONFIG);
val = readl(priv->reg + MVNETA_TYPE_PRIO);
/* Reject all Unicast addresses */
writel(portcfg & ~BIT(0), priv->reg + MVNETA_PORT_CONFIG);
writel(val & ~BIT(21), priv->reg + MVNETA_TYPE_PRIO);
}
/* Clear all MIB counters */
static void mvneta_mib_counters_clear(struct mvneta_port *priv)
{
int i;
/* Perform dummy reads from MIB counters */
for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
readl(priv->reg + MVNETA_MIB_COUNTERS_BASE + i);
}
static int mvneta_pending_tx(struct mvneta_port *priv)
{
u32 val = readl(priv->reg + MVNETA_TXQ_STATUS_REG(0));
return val & 0x3fff;
}
static int mvneta_pending_rx(struct mvneta_port *priv)
{
u32 val = readl(priv->reg + MVNETA_RXQ_STATUS_REG(0));
return val & 0x3fff;
}
static void mvneta_port_stop(struct mvneta_port *priv)
{
u32 val;
/* Stop all queues */
writel(0xff << MVNETA_RXQ_DISABLE_SHIFT, priv->reg + MVNETA_RXQ_CMD);
writel(0xff << MVNETA_TXQ_DISABLE_SHIFT, priv->reg + MVNETA_TXQ_CMD);
/* Reset Tx */
writel(BIT(0), priv->reg + MVNETA_PORT_TX_RESET);
writel(0, priv->reg + MVNETA_PORT_TX_RESET);
/* Reset Rx */
writel(BIT(0), priv->reg + MVNETA_PORT_RX_RESET);
writel(0, priv->reg + MVNETA_PORT_RX_RESET);
/* Disable port 0 */
val = readl(priv->reg + MVNETA_GMAC_CTRL_0);
writel(val & ~BIT(0), priv->reg + MVNETA_GMAC_CTRL_0);
udelay(200);
/* Clear all Cause registers */
writel(0, priv->reg + MVNETA_INTR_NEW_CAUSE);
writel(0, priv->reg + MVNETA_INTR_OLD_CAUSE);
writel(0, priv->reg + MVNETA_INTR_MISC_CAUSE);
writel(0, priv->reg + MVNETA_UNIT_INTR_CAUSE);
/* Mask all interrupts */
writel(0, priv->reg + MVNETA_INTR_NEW_MASK);
writel(0, priv->reg + MVNETA_INTR_OLD_MASK);
writel(0, priv->reg + MVNETA_INTR_MISC_MASK);
writel(0, priv->reg + MVNETA_INTR_ENABLE);
}
static void mvneta_halt(struct eth_device *edev)
{
mvneta_port_stop((struct mvneta_port *)edev->priv);
}
static int mvneta_send(struct eth_device *edev, void *data, int len)
{
struct mvneta_port *priv = edev->priv;
struct txdesc *txdesc = priv->txdesc;
int ret, error, last_desc;
/* Flush transmit data */
dma_flush_range((unsigned long)data, (unsigned long)data+len);
/* Fill the Tx descriptor */
txdesc->cmd_sts |= MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
txdesc->buf_ptr = (u32)data;
txdesc->byte_cnt = len;
/* Increase the number of prepared descriptors (one), by writing
* to the 'NoOfWrittenDescriptors' field in the PTXSU register.
*/
writel(1, priv->reg + MVNETA_TXQ_UPDATE_REG(0));
/* The controller updates the number of transmitted descriptors in
* the Tx port status register (PTXS).
*/
ret = wait_on_timeout(TRANSFER_TIMEOUT, !mvneta_pending_tx(priv));
if (ret) {
dev_err(&edev->dev, "transmit timeout\n");
return ret;
}
last_desc = readl(&txdesc->cmd_sts) & MVNETA_TXD_L_DESC;
error = readl(&txdesc->error);
if (last_desc && error & MVNETA_TXD_ERROR) {
dev_err(&edev->dev, "transmit error %d\n",
(error & TXD_ERROR_MASK) >> TXD_ERROR_SHIFT);
return -EIO;
}
/* Release the transmitted descriptor by writing to the
* 'NoOfReleasedBuffers' field in the PTXSU register.
*/
writel(1 << MVNETA_TXQ_DEC_SENT_SHIFT,
priv->reg + MVNETA_TXQ_UPDATE_REG(0));
return 0;
}
static int mvneta_recv(struct eth_device *edev)
{
struct mvneta_port *priv = edev->priv;
struct rxdesc *rxdesc = &priv->rxdesc[priv->curr_rxdesc];
int ret, pending;
u32 cmd_sts;
/* wait for received packet */
pending = mvneta_pending_rx(priv);
if (!pending)
return 0;
/* drop malicious packets */
cmd_sts = readl(&rxdesc->cmd_sts);
if ((cmd_sts & MVNETA_RXD_FIRST_LAST_DESC) !=
MVNETA_RXD_FIRST_LAST_DESC) {
dev_err(&edev->dev, "rx packet spread on multiple descriptors\n");
ret = -EIO;
goto recv_err;
}
if (cmd_sts & MVNETA_RXD_ERR_SUMMARY) {
dev_err(&edev->dev, "receive error\n");
ret = -EIO;
goto recv_err;
}
/* invalidate current receive buffer */
dma_inv_range((unsigned long)rxdesc->buf_phys_addr,
(unsigned long)rxdesc->buf_phys_addr +
ALIGN(PKTSIZE, 8));
/* received packet is padded with two null bytes (Marvell header) */
net_receive(edev, (void *)(rxdesc->buf_phys_addr + MVNETA_MH_SIZE),
rxdesc->data_size - MVNETA_MH_SIZE);
ret = 0;
recv_err:
/* reset this and get next rx descriptor*/
rxdesc->data_size = 0;
rxdesc->cmd_sts = 0;
priv->curr_rxdesc++;
if (priv->curr_rxdesc == RX_RING_SIZE)
priv->curr_rxdesc = 0;
/* Descriptor processed and refilled */
writel(1 | 1 << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT,
priv->reg + MVNETA_RXQ_STATUS_UPDATE_REG(0));
return ret;
}
static int mvneta_set_ethaddr(struct eth_device *edev, unsigned char *mac)
{
struct mvneta_port *priv = edev->priv;
u32 mac_h = (mac[0] << 24) | (mac[1] << 16) | (mac[2] << 8) | mac[3];
u32 mac_l = (mac[4] << 8) | mac[5];
mvneta_clear_ucast_addr(priv, mac[5]);
writel(mac_l, priv->reg + MVNETA_MAC_ADDR_LOW);
writel(mac_h, priv->reg + MVNETA_MAC_ADDR_HIGH);
/* accept frames for this address */
mvneta_set_ucast_addr(priv, mac[5]);
return 0;
}
static int mvneta_get_ethaddr(struct eth_device *edev, unsigned char *mac)
{
struct mvneta_port *priv = edev->priv;
u32 mac_l = readl(priv->reg + MVNETA_MAC_ADDR_LOW);
u32 mac_h = readl(priv->reg + MVNETA_MAC_ADDR_HIGH);
mac[0] = (mac_h >> 24) & 0xff;
mac[1] = (mac_h >> 16) & 0xff;
mac[2] = (mac_h >> 8) & 0xff;
mac[3] = mac_h & 0xff;
mac[4] = (mac_l >> 8) & 0xff;
mac[5] = mac_l & 0xff;
return 0;
}
static void mvneta_adjust_link(struct eth_device *edev)
{
struct mvneta_port *priv = edev->priv;
struct phy_device *phy = edev->phydev;
u32 val;
if (!phy->link)
return;
val = readl(priv->reg + MVNETA_GMAC_AUTONEG_CONFIG);
val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
MVNETA_GMAC_CONFIG_GMII_SPEED |
MVNETA_GMAC_CONFIG_FULL_DUPLEX |
MVNETA_GMAC_AN_SPEED_EN |
MVNETA_GMAC_AN_FLOWCTRL_EN |
MVNETA_GMAC_AN_DUPLEX_EN);
if (phy->speed == SPEED_1000)
val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
else if (phy->speed == SPEED_100)
val |= MVNETA_GMAC_CONFIG_MII_SPEED;
if (phy->duplex)
val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
if (phy->pause)
val |= MVNETA_GMAC_CONFIG_FLOWCTRL;
val |= MVNETA_GMAC_FORCE_LINK_PASS | MVNETA_GMAC_FORCE_LINK_DOWN;
writel(val, priv->reg + MVNETA_GMAC_AUTONEG_CONFIG);
mvneta_mib_counters_clear(priv);
/* Enable first Tx and first Rx queues */
writel(BIT(0), priv->reg + MVNETA_TXQ_CMD);
writel(BIT(0), priv->reg + MVNETA_RXQ_CMD);
}
static int mvneta_open(struct eth_device *edev)
{
struct mvneta_port *priv = edev->priv;
int ret;
u32 val;
ret = phy_device_connect(&priv->edev, NULL, -1,
mvneta_adjust_link, 0, priv->intf);
if (ret)
return ret;
/* Enable the first port */
val = readl(priv->reg + MVNETA_GMAC_CTRL_0);
writel(val | BIT(0), priv->reg + MVNETA_GMAC_CTRL_0);
return 0;
}
static void mvneta_init_rx_ring(struct mvneta_port *priv)
{
int i;
for (i = 0; i < RX_RING_SIZE; i++) {
struct rxdesc *desc = &priv->rxdesc[i];
desc->buf_phys_addr = (u32)priv->rxbuf + i * ALIGN(PKTSIZE, 8);
}
priv->curr_rxdesc = 0;
}
void mvneta_setup_tx_rx(struct mvneta_port *priv)
{
u32 val;
/* Allocate descriptors and buffers */
priv->txdesc = dma_alloc_coherent(ALIGN(sizeof(*priv->txdesc), 32));
priv->rxdesc = dma_alloc_coherent(RX_RING_SIZE *
ALIGN(sizeof(*priv->rxdesc), 32));
priv->rxbuf = dma_alloc(RX_RING_SIZE * ALIGN(PKTSIZE, 8));
mvneta_init_rx_ring(priv);
/* Configure the Rx queue */
val = readl(priv->reg + MVNETA_RXQ_CONFIG_REG(0));
val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
writel(val, priv->reg + MVNETA_RXQ_CONFIG_REG(0));
/* Configure the Tx descriptor */
writel(1, priv->reg + MVNETA_TXQ_SIZE_REG(0));
writel((u32)priv->txdesc, priv->reg + MVNETA_TXQ_BASE_ADDR_REG(0));
/* Configure the Rx descriptor. Packet size is in 8-byte units. */
val = RX_RING_SIZE;
val |= ((PKTSIZE >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
writel(val , priv->reg + MVNETA_RXQ_SIZE_REG(0));
writel((u32)priv->rxdesc, priv->reg + MVNETA_RXQ_BASE_ADDR_REG(0));
/* Set the number of available Rx descriptors */
writel(RX_RING_SIZE << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT,
priv->reg + MVNETA_RXQ_STATUS_UPDATE_REG(0));
}
static int mvneta_port_config(struct mvneta_port *priv)
{
int queue;
u32 val;
/* Enable MBUS Retry bit16 */
writel(0x20, priv->reg + MVNETA_MBUS_RETRY);
/* Map the first Tx queue and first Rx queue to CPU0 */
writel(BIT(0) | (BIT(0) << 8), priv->reg + MVNETA_CPU_MAP(0));
/* Reset Tx/Rx DMA */
writel(BIT(0), priv->reg + MVNETA_PORT_TX_RESET);
writel(BIT(0), priv->reg + MVNETA_PORT_RX_RESET);
/* Disable Legacy WRR, Disable EJP, Release from reset */
writel(0, priv->reg + MVNETA_TXQ_CMD_1);
/* Set maximum bandwidth for the first TX queue */
writel(0x3ffffff, priv->reg + MVETH_TXQ_TOKEN_CFG_REG(0));
writel(0x3ffffff, priv->reg + MVETH_TXQ_TOKEN_COUNT_REG(0));
/* Minimum bandwidth on the rest of them */
for (queue = 1; queue < TXQ_NUM; queue++) {
writel(0, priv->reg + MVETH_TXQ_TOKEN_COUNT_REG(queue));
writel(0, priv->reg + MVETH_TXQ_TOKEN_CFG_REG(queue));
}
writel(0, priv->reg + MVNETA_PORT_RX_RESET);
writel(0, priv->reg + MVNETA_PORT_TX_RESET);
/* Disable hardware PHY polling */
val = readl(priv->reg + MVNETA_UNIT_CONTROL);
writel(val & ~BIT(1), priv->reg + MVNETA_UNIT_CONTROL);
/* Port Acceleration Mode */
writel(0x1, priv->reg + MVNETA_ACC_MODE);
/* Port default configuration for the first Rx queue */
val = MVNETA_PORT_CONFIG_DEFL_VALUE(0);
writel(val, priv->reg + MVNETA_PORT_CONFIG);
writel(0, priv->reg + MVNETA_PORT_CONFIG_EXTEND);
writel(64, priv->reg + MVNETA_RX_MIN_FRAME_SIZE);
/* Default burst size */
val = 0;
val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
writel(val, priv->reg + MVNETA_SDMA_CONFIG);
mvneta_clear_mcast_table(priv);
mvneta_rx_unicast_promisc_clear(priv);
/* Configure maximum MTU and token size */
writel(0x0003ffff, priv->reg + MVNETA_TX_MTU);
writel(0xffffffff, priv->reg + MVNETA_TX_TOKEN_SIZE);
writel(0x7fffffff, priv->reg + MVNETA_TXQ_TOKEN_SIZE_REG(0));
val = readl(priv->reg + MVNETA_GMAC_CTRL_2);
/* Even though it might look weird, when we're configured in
* SGMII or QSGMII mode, the RGMII bit needs to be set.
*/
switch (priv->intf) {
case PHY_INTERFACE_MODE_QSGMII:
writel(MVNETA_QSGMII_SERDES, priv->reg + MVNETA_SERDES_CFG);
val |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
break;
case PHY_INTERFACE_MODE_SGMII:
writel(MVNETA_SGMII_SERDES, priv->reg + MVNETA_SERDES_CFG);
val |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_TXID:
case PHY_INTERFACE_MODE_RGMII_RXID:
val |= MVNETA_GMAC2_PORT_RGMII;
break;
default:
return -EINVAL;
}
/* Cancel Port Reset */
val &= ~MVNETA_GMAC2_PORT_RESET;
writel(val, priv->reg + MVNETA_GMAC_CTRL_2);
while (readl(priv->reg + MVNETA_GMAC_CTRL_2) & MVNETA_GMAC2_PORT_RESET)
continue;
return 0;
}
static int mvneta_probe(struct device_d *dev)
{
struct mvneta_port *priv;
int ret;
priv = xzalloc(sizeof(*priv));
priv->reg = dev_get_mem_region(dev, 0);
priv->clk = clk_get(dev, 0);
if (IS_ERR(priv->clk))
return PTR_ERR(priv->clk);
clk_enable(priv->clk);
ret = of_get_phy_mode(dev->device_node);
if (ret < 0)
return ret;
priv->intf = ret;
mvneta_port_stop(priv);
ret = mvneta_port_config(priv);
if (ret)
return ret;
mvneta_conf_mbus_windows(priv);
mvneta_setup_tx_rx(priv);
/* register eth device */
priv->edev.priv = priv;
priv->edev.open = mvneta_open;
priv->edev.send = mvneta_send;
priv->edev.recv = mvneta_recv;
priv->edev.halt = mvneta_halt;
priv->edev.set_ethaddr = mvneta_set_ethaddr;
priv->edev.get_ethaddr = mvneta_get_ethaddr;
priv->edev.parent = dev;
ret = eth_register(&priv->edev);
if (ret)
return ret;
return 0;
}
static struct of_device_id mvneta_dt_ids[] = {
{ .compatible = "marvell,armada-370-neta", },
{ }
};
static struct driver_d mvneta_driver = {
.name = "mvneta",
.probe = mvneta_probe,
.of_compatible = DRV_OF_COMPAT(mvneta_dt_ids),
};
device_platform_driver(mvneta_driver);

View File

@ -35,6 +35,13 @@
#define MII_88E1121_PHY_MSCR_DELAY_MASK \
(MII_88E1121_PHY_MSCR_RX_DELAY | MII_88E1121_PHY_MSCR_TX_DELAY)
#define MII_88E1540_LED_PAGE 0x3
#define MII_88E1540_LED_CONTROL 0x10
#define MII_88E1540_QSGMII_PAGE 0x4
#define MII_88E1540_QSGMII_CONTROL 0x0
#define MII_88E1540_QSGMII_AUTONEG_EN BIT(12)
/*
* marvell_read_status
*
@ -123,6 +130,48 @@ static int marvell_read_status(struct phy_device *phydev)
return 0;
}
static int m88e1540_config_init(struct phy_device *phydev)
{
u16 reg;
int ret;
/* Configure QSGMII auto-negotiation */
if (phydev->interface == PHY_INTERFACE_MODE_QSGMII) {
ret = phy_write(phydev, MII_MARVELL_PHY_PAGE,
MII_88E1540_QSGMII_PAGE);
if (ret < 0)
return ret;
reg = phy_read(phydev, MII_88E1540_QSGMII_CONTROL);
ret = phy_write(phydev, MII_88E1540_QSGMII_CONTROL,
reg | MII_88E1540_QSGMII_AUTONEG_EN);
if (ret < 0)
return ret;
}
/* Configure LED as:
* Activity: Blink
* Link: On
* No Link: Off
*/
phy_write(phydev, MII_MARVELL_PHY_PAGE, MII_88E1540_LED_PAGE);
phy_write(phydev, MII_88E1540_LED_CONTROL, 0x1111);
/* Power-up the PHY. When going from power down to normal operation,
* software reset and auto-negotiation restart are also performed.
*/
ret = phy_write(phydev, MII_MARVELL_PHY_PAGE,
MII_MARVELL_PHY_DEFAULT_PAGE);
if (ret < 0)
return ret;
ret = phy_write(phydev, MII_BMCR,
phy_read(phydev, MII_BMCR) & ~BMCR_PDOWN);
if (ret < 0)
return ret;
return 0;
}
static int m88e1121_config_init(struct phy_device *phydev)
{
u16 reg;
@ -166,15 +215,33 @@ static int m88e1121_config_init(struct phy_device *phydev)
}
static struct phy_driver marvell_phys[] = {
{
.phy_id = MARVELL_PHY_ID_88E1121R,
.phy_id_mask = MARVELL_PHY_ID_MASK,
.drv.name = "Marvell 88E1121R",
.features = PHY_GBIT_FEATURES,
.config_init = m88e1121_config_init,
.config_aneg = genphy_config_aneg,
.read_status = marvell_read_status,
},
{
.phy_id = MARVELL_PHY_ID_88E1121R,
.phy_id_mask = MARVELL_PHY_ID_MASK,
.drv.name = "Marvell 88E1121R",
.features = PHY_GBIT_FEATURES,
.config_init = m88e1121_config_init,
.config_aneg = genphy_config_aneg,
.read_status = marvell_read_status,
},
{
.phy_id = MARVELL_PHY_ID_88E1543,
.phy_id_mask = MARVELL_PHY_ID_MASK,
.drv.name = "Marvell 88E1543",
.features = PHY_GBIT_FEATURES,
.config_init = m88e1540_config_init,
.config_aneg = genphy_config_aneg,
.read_status = marvell_read_status,
},
{
.phy_id = MARVELL_PHY_ID_88E1545,
.phy_id_mask = MARVELL_PHY_ID_MASK,
.drv.name = "Marvell 88E1545",
.features = PHY_GBIT_FEATURES,
.config_init = m88e1540_config_init,
.config_aneg = genphy_config_aneg,
.read_status = marvell_read_status,
},
};
static int __init marvell_phy_init(void)

View File

@ -27,6 +27,8 @@
#define MARVELL_PHY_ID_88E1318S 0x01410e90
#define MARVELL_PHY_ID_88E1116R 0x01410e40
#define MARVELL_PHY_ID_88E1510 0x01410dd0
#define MARVELL_PHY_ID_88E1543 0x01410ea0
#define MARVELL_PHY_ID_88E1545 0x01410eb0
/* Mask used for ID comparisons */
#define MARVELL_PHY_ID_MASK 0xfffffff0

View File

@ -376,21 +376,23 @@ kwboot_xm_sendblock(int fd, struct kwboot_block *block)
} while (c == NAK && retries-- > 0);
rc = -1;
if (!rc) {
rc = -1;
switch (c) {
case ACK:
rc = 0;
break;
case NAK:
errno = EBADMSG;
break;
case CAN:
errno = ECANCELED;
break;
default:
errno = EPROTO;
break;
switch (c) {
case ACK:
rc = 0;
break;
case NAK:
errno = EBADMSG;
break;
case CAN:
errno = ECANCELED;
break;
default:
errno = EPROTO;
break;
}
}
return rc;