9
0
Fork 0
barebox/drivers/mci/mci-bcm2835.c

553 lines
15 KiB
C

/*
* Raspberry PI MCI driver
*
* Support for SDHCI device on bcm2835
* Based on sdhci-bcm2708.c (c) 2010 Broadcom
* Inspired by bcm2835_sdhci.c from git://github.com/gonzoua/u-boot-pi.git
*
* Portions (e.g. read/write macros, concepts for back-to-back register write
* timing workarounds) obviously extracted from the Linux kernel at:
* https://github.com/raspberrypi/linux.git rpi-3.6.y
*
* The Linux kernel code has the following (c) and license, which is hence
* propagated to here:
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Author: Wilhelm Lundgren <wilhelm.lundgren@cybercom.com>
*/
#include <common.h>
#include <init.h>
#include <mci.h>
#include <io.h>
#include <malloc.h>
#include <clock.h>
#include <linux/clk.h>
#include "mci-bcm2835.h"
#include "sdhci.h"
#define to_bcm2835_host(h) container_of(h, struct bcm2835_mci_host, mci)
static int twoticks_delay;
struct bcm2835_mci_host {
struct mci_host mci;
void __iomem *regs;
struct device_d *hw_dev;
int bus_width;
u32 clock;
u32 max_clock;
u32 version;
uint64_t last_write;
};
void bcm2835_mci_write(struct bcm2835_mci_host *host, u32 reg, u32 val)
{
/*
* The Arasan has a bugette whereby it may lose the content of
* successive writes to registers that are within two SD-card clock
* cycles of each other (a clock domain crossing problem).
* It seems, however, that the data register does not have this problem.
* (Which is just as well - otherwise we'd have to nobble the DMA engine
* too)
*/
if (host->last_write != 0)
while ((get_time_ns() - host->last_write) < twoticks_delay)
;
host->last_write = get_time_ns();
writel(val, host->regs + reg);
}
u32 bcm2835_mci_read(struct bcm2835_mci_host *host, u32 reg)
{
return readl(host->regs + reg);
}
/* Create special write data function since the data
* register is not affected by the twoticks_delay bug
* and we can thus get better speed here
*/
void bcm2835_mci_write_data(struct bcm2835_mci_host *host, u32 *p)
{
writel(*p, host->regs + SDHCI_BUFFER);
}
/* Make a read data functions as well just to keep structure */
void bcm2835_mci_read_data(struct bcm2835_mci_host *host, u32 *p)
{
*p = readl(host->regs + SDHCI_BUFFER);
}
static int bcm2835_mci_transfer_data(struct bcm2835_mci_host *host,
struct mci_cmd *cmd, struct mci_data *data) {
u32 *p;
u32 data_size, status, intr_status = 0;
u32 data_ready_intr_mask;
u32 data_ready_status_mask;
int i = 0;
void (*read_write_func)(struct bcm2835_mci_host*, u32*);
data_size = data->blocksize * data->blocks;
if (data->flags & MMC_DATA_READ) {
p = (u32 *) data->dest;
data_ready_intr_mask = IRQSTAT_BRR;
data_ready_status_mask = PRSSTAT_BREN;
read_write_func = &bcm2835_mci_read_data;
} else {
p = (u32 *) data->src;
data_ready_intr_mask = IRQSTAT_BWR;
data_ready_status_mask = PRSSTAT_BWEN;
read_write_func = &bcm2835_mci_write_data;
}
do {
intr_status = bcm2835_mci_read(host, SDHCI_INT_STATUS);
if (intr_status & IRQSTAT_CIE) {
dev_err(host->hw_dev,
"Error occured while transferring data: 0x%X\n",
intr_status);
return -EPERM;
}
if (intr_status & data_ready_intr_mask) {
status = bcm2835_mci_read(host, SDHCI_PRESENT_STATE);
if ((status & data_ready_status_mask) == 0)
continue;
/*Clear latest int and transfer one block size of data*/
bcm2835_mci_write(host, SDHCI_INT_STATUS,
data_ready_intr_mask);
for (i = 0; i < data->blocksize; i += 4) {
read_write_func(host, p);
p++;
data_size -= 4;
}
}
} while ((intr_status & IRQSTAT_TC) == 0);
if (data_size != 0) {
if (data->flags & MMC_DATA_READ)
dev_err(host->hw_dev, "Error while reading:\n");
else
dev_err(host->hw_dev, "Error while writing:\n");
dev_err(host->hw_dev, "Transferred %d bytes of data, wanted %d\n",
(data->blocksize * data->blocks) - data_size,
data->blocksize * data->blocks);
dev_err(host->hw_dev, "Status: 0x%X, Interrupt: 0x%X\n",
bcm2835_mci_read(host, SDHCI_PRESENT_STATE),
bcm2835_mci_read(host, SDHCI_INT_STATUS));
return -EPERM;
}
return 0;
}
static u32 bcm2835_mci_wait_command_done(struct bcm2835_mci_host *host)
{
u32 interrupt = 0;
while (true) {
interrupt = bcm2835_mci_read(
host, SDHCI_INT_STATUS);
if (interrupt & IRQSTAT_CIE)
return -EPERM;
if (interrupt & IRQSTAT_CC)
break;
}
return 0;
}
static void bcm2835_mci_reset_emmc(struct bcm2835_mci_host *host, u32 reset,
u32 wait_for)
{
u32 ret;
u32 current = bcm2835_mci_read(host,
SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET);
bcm2835_mci_write(host,
SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
current | reset);
while (true) {
ret = bcm2835_mci_read(host,
SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET);
if (ret & wait_for)
continue;
break;
}
}
/**
* Process one command to the MCI card
* @param host MCI host
* @param cmd The command to process
* @param data The data to handle in the command (can be NULL)
* @return 0 on success, negative value else
*/
static int bcm2835_mci_request(struct mci_host *mci, struct mci_cmd *cmd,
struct mci_data *data) {
u32 command, block_data = 0, ret = 0;
u32 wait_inhibit_mask = PRSSTAT_CICHB | PRSSTAT_CIDHB;
struct bcm2835_mci_host *host = to_bcm2835_host(mci);
command = COMMAND_CMD(cmd->cmdidx);
if (cmd->resp_type != MMC_RSP_NONE) {
if (cmd->resp_type & MMC_RSP_136)
command |= COMMAND_RSPTYP_136;
else if (cmd->resp_type & MMC_RSP_BUSY)
command |= COMMAND_RSPTYP_48_BUSY;
else
command |= COMMAND_RSPTYP_48;
if (cmd->resp_type & MMC_RSP_CRC)
command |= COMMAND_CCCEN;
}
if (data != NULL) {
command |= COMMAND_DPSEL | TRANSFER_MODE_BCEN;
if (data->blocks > 1)
command |= TRANSFER_MODE_MSBSEL;
if (data->flags & MMC_DATA_READ)
command |= TRANSFER_MODE_DTDSEL;
block_data = (data->blocks << BLOCK_SHIFT);
block_data |= data->blocksize;
}
/* We shouldn't wait for data inihibit for stop commands, even
though they might use busy signaling */
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
wait_inhibit_mask = PRSSTAT_CICHB;
/*Wait for old command*/
while (bcm2835_mci_read(host, SDHCI_PRESENT_STATE)
& wait_inhibit_mask)
;
bcm2835_mci_write(host, SDHCI_INT_ENABLE, 0xFFFFFFFF);
bcm2835_mci_write(host, SDHCI_INT_STATUS, 0xFFFFFFFF);
bcm2835_mci_write(host, SDHCI_BLOCK_SIZE__BLOCK_COUNT, block_data);
bcm2835_mci_write(host, SDHCI_ARGUMENT, cmd->cmdarg);
bcm2835_mci_write(host, SDHCI_TRANSFER_MODE__COMMAND, command);
ret = bcm2835_mci_wait_command_done(host);
if (ret) {
dev_err(host->hw_dev, "Error while executing command %d\n",
cmd->cmdidx);
dev_err(host->hw_dev, "Status: 0x%X, Interrupt: 0x%X\n",
bcm2835_mci_read(host, SDHCI_PRESENT_STATE),
bcm2835_mci_read(host, SDHCI_INT_STATUS));
}
if (cmd->resp_type != 0 && ret != -1) {
int i = 0;
/* CRC is stripped so we need to do some shifting. */
if (cmd->resp_type & MMC_RSP_136) {
for (i = 0; i < 4; i++) {
cmd->response[i] = bcm2835_mci_read(
host,
SDHCI_RESPONSE_0 + (3 - i) * 4) << 8;
if (i != 3)
cmd->response[i] |=
readb((u32) (host->regs) +
SDHCI_RESPONSE_0 +
(3 - i) * 4 - 1);
}
} else {
cmd->response[0] = bcm2835_mci_read(
host, SDHCI_RESPONSE_0);
}
bcm2835_mci_write(host, SDHCI_INT_STATUS,
IRQSTAT_CC);
}
if (!ret && data)
ret = bcm2835_mci_transfer_data(host, cmd, data);
bcm2835_mci_write(host, SDHCI_INT_STATUS, 0xFFFFFFFF);
if (ret) {
bcm2835_mci_reset_emmc(host, CONTROL1_CMDRST,
CONTROL1_CMDRST);
bcm2835_mci_reset_emmc(host, CONTROL1_DATARST,
CONTROL1_DATARST);
}
return ret;
}
static u32 bcm2835_mci_get_clock_divider(struct bcm2835_mci_host *host,
u32 desired_hz)
{
u32 div;
u32 clk_hz;
if (host->version >= SDHCI_SPEC_300) {
/* Version 3.00 divisors must be a multiple of 2. */
if (host->max_clock <= desired_hz)
div = 1;
else {
for (div = 2; div < MAX_CLK_DIVIDER_V3; div += 2) {
clk_hz = host->max_clock / div;
if (clk_hz <= desired_hz)
break;
}
}
} else {
/* Version 2.00 divisors must be a power of 2. */
for (div = 1; div < MAX_CLK_DIVIDER_V2; div *= 2) {
clk_hz = host->max_clock / div;
if (clk_hz <= desired_hz)
break;
}
}
/*Since setting lowest bit means divide by two, shift down*/
dev_dbg(host->hw_dev,
"Wanted %d hz, returning divider %d (%d) which yields %d hz\n",
desired_hz, div >> 1, div, host->max_clock / div);
twoticks_delay = ((2 * 1000000000) / (host->max_clock / div)) + 1;
div = div >> 1;
host->clock = desired_hz;
return div;
}
/**
* Setup the bus width and IO speed
* @param host MCI host
* @param bus_width New bus width value (1, 4 or 8)
* @param clock New clock in Hz (can be '0' to disable the clock)
*/
static void bcm2835_mci_set_ios(struct mci_host *mci, struct mci_ios *ios)
{
u32 divider;
u32 divider_msb, divider_lsb;
u32 enable;
u32 current_val;
struct bcm2835_mci_host *host = to_bcm2835_host(mci);
current_val = bcm2835_mci_read(host,
SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL);
switch (ios->bus_width) {
case MMC_BUS_WIDTH_4:
bcm2835_mci_write(host,
SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL,
current_val | CONTROL0_4DATA);
host->bus_width = 1;
dev_dbg(host->hw_dev, "Changing bus width to 4\n");
break;
case MMC_BUS_WIDTH_1:
bcm2835_mci_write(host,
SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL,
current_val & ~CONTROL0_4DATA);
host->bus_width = 0;
dev_dbg(host->hw_dev, "Changing bus width to 1\n");
break;
default:
dev_warn(host->hw_dev, "Unsupported width received: %d\n",
ios->bus_width);
return;
}
if (ios->clock != host->clock && ios->clock != 0) {
bcm2835_mci_write(host,
SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
0x00);
if (ios->clock > 26000000) {
enable = bcm2835_mci_read(host,
SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL);
enable |= CONTROL0_HISPEED;
bcm2835_mci_write(host,
SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
enable);
}
divider = bcm2835_mci_get_clock_divider(host, ios->clock);
divider_msb = divider & 0x300;
divider_msb >>= CONTROL1_CLKLSB;
divider_lsb = divider & 0xFF;
enable = (divider_lsb << CONTROL1_CLKLSB);
enable |= (divider_msb << CONTROL1_CLKMSB);
enable |= CONTROL1_INTCLKENA | CONTROL1_TIMEOUT;
bcm2835_mci_write(host,
SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
enable);
while (true) {
u32 ret = bcm2835_mci_read(host,
SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET);
if (ret & CONTROL1_CLK_STABLE)
break;
}
enable |= CONTROL1_CLKENA;
bcm2835_mci_write(host,
SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
enable);
mdelay(100);
bcm2835_mci_reset_emmc(host, CONTROL1_CMDRST,
CONTROL1_CMDRST);
bcm2835_mci_reset_emmc(host, CONTROL1_DATARST,
CONTROL1_DATARST);
host->clock = ios->clock;
}
dev_dbg(host->hw_dev, "IO settings: bus width=%d, frequency=%u Hz\n",
host->bus_width, host->clock);
}
int bcm2835_mci_reset(struct mci_host *mci, struct device_d *mci_dev)
{
struct bcm2835_mci_host *host;
u32 ret = 0;
u32 reset = CONTROL1_HOSTRST | CONTROL1_CMDRST | CONTROL1_DATARST;
u32 enable = 0;
u32 divider;
u32 divider_msb, divider_lsb;
host = to_bcm2835_host(mci);
divider = bcm2835_mci_get_clock_divider(host, MIN_FREQ);
divider_msb = divider & 0x300;
divider_msb = divider_msb >> CONTROL1_CLKLSB;
divider_lsb = divider & 0xFF;
enable = (divider_lsb << CONTROL1_CLKLSB);
enable |= (divider_msb << CONTROL1_CLKMSB);
enable |= CONTROL1_INTCLKENA | CONTROL1_TIMEOUT;
bcm2835_mci_reset_emmc(host, enable | reset, CONTROL1_HOSTRST);
bcm2835_mci_write(host,
SDHCI_HOST_CONTROL__POWER_CONTROL__BLOCK_GAP_CONTROL,
0x00);
bcm2835_mci_write(host, SDHCI_ACMD12_ERR__HOST_CONTROL2,
0x00);
bcm2835_mci_write(host,
SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
enable);
while (true) {
ret = bcm2835_mci_read(host,
SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET);
if (ret & CONTROL1_CLK_STABLE)
break;
}
enable |= CONTROL1_CLKENA;
bcm2835_mci_write(host,
SDHCI_CLOCK_CONTROL__TIMEOUT_CONTROL__SOFTWARE_RESET,
enable);
/*Delay atelast 74 clk cycles for card init*/
mdelay(100);
bcm2835_mci_write(host, SDHCI_INT_ENABLE,
0xFFFFFFFF);
bcm2835_mci_write(host, SDHCI_INT_STATUS,
0xFFFFFFFF);
/*Now write command 0 and see if we get response*/
bcm2835_mci_write(host, SDHCI_ARGUMENT, 0x0);
bcm2835_mci_write(host, SDHCI_TRANSFER_MODE__COMMAND, 0x0);
return bcm2835_mci_wait_command_done(host);
}
static int bcm2835_mci_detect(struct device_d *dev)
{
struct bcm2835_mci_host *host = dev->priv;
return mci_detect_card(&host->mci);
}
static int bcm2835_mci_probe(struct device_d *hw_dev)
{
struct bcm2835_mci_host *host;
static struct clk *clk;
int ret;
clk = clk_get(hw_dev, NULL);
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(hw_dev, "clock not found: %d\n", ret);
return ret;
}
ret = clk_enable(clk);
if (ret) {
dev_err(hw_dev, "clock failed to enable: %d\n", ret);
clk_put(clk);
return ret;
}
host = xzalloc(sizeof(*host));
host->mci.send_cmd = bcm2835_mci_request;
host->mci.set_ios = bcm2835_mci_set_ios;
host->mci.init = bcm2835_mci_reset;
host->mci.hw_dev = hw_dev;
host->hw_dev = hw_dev;
host->max_clock = clk_get_rate(clk);
host->regs = dev_request_mem_region(hw_dev, 0);
if (host->regs == NULL) {
dev_err(host->hw_dev, "Failed request mem region, aborting...\n");
return -EBUSY;
}
host->mci.host_caps |= MMC_CAP_4_BIT_DATA | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_MMC_HIGHSPEED;
host->mci.voltages = MMC_VDD_32_33 | MMC_VDD_33_34;
host->mci.f_min = MIN_FREQ;
host->mci.f_max = host->max_clock;
hw_dev->priv = host;
hw_dev->detect = bcm2835_mci_detect,
/*
* The Arasan has a bugette whereby it may lose the content of
* successive writes to registers that are within two SD-card clock
* cycles of each other (a clock domain crossing problem).
*
* 1/MIN_FREQ is (max) time per tick of eMMC clock.
* 2/MIN_FREQ is time for two ticks.
* Multiply by 1000000000 to get nS per two ticks.
* +1 for hack rounding.
*/
twoticks_delay = ((2 * 1000000000) / MIN_FREQ) + 1;
host->version = bcm2835_mci_read(
host, BCM2835_MCI_SLOTISR_VER);
host->version = (host->version >> 16) & 0xFF;
return mci_register(&host->mci);
}
static struct driver_d bcm2835_mci_driver = {
.name = "bcm2835_mci",
.probe = bcm2835_mci_probe,
};
static int bcm2835_mci_add(void)
{
return platform_driver_register(&bcm2835_mci_driver);
}
coredevice_initcall(bcm2835_mci_add);