9
0
Fork 0

nor: Add SPI flash driver

This patch adds the m25p80 driver. It has been ported from
Linux. MTD code has been removed. It has been tested with
a m25p40 chip and the Altera SPI master driver.

Signed-off-by: Franck Jullien <franck.jullien@gmail.com>
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
This commit is contained in:
Franck Jullien 2011-08-24 12:19:24 +02:00 committed by Sascha Hauer
parent d7bb45559c
commit e705ccd130
5 changed files with 975 additions and 5 deletions

View File

@ -1,14 +1,16 @@
menu "flash drivers "
config HAS_CFI
bool
config DRIVER_CFI
bool "cfi flash driver"
menuconfig DRIVER_CFI
bool "CFI "
help
If you have NOR Flash devices connected to your system and wish
to use them say yes here.
if DRIVER_CFI
config HAS_CFI
bool
config DRIVER_CFI_INTEL
default y
depends on DRIVER_CFI
@ -55,4 +57,33 @@ config CFI_BUFFER_WRITE
bool "use cfi driver with buffer write"
depends on DRIVER_CFI || DRIVER_CFI
endif
config MTD_M25P80
tristate "SPI Flash chips (AT26DF, M25P, W25X, ...)"
depends on SPI
help
This enables access to most modern SPI flash chips, used for
program and data storage. Series supported include Atmel AT26DF,
Spansion S25SL, SST 25VF, ST M25P, and Winbond W25X. Other chips
are supported as well. See the driver source for the current list,
or to add other chips.
Note that the original DataFlash chips (AT45 series, not AT26DF),
need an entirely different driver.
Set up your spi devices with the right board-specific platform data,
if you want to specify device partitioning or to use a device which
doesn't support the JEDEC ID instruction.
config MTD_SST25L
tristate "Support SST25L (non JEDEC) SPI Flash chips"
depends on MTD_M25P80
help
This enables access to the non JEDEC SST25L SPI flash chips, used
for program and data storage.
Set up your spi devices with the right board-specific platform data,
if you want to specify device partitioning.
endmenu

View File

@ -1,4 +1,5 @@
obj-$(CONFIG_DRIVER_CFI) += cfi_flash.o
obj-$(CONFIG_DRIVER_CFI_INTEL) += cfi_flash_intel.o
obj-$(CONFIG_DRIVER_CFI_AMD) += cfi_flash_amd.o
obj-$(CONFIG_MTD_M25P80) += m25p80.o

818
drivers/nor/m25p80.c Normal file
View File

@ -0,0 +1,818 @@
/*
* MTD SPI driver for ST M25Pxx (and similar) serial flash chips
*
* Author: Mike Lavender, mike@steroidmicros.com
* Copyright (c) 2005, Intec Automation Inc.
*
* Adapted to barebox : Franck JULLIEN <elec4fun@gmail.com>
* Copyright (c) 2011
*
* Some parts are based on lart.c by Abraham Van Der Merwe
*
* Cleaned up and generalized based on mtd_dataflash.c
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <common.h>
#include <init.h>
#include <driver.h>
#include <spi/spi.h>
#include <spi/flash.h>
#include <xfuncs.h>
#include <malloc.h>
#include <errno.h>
#include <linux/err.h>
#include <clock.h>
#include <linux/mtd/mtd.h>
#include <progress.h>
#include "m25p80.h"
/****************************************************************************/
/*
* Internal helper functions
*/
/*
* Read the status register, returning its value in the location
* Return the status register value.
* Returns negative if error occurred.
*/
static int read_sr(struct m25p *flash)
{
ssize_t retval;
u8 code = OPCODE_RDSR;
u8 val;
retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
if (retval < 0) {
dev_err(&flash->spi->dev, "error %d reading SR\n",
(int) retval);
return retval;
}
return val;
}
/*
* Write status register 1 byte
* Returns negative if error occurred.
*/
static int write_sr(struct m25p *flash, u8 val)
{
flash->command[0] = OPCODE_WRSR;
flash->command[1] = val;
return spi_write(flash->spi, flash->command, 2);
}
/*
* Set write enable latch with Write Enable command.
* Returns negative if error occurred.
*/
static inline int write_enable(struct m25p *flash)
{
u8 code = OPCODE_WREN;
return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
/*
* Send write disble instruction to the chip.
*/
static inline int write_disable(struct m25p *flash)
{
u8 code = OPCODE_WRDI;
return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
/*
* Enable/disable 4-byte addressing mode.
*/
static inline int set_4byte(struct m25p *flash, int enable)
{
u8 code = enable ? OPCODE_EN4B : OPCODE_EX4B;
return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
/*
* Service routine to read status register until ready, or timeout occurs.
* Returns non-zero if error.
*/
static int wait_till_ready(struct m25p *flash)
{
int sr;
uint64_t timer_start;
timer_start = get_time_ns();
do {
if ((sr = read_sr(flash)) < 0)
break;
else if (!(sr & SR_WIP))
return 0;
} while (!(is_timeout(timer_start, MAX_READY_WAIT * SECOND)));
return -ETIMEDOUT;
}
/*
* Erase the whole flash memory
*
* Returns 0 if successful, non-zero otherwise.
*/
static int erase_chip(struct m25p *flash)
{
dev_dbg(&flash->spi->dev, "%s %lldKiB\n",
__func__, (long long)(flash->size >> 10));
/* Wait until finished previous write command. */
if (wait_till_ready(flash))
return -ETIMEDOUT;
/* Send write enable, then erase commands. */
write_enable(flash);
/* Set up command buffer. */
flash->command[0] = OPCODE_CHIP_ERASE;
spi_write(flash->spi, flash->command, 1);
return 0;
}
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
/* opcode is in cmd[0] */
cmd[1] = addr >> (flash->addr_width * 8 - 8);
cmd[2] = addr >> (flash->addr_width * 8 - 16);
cmd[3] = addr >> (flash->addr_width * 8 - 24);
cmd[4] = addr >> (flash->addr_width * 8 - 32);
}
static int m25p_cmdsz(struct m25p *flash)
{
return 1 + flash->addr_width;
}
/*
* Erase one sector of flash memory at offset ``offset'' which is any
* address within the sector which should be erased.
*
* Returns 0 if successful, non-zero otherwise.
*/
static int erase_sector(struct m25p *flash, u32 offset)
{
dev_dbg(&flash->spi->dev, "%s %dKiB at 0x%08x\n",
__func__, flash->erasesize / 1024, offset);
/* Wait until finished previous write command. */
if (wait_till_ready(flash))
return -ETIMEDOUT;
/* Send write enable, then erase commands. */
write_enable(flash);
/* Set up command buffer. */
flash->command[0] = flash->erase_opcode;
m25p_addr2cmd(flash, offset, flash->command);
spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
return 0;
}
/*
* Erase an address range on the flash chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static ssize_t m25p80_erase(struct cdev *cdev, size_t count, unsigned long offset)
{
struct m25p *flash = cdev->priv;
u32 addr, len;
u32 start_sector;
u32 end_sector;
u32 progress = 0;
dev_dbg(&flash->spi->dev, "%s %s 0x%llx, len %lld\n",
__func__, "at", (long long)offset, (long long)count);
/* sanity checks */
if (offset + count > flash->size)
return -EINVAL;
addr = offset;
len = count;
start_sector = offset / flash->erasesize;
end_sector = (offset + count - 1) / flash->erasesize;
init_progression_bar(end_sector - start_sector);
/* whole-chip erase? */
if (len == flash->size) {
show_progress(start_sector);
if (erase_chip(flash))
return -EIO;
show_progress(end_sector);
/* REVISIT in some cases we could speed up erasing large regions
* by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
* to use "small sector erase", but that's not always optimal.
*/
/* "sector"-at-a-time erase */
} else {
while (len) {
if (erase_sector(flash, addr))
return -EIO;
addr += flash->erasesize;
len -= flash->erasesize;
show_progress(progress++);
}
}
printf("\n");
return 0;
}
ssize_t m25p80_read(struct cdev *cdev, void *buf, size_t count, ulong offset, ulong flags)
{
struct m25p *flash = cdev->priv;
struct spi_transfer t[2];
struct spi_message m;
ssize_t retlen;
/* sanity checks */
if (!count)
return 0;
if (offset + count > flash->size)
return -EINVAL;
spi_message_init(&m);
memset(t, 0, (sizeof t));
/* NOTE:
* OPCODE_FAST_READ (if available) is faster.
* Should add 1 byte DUMMY_BYTE.
*/
t[0].tx_buf = flash->command;
t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
spi_message_add_tail(&t[0], &m);
t[1].rx_buf = buf;
t[1].len = count;
spi_message_add_tail(&t[1], &m);
/* Byte count starts at zero. */
retlen = 0;
/* Wait till previous write/erase is done. */
if (wait_till_ready(flash))
return -ETIMEDOUT;
/* FIXME switch to OPCODE_FAST_READ. It's required for higher
* clocks; and at this writing, every chip this driver handles
* supports that opcode.
*/
/* Set up the write data buffer. */
flash->command[0] = OPCODE_READ;
m25p_addr2cmd(flash, offset, flash->command);
spi_sync(flash->spi, &m);
retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
return retlen;
}
ssize_t m25p80_write(struct cdev *cdev, const void *buf, size_t count, ulong offset, ulong flags)
{
struct m25p *flash = cdev->priv;
struct spi_transfer t[2];
struct spi_message m;
ssize_t retlen = 0;
u32 page_offset, page_size;
debug("m25p80_write %ld bytes at 0x%08lX\n", (unsigned long)count, offset);
if (offset + count > flash->size)
return -EINVAL;
spi_message_init(&m);
memset(t, 0, (sizeof t));
t[0].tx_buf = flash->command;
t[0].len = m25p_cmdsz(flash);
spi_message_add_tail(&t[0], &m);
t[1].tx_buf = buf;
spi_message_add_tail(&t[1], &m);
/* Wait until finished previous write command. */
if (wait_till_ready(flash))
return -ETIMEDOUT;
write_enable(flash);
/* Set up the opcode in the write buffer. */
flash->command[0] = OPCODE_PP;
m25p_addr2cmd(flash, offset, flash->command);
page_offset = offset & (flash->page_size - 1);
/* do all the bytes fit onto one page? */
if (page_offset + count <= flash->page_size) {
t[1].len = count;
spi_sync(flash->spi, &m);
retlen = m.actual_length - m25p_cmdsz(flash);
} else {
u32 i;
/* the size of data remaining on the first page */
page_size = flash->page_size - page_offset;
t[1].len = page_size;
spi_sync(flash->spi, &m);
retlen = m.actual_length - m25p_cmdsz(flash);
/* write everything in flash->page_size chunks */
for (i = page_size; i < count; i += page_size) {
page_size = count - i;
if (page_size > flash->page_size)
page_size = flash->page_size;
/* write the next page to flash */
m25p_addr2cmd(flash, offset + i, flash->command);
t[1].tx_buf = buf + i;
t[1].len = page_size;
wait_till_ready(flash);
write_enable(flash);
spi_sync(flash->spi, &m);
retlen += m.actual_length - m25p_cmdsz(flash);
}
}
return retlen;
}
#ifdef CONFIG_MTD_SST25L
ssize_t sst_write(struct cdev *cdev, const void *buf, size_t count, ulong offset, ulong flags)
{
struct m25p *flash = cdev->priv;
struct spi_transfer t[2];
struct spi_message m;
size_t actual;
ssize_t retlen;
int cmd_sz, ret;
debug("sst_write %ld bytes at 0x%08lX\n", (unsigned long)count, offset);
retlen = 0;
/* sanity checks */
if (!count)
return 0;
if (offset + count > flash->size)
return -EINVAL;
spi_message_init(&m);
memset(t, 0, (sizeof t));
t[0].tx_buf = flash->command;
t[0].len = m25p_cmdsz(flash);
spi_message_add_tail(&t[0], &m);
t[1].tx_buf = buf;
spi_message_add_tail(&t[1], &m);
/* Wait until finished previous write command. */
ret = wait_till_ready(flash);
if (ret)
goto time_out;
write_enable(flash);
actual = offset % 2;
/* Start write from odd address. */
if (actual) {
flash->command[0] = OPCODE_BP;
m25p_addr2cmd(flash, offset, flash->command);
/* write one byte. */
t[1].len = 1;
spi_sync(flash->spi, &m);
ret = wait_till_ready(flash);
if (ret)
goto time_out;
retlen += m.actual_length - m25p_cmdsz(flash);
}
offset += actual;
flash->command[0] = OPCODE_AAI_WP;
m25p_addr2cmd(flash, offset, flash->command);
/* Write out most of the data here. */
cmd_sz = m25p_cmdsz(flash);
for (; actual < count - 1; actual += 2) {
t[0].len = cmd_sz;
/* write two bytes. */
t[1].len = 2;
t[1].tx_buf = buf + actual;
spi_sync(flash->spi, &m);
ret = wait_till_ready(flash);
if (ret)
goto time_out;
retlen += m.actual_length - cmd_sz;
cmd_sz = 1;
offset += 2;
}
write_disable(flash);
ret = wait_till_ready(flash);
if (ret)
goto time_out;
/* Write out trailing byte if it exists. */
if (actual != count) {
write_enable(flash);
flash->command[0] = OPCODE_BP;
m25p_addr2cmd(flash, offset, flash->command);
t[0].len = m25p_cmdsz(flash);
t[1].len = 1;
t[1].tx_buf = buf + actual;
spi_sync(flash->spi, &m);
ret = wait_till_ready(flash);
if (ret)
goto time_out;
retlen += m.actual_length - m25p_cmdsz(flash);
write_disable(flash);
}
time_out:
return retlen;
}
#endif
static void m25p80_info(struct device_d *dev)
{
struct m25p *flash = dev->priv;
struct flash_info *info = flash->info;
printf("Flash type : %s\n", flash->name);
printf("Size : %lldKiB\n", (long long)flash->size / 1024);
printf("Number of sectors : %d\n", info->n_sectors);
printf("Sector size : %dKiB\n", info->sector_size / 1024);
printf("\n");
}
/****************************************************************************/
/*
* SPI device driver setup and teardown
*/
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
((unsigned long)&(struct flash_info) { \
.jedec_id = (_jedec_id), \
.ext_id = (_ext_id), \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = 256, \
.flags = (_flags), \
})
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
((unsigned long)&(struct flash_info) { \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = (_page_size), \
.addr_width = (_addr_width), \
.flags = M25P_NO_ERASE, \
})
/* NOTE: double check command sets and memory organization when you add
* more flash chips. This current list focusses on newer chips, which
* have been converging on command sets which including JEDEC ID.
*/
static const struct spi_device_id m25p_ids[] = {
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
{ "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
{ "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
{ "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
{ "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
/* EON -- en25xxx */
{ "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
{ "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
/* Intel/Numonyx -- xxxs33b */
{ "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
{ "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
{ "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
/* Macronix */
{ "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
{ "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
{ "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
{ "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
/* Spansion -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
{ "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K) },
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
{ "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
{ "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) },
{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
{ "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) },
{ "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) },
{ "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) },
{ "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) },
/* ST Microelectronics -- newer production may have feature updates */
{ "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
{ "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
{ "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
{ "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
{ "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
{ "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
{ "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
{ "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
{ "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
{ "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
{ "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
{ "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
{ "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
{ "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
{ "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
{ "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
{ "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
{ "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
{ "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
{ "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
{ "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
{ "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
{ "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
{ "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
{ "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
{ "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
{ "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
/* Catalyst / On Semiconductor -- non-JEDEC */
{ "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
{ "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
{ },
};
static const struct spi_device_id *jedec_probe(struct spi_device *spi)
{
int tmp;
u8 code = OPCODE_RDID;
u8 id[5];
u32 jedec;
u16 ext_jedec;
struct flash_info *info;
/* JEDEC also defines an optional "extended device information"
* string for after vendor-specific data, after the three bytes
* we use here. Supporting some chips might require using it.
*/
spi_write_then_read(spi, &code, 1, id, 5);
jedec = id[0];
jedec = jedec << 8;
jedec |= id[1];
jedec = jedec << 8;
jedec |= id[2];
ext_jedec = id[3] << 8 | id[4];
for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
info = (void *)m25p_ids[tmp].driver_data;
if (info->jedec_id == jedec) {
if (info->ext_id != 0 && info->ext_id != ext_jedec)
continue;
return &m25p_ids[tmp];
}
}
dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
return NULL;
}
static struct file_operations m25p80_ops = {
.read = m25p80_read,
.write = m25p80_write,
.erase = m25p80_erase,
.lseek = dev_lseek_default,
};
/*
* board specific setup should have ensured the SPI clock used here
* matches what the READ command supports, at least until this driver
* understands FAST_READ (for clocks over 25 MHz).
*/
static int m25p_probe(struct device_d *dev)
{
struct spi_device *spi = (struct spi_device *)dev->type_data;
const struct spi_device_id *id = NULL;
struct flash_info *info = NULL;
struct flash_platform_data *data;
struct m25p *flash;
unsigned i;
unsigned do_jdec_probe = 1;
/* Platform data helps sort out which chip type we have, as
* well as how this board partitions it. If we don't have
* a chip ID, try the JEDEC id commands; they'll work for most
* newer chips, even if we don't recognize the particular chip.
*/
data = dev->platform_data;
if (data && data->type) {
const struct spi_device_id *plat_id;
for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
plat_id = &m25p_ids[i];
if (strcmp(data->type, plat_id->name))
continue;
break;
}
if (i < ARRAY_SIZE(m25p_ids) - 1) {
id = plat_id;
info = (void *)id->driver_data;
/* If flash type is provided but the memory is not
* JEDEC compliant, don't try to probe the JEDEC id */
if (!info->jedec_id)
do_jdec_probe = 0;
} else
dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
}
if (do_jdec_probe) {
const struct spi_device_id *jid;
jid = jedec_probe(spi);
if (!jid) {
return -ENODEV;
} else if (jid != id) {
/*
* JEDEC knows better, so overwrite platform ID. We
* can't trust partitions any longer, but we'll let
* mtd apply them anyway, since some partitions may be
* marked read-only, and we don't want to lose that
* information, even if it's not 100% accurate.
*/
if (id)
dev_warn(dev, "found %s, expected %s\n",
jid->name, id->name);
id = jid;
info = (void *)jid->driver_data;
}
}
flash = xzalloc(sizeof *flash);
flash->command = xmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE);
flash->spi = spi;
dev->priv = (void *)flash;
/*
* Atmel, SST and Intel/Numonyx serial flash tend to power
* up with the software protection bits set
*/
if (info->jedec_id >> 16 == 0x1f ||
info->jedec_id >> 16 == 0x89 ||
info->jedec_id >> 16 == 0xbf) {
write_enable(flash);
write_sr(flash, 0);
}
flash->name = (char *)id->name;
flash->info = info;
flash->size = info->sector_size * info->n_sectors;
flash->erasesize = info->sector_size;
flash->cdev.size = info->sector_size * info->n_sectors;
flash->cdev.dev = dev;
flash->cdev.ops = &m25p80_ops;
flash->cdev.priv = flash;
if (data && data->name)
flash->cdev.name = asprintf("%s%d", data->name, dev->id);
else
flash->cdev.name = asprintf("%s", (char *)dev_name(&spi->dev));
#ifdef CONFIG_MTD_SST25L
/* sst flash chips use AAI word program */
if (info->jedec_id >> 16 == 0xbf)
m25p80_ops.write = sst_write;
else
#endif
m25p80_ops.write = m25p80_write;
/* prefer "small sector" erase if possible */
if (info->flags & SECT_4K)
flash->erase_opcode = OPCODE_BE_4K;
else
flash->erase_opcode = OPCODE_SE;
flash->page_size = info->page_size;
if (info->addr_width)
flash->addr_width = info->addr_width;
else {
/* enable 4-byte addressing if the device exceeds 16MiB */
if (flash->size > 0x1000000) {
flash->addr_width = 4;
set_4byte(flash, 1);
} else
flash->addr_width = 3;
}
dev_info(dev, "%s (%lld Kbytes)\n", id->name, (long long)flash->size >> 10);
devfs_create(&flash->cdev);
return 0;
}
static struct driver_d epcs_flash_driver = {
.name = "m25p",
.probe = m25p_probe,
.info = m25p80_info,
};
static int epcs_init(void)
{
register_driver(&epcs_flash_driver);
return 0;
}
device_initcall(epcs_init);

90
drivers/nor/m25p80.h Normal file
View File

@ -0,0 +1,90 @@
#ifndef _M25P80_H_
#define _M25P80_H_
/* Flash opcodes. */
#define OPCODE_WREN 0x06 /* Write enable */
#define OPCODE_RDSR 0x05 /* Read status register */
#define OPCODE_WRSR 0x01 /* Write status register 1 byte */
#define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
#define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
#define OPCODE_RDID 0x9f /* Read JEDEC ID */
/* Used for SST flashes only. */
#define OPCODE_BP 0x02 /* Byte program */
#define OPCODE_WRDI 0x04 /* Write disable */
#define OPCODE_AAI_WP 0xad /* Auto address increment word program */
/* Used for Macronix flashes only. */
#define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
#define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
/* Status Register bits. */
#define SR_WIP 1 /* Write in progress */
#define SR_WEL 2 /* Write enable latch */
/* meaning of other SR_* bits may differ between vendors */
#define SR_BP0 4 /* Block protect 0 */
#define SR_BP1 8 /* Block protect 1 */
#define SR_BP2 0x10 /* Block protect 2 */
#define SR_SRWD 0x80 /* SR write protect */
/* Define max times to check status register before we give up. */
#define MAX_READY_WAIT 40 /* M25P16 specs 40s max chip erase */
#define MAX_CMD_SIZE 5
#ifdef CONFIG_M25PXX_USE_FAST_READ
#define OPCODE_READ OPCODE_FAST_READ
#define FAST_READ_DUMMY_BYTE 1
#else
#define OPCODE_READ OPCODE_NORM_READ
#define FAST_READ_DUMMY_BYTE 0
#endif
#define SPI_NAME_SIZE 32
struct spi_device_id {
char name[SPI_NAME_SIZE];
unsigned long driver_data;
};
struct m25p {
struct spi_device *spi;
struct flash_info *info;
struct mtd_info mtd;
struct cdev cdev;
char *name;
u32 erasesize;
u16 page_size;
u16 addr_width;
u8 erase_opcode;
u8 *command;
u32 size;
};
struct flash_info {
/* JEDEC id zero means "no ID" (most older chips); otherwise it has
* a high byte of zero plus three data bytes: the manufacturer id,
* then a two byte device id.
*/
u32 jedec_id;
u16 ext_id;
/* The size listed here is what works with OPCODE_SE, which isn't
* necessarily called a "sector" by the vendor.
*/
unsigned sector_size;
u16 n_sectors;
u16 page_size;
u16 addr_width;
u16 flags;
#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
#define M25P_NO_ERASE 0x02 /* No erase command needed */
};
#endif

30
include/spi/flash.h Normal file
View File

@ -0,0 +1,30 @@
#ifndef LINUX_SPI_FLASH_H
#define LINUX_SPI_FLASH_H
struct mtd_partition;
/**
* struct flash_platform_data: board-specific flash data
* @name: optional flash device name (eg, as used with mtdparts=)
* @parts: optional array of mtd_partitions for static partitioning
* @nr_parts: number of mtd_partitions for static partitoning
* @type: optional flash device type (e.g. m25p80 vs m25p64), for use
* with chips that can't be queried for JEDEC or other IDs
*
* Board init code (in arch/.../mach-xxx/board-yyy.c files) can
* provide information about SPI flash parts (such as DataFlash) to
* help set up the device and its appropriate default partitioning.
*
* Note that for DataFlash, sizes for pages, blocks, and sectors are
* rarely powers of two; and partitions should be sector-aligned.
*/
struct flash_platform_data {
const char *name;
struct mtd_partition *parts;
unsigned int nr_parts;
char *type;
/* we'll likely add more ... use JEDEC IDs, etc */
};
#endif