9
0
Fork 0
barebox/drivers/net/altera_tse.c

561 lines
16 KiB
C

/*
* Altera TSE Network driver
*
* Copyright (C) 2008 Altera Corporation.
* Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
* Copyright (C) 2011 Franck JULLIEN, <elec4fun@gmail.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <common.h>
#include <net.h>
#include <init.h>
#include <clock.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <io.h>
#include <asm/dma-mapping.h>
#include "altera_tse.h"
/* This is a generic routine that the SGDMA mode-specific routines
* call to populate a descriptor.
* arg1 :pointer to first SGDMA descriptor.
* arg2 :pointer to next SGDMA descriptor.
* arg3 :Address to where data to be written.
* arg4 :Address from where data to be read.
* arg5 :no of byte to transaction.
* arg6 :variable indicating to generate start of packet or not
* arg7 :read fixed
* arg8 :write fixed
* arg9 :read burst
* arg10 :write burst
* arg11 :atlantic_channel number
*/
static void alt_sgdma_construct_descriptor_burst(
struct alt_sgdma_descriptor *desc,
struct alt_sgdma_descriptor *next,
uint32_t *read_addr,
uint32_t *write_addr,
uint16_t length_or_eop,
uint8_t generate_eop,
uint8_t read_fixed,
uint8_t write_fixed_or_sop,
uint8_t read_burst,
uint8_t write_burst,
uint8_t atlantic_channel)
{
uint32_t temp;
/*
* Mark the "next" descriptor as "not" owned by hardware. This prevents
* The SGDMA controller from continuing to process the chain. This is
* done as a single IO write to bypass cache, without flushing
* the entire descriptor, since only the 8-bit descriptor status must
* be flushed.
*/
if (!next)
printf("Next descriptor not defined!!\n");
temp = readb(&next->descriptor_control);
writeb(temp & ~ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK,
&next->descriptor_control);
writel((uint32_t)read_addr, &desc->source);
writel((uint32_t)write_addr, &desc->destination);
writel((uint32_t)next, &desc->next);
writel(0, &desc->source_pad);
writel(0, &desc->destination_pad);
writel(0, &desc->next_pad);
writew(length_or_eop, &desc->bytes_to_transfer);
writew(0, &desc->actual_bytes_transferred);
writeb(0, &desc->descriptor_status);
/* SGDMA burst not currently supported */
writeb(0, &desc->read_burst);
writeb(0, &desc->write_burst);
/*
* Set the descriptor control block as follows:
* - Set "owned by hardware" bit
* - Optionally set "generate EOP" bit
* - Optionally set the "read from fixed address" bit
* - Optionally set the "write to fixed address bit (which serves
* serves as a "generate SOP" control bit in memory-to-stream mode).
* - Set the 4-bit atlantic channel, if specified
*
* Note this step is performed after all other descriptor information
* has been filled out so that, if the controller already happens to be
* pointing at this descriptor, it will not run (via the "owned by
* hardware" bit) until all other descriptor has been set up.
*/
writeb((ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK) |
(generate_eop ? ALT_SGDMA_DESCRIPTOR_CONTROL_GENERATE_EOP_MSK : 0) |
(read_fixed ? ALT_SGDMA_DESCRIPTOR_CONTROL_READ_FIXED_ADDRESS_MSK : 0) |
(write_fixed_or_sop ? ALT_SGDMA_DESCRIPTOR_CONTROL_WRITE_FIXED_ADDRESS_MSK : 0) |
(atlantic_channel ? ((atlantic_channel & 0x0F) << 3) : 0),
&desc->descriptor_control);
}
static int alt_sgdma_do_sync_transfer(struct alt_sgdma_registers *dev,
struct alt_sgdma_descriptor *desc)
{
uint32_t temp;
uint64_t start;
uint64_t tout;
/* Wait for any pending transfers to complete */
tout = ALT_TSE_SGDMA_BUSY_WATCHDOG_TOUT * MSECOND;
start = get_time_ns();
while (readl(&dev->status) & ALT_SGDMA_STATUS_BUSY_MSK) {
if (is_timeout(start, tout)) {
debug("Timeout waiting sgdma in do sync!\n");
break;
}
}
/*
* Clear any (previous) status register information
* that might occlude our error checking later.
*/
writel(0xFF, &dev->status);
/* Point the controller at the descriptor */
writel((uint32_t)desc, &dev->next_descriptor_pointer);
debug("next desc in sgdma 0x%x\n", (uint32_t)dev->next_descriptor_pointer);
/*
* Set up SGDMA controller to:
* - Disable interrupt generation
* - Run once a valid descriptor is written to controller
* - Stop on an error with any particular descriptor
*/
writel(ALT_SGDMA_CONTROL_RUN_MSK | ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK,
&dev->control);
/* Wait for the descriptor (chain) to complete */
debug("wait for sgdma....");
start = get_time_ns();
while (readl(&dev->status) & ALT_SGDMA_STATUS_BUSY_MSK) {
if (is_timeout(start, tout)) {
debug("Timeout waiting sgdma in do sync!\n");
break;
}
}
debug("done\n");
/* Clear Run */
temp = readl(&dev->control);
writel(temp & ~ALT_SGDMA_CONTROL_RUN_MSK, &dev->control);
/* Get & clear status register contents */
debug("tx sgdma status = 0x%x", readl(&dev->status));
writel(0xFF, &dev->status);
return 0;
}
static int alt_sgdma_do_async_transfer(struct alt_sgdma_registers *dev,
struct alt_sgdma_descriptor *desc)
{
uint64_t start;
uint64_t tout;
/* Wait for any pending transfers to complete */
tout = ALT_TSE_SGDMA_BUSY_WATCHDOG_TOUT * MSECOND;
start = get_time_ns();
while (readl(&dev->status) & ALT_SGDMA_STATUS_BUSY_MSK) {
if (is_timeout(start, tout)) {
debug("Timeout waiting sgdma in do async!\n");
break;
}
}
/*
* Clear any (previous) status register information
* that might occlude our error checking later.
*/
writel(0xFF, &dev->status);
/* Point the controller at the descriptor */
writel((uint32_t)desc, &dev->next_descriptor_pointer);
/*
* Set up SGDMA controller to:
* - Disable interrupt generation
* - Run once a valid descriptor is written to controller
* - Stop on an error with any particular descriptor
*/
writel(ALT_SGDMA_CONTROL_RUN_MSK | ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK,
&dev->control);
return 0;
}
static int tse_get_ethaddr(struct eth_device *edev, unsigned char *m)
{
struct altera_tse_priv *priv = edev->priv;
struct alt_tse_mac *mac_dev = priv->tse_regs;
m[5] = (readl(&mac_dev->mac_addr_1) >> 8) && 0xFF;
m[4] = (readl(&mac_dev->mac_addr_1)) && 0xFF;
m[3] = (readl(&mac_dev->mac_addr_0) >> 24) && 0xFF;
m[2] = (readl(&mac_dev->mac_addr_0) >> 16) && 0xFF;
m[1] = (readl(&mac_dev->mac_addr_0) >> 8) && 0xFF;
m[0] = (readl(&mac_dev->mac_addr_0)) && 0xFF;
return 0;
}
static int tse_set_ethaddr(struct eth_device *edev, unsigned char *m)
{
struct altera_tse_priv *priv = edev->priv;
struct alt_tse_mac *mac_dev = priv->tse_regs;
debug("Setting MAC address to %02x:%02x:%02x:%02x:%02x:%02x\n",
m[0], m[1], m[2], m[3], m[4], m[5]);
writel(m[3] << 24 | m[2] << 16 | m[1] << 8 | m[0], &mac_dev->mac_addr_0);
writel((m[5] << 8 | m[4]) & 0xFFFF, &mac_dev->mac_addr_1);
return 0;
}
static int tse_phy_read(struct mii_bus *bus, int phy_addr, int reg)
{
struct altera_tse_priv *priv = bus->priv;
struct alt_tse_mac *mac_dev = priv->tse_regs;
uint32_t *mdio_regs;
writel(phy_addr, &mac_dev->mdio_phy1_addr);
mdio_regs = (uint32_t *)&mac_dev->mdio_phy1;
return readl(&mdio_regs[reg]) & 0xFFFF;
}
static int tse_phy_write(struct mii_bus *bus, int phy_addr, int reg, u16 val)
{
struct altera_tse_priv *priv = bus->priv;
struct alt_tse_mac *mac_dev = priv->tse_regs;
uint32_t *mdio_regs;
writel(phy_addr, &mac_dev->mdio_phy1_addr);
mdio_regs = (uint32_t *)&mac_dev->mdio_phy1;
writel((uint32_t)val, &mdio_regs[reg]);
return 0;
}
static void tse_reset(struct eth_device *edev)
{
/* stop sgdmas, disable tse receive */
struct altera_tse_priv *priv = edev->priv;
struct alt_tse_mac *mac_dev = priv->tse_regs;
struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx_regs;
struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx_regs;
struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
struct alt_sgdma_descriptor *tx_desc = priv->tx_desc;
uint64_t start;
uint64_t tout;
tout = ALT_TSE_SGDMA_BUSY_WATCHDOG_TOUT * MSECOND;
/* clear rx desc & wait for sgdma to complete */
writeb(0, &rx_desc->descriptor_control);
writel(0, &rx_sgdma->control);
writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &rx_sgdma->control);
writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &rx_sgdma->control);
mdelay(100);
start = get_time_ns();
while (readl(&rx_sgdma->status) & ALT_SGDMA_STATUS_BUSY_MSK) {
if (is_timeout(start, tout)) {
printf("Timeout waiting for rx sgdma!\n");
writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &rx_sgdma->control);
writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &rx_sgdma->control);
break;
}
}
/* clear tx desc & wait for sgdma to complete */
writeb(0, &tx_desc->descriptor_control);
writel(0, &tx_sgdma->control);
writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &tx_sgdma->control);
writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &tx_sgdma->control);
mdelay(100);
start = get_time_ns();
while (readl(&tx_sgdma->status) & ALT_SGDMA_STATUS_BUSY_MSK) {
if (is_timeout(start, tout)) {
printf("Timeout waiting for tx sgdma!\n");
writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &tx_sgdma->control);
writel(ALT_SGDMA_CONTROL_SOFTWARERESET_MSK, &tx_sgdma->control);
break;
}
}
/* reset the mac */
writel(ALTERA_TSE_CMD_TX_ENA_MSK | ALTERA_TSE_CMD_RX_ENA_MSK |
ALTERA_TSE_CMD_SW_RESET_MSK, &mac_dev->command_config);
start = get_time_ns();
tout = ALT_TSE_SW_RESET_WATCHDOG_TOUT * MSECOND;
while (readl(&mac_dev->command_config) & ALTERA_TSE_CMD_SW_RESET_MSK) {
if (is_timeout(start, tout)) {
printf("TSEMAC SW reset bit never cleared!\n");
break;
}
}
}
static int tse_eth_open(struct eth_device *edev)
{
struct altera_tse_priv *priv = edev->priv;
int ret;
ret = phy_device_connect(edev, priv->miibus, priv->phy_addr, NULL, 0,
PHY_INTERFACE_MODE_NA);
if (ret)
return ret;
return 0;
}
static int tse_eth_send(struct eth_device *edev, void *packet, int length)
{
struct altera_tse_priv *priv = edev->priv;
struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx_regs;
struct alt_sgdma_descriptor *tx_desc = priv->tx_desc;
struct alt_sgdma_descriptor *tx_desc_cur = tx_desc;
flush_dcache_range((uint32_t)packet, (uint32_t)packet + length);
alt_sgdma_construct_descriptor_burst(
(struct alt_sgdma_descriptor *)&tx_desc[0],
(struct alt_sgdma_descriptor *)&tx_desc[1],
(uint32_t *)packet, /* read addr */
(uint32_t *)0, /* */
length, /* length or EOP ,will change for each tx */
0x1, /* gen eop */
0x0, /* read fixed */
0x1, /* write fixed or sop */
0x0, /* read burst */
0x0, /* write burst */
0x0 /* channel */
);
alt_sgdma_do_sync_transfer(tx_sgdma, tx_desc_cur);
return 0;
}
static void tse_eth_halt(struct eth_device *edev)
{
struct altera_tse_priv *priv = edev->priv;
struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx_regs;
struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx_regs;
writel(0, &rx_sgdma->control); /* Stop the controller and reset settings */
writel(0, &tx_sgdma->control); /* Stop the controller and reset settings */
}
static int tse_eth_rx(struct eth_device *edev)
{
uint16_t packet_length = 0;
struct altera_tse_priv *priv = edev->priv;
struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
struct alt_sgdma_descriptor *rx_desc_cur = rx_desc;
struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx_regs;
if (rx_desc_cur->descriptor_status &
ALT_SGDMA_DESCRIPTOR_STATUS_TERMINATED_BY_EOP_MSK) {
packet_length = rx_desc->actual_bytes_transferred;
net_receive(edev, NetRxPackets[0], packet_length);
/* Clear Run */
rx_sgdma->control = (rx_sgdma->control & (~ALT_SGDMA_CONTROL_RUN_MSK));
/* start descriptor again */
flush_dcache_range((uint32_t)(NetRxPackets[0]), (uint32_t)(NetRxPackets[0]) + PKTSIZE);
alt_sgdma_construct_descriptor_burst(
(struct alt_sgdma_descriptor *)&rx_desc[0],
(struct alt_sgdma_descriptor *)&rx_desc[1],
(uint32_t)0x0, /* read addr */
(uint32_t *)NetRxPackets[0], /* */
0x0, /* length or EOP */
0x0, /* gen eop */
0x0, /* read fixed */
0x0, /* write fixed or sop */
0x0, /* read burst */
0x0, /* write burst */
0x0 /* channel */
);
/* setup the sgdma */
alt_sgdma_do_async_transfer(priv->sgdma_rx_regs, rx_desc);
}
return 0;
}
static int tse_init_dev(struct eth_device *edev)
{
struct altera_tse_priv *priv = edev->priv;
struct alt_tse_mac *mac_dev = priv->tse_regs;
struct alt_sgdma_descriptor *tx_desc = priv->tx_desc;
struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
struct alt_sgdma_descriptor *rx_desc_cur;
rx_desc_cur = rx_desc;
tse_reset(edev);
/* need to create sgdma */
alt_sgdma_construct_descriptor_burst(
(struct alt_sgdma_descriptor *)&tx_desc[0],
(struct alt_sgdma_descriptor *)&tx_desc[1],
(uint32_t *)NULL, /* read addr */
(uint32_t *)0, /* */
0, /* length or EOP ,will change for each tx */
0x1, /* gen eop */
0x0, /* read fixed */
0x1, /* write fixed or sop */
0x0, /* read burst */
0x0, /* write burst */
0x0 /* channel */
);
flush_dcache_range((uint32_t)(NetRxPackets[0]), (uint32_t)(NetRxPackets[0]) + PKTSIZE);
alt_sgdma_construct_descriptor_burst(
(struct alt_sgdma_descriptor *)&rx_desc[0],
(struct alt_sgdma_descriptor *)&rx_desc[1],
(uint32_t)0x0, /* read addr */
(uint32_t *)NetRxPackets[0], /* */
0x0, /* length or EOP */
0x0, /* gen eop */
0x0, /* read fixed */
0x0, /* write fixed or sop */
0x0, /* read burst */
0x0, /* write burst */
0x0 /* channel */
);
/* start rx async transfer */
alt_sgdma_do_async_transfer(priv->sgdma_rx_regs, rx_desc_cur);
/* Initialize MAC registers */
writel(PKTSIZE, &mac_dev->max_frame_length);
/* NO Shift */
writel(0, &mac_dev->rx_cmd_stat);
writel(0, &mac_dev->tx_cmd_stat);
/* enable MAC */
writel(ALTERA_TSE_CMD_TX_ENA_MSK | ALTERA_TSE_CMD_RX_ENA_MSK, &mac_dev->command_config);
return 0;
}
static int tse_probe(struct device_d *dev)
{
struct altera_tse_priv *priv;
struct mii_bus *miibus;
struct eth_device *edev;
struct alt_sgdma_descriptor *rx_desc;
struct alt_sgdma_descriptor *tx_desc;
#ifndef CONFIG_TSE_USE_DEDICATED_DESC_MEM
uint32_t dma_handle;
#endif
edev = xzalloc(sizeof(struct eth_device));
priv = xzalloc(sizeof(struct altera_tse_priv));
miibus = xzalloc(sizeof(struct mii_bus));
edev->priv = priv;
edev->init = tse_init_dev;
edev->open = tse_eth_open;
edev->send = tse_eth_send;
edev->recv = tse_eth_rx;
edev->halt = tse_eth_halt;
edev->get_ethaddr = tse_get_ethaddr;
edev->set_ethaddr = tse_set_ethaddr;
edev->parent = dev;
#ifdef CONFIG_TSE_USE_DEDICATED_DESC_MEM
tx_desc = dev_request_mem_region(dev, 3);
rx_desc = tx_desc + 2;
#else
tx_desc = dma_alloc_coherent(sizeof(*tx_desc) * (3 + PKTBUFSRX), (unsigned long *)&dma_handle);
rx_desc = tx_desc + 2;
if (!tx_desc) {
free(edev);
free(miibus);
return 0;
}
#endif
memset(rx_desc, 0, (sizeof *rx_desc) * (PKTBUFSRX + 1));
memset(tx_desc, 0, (sizeof *tx_desc) * 2);
priv->tse_regs = dev_request_mem_region(dev, 0);
priv->sgdma_rx_regs = dev_request_mem_region(dev, 1);
priv->sgdma_tx_regs = dev_request_mem_region(dev, 2);
priv->rx_desc = rx_desc;
priv->tx_desc = tx_desc;
priv->miibus = miibus;
miibus->read = tse_phy_read;
miibus->write = tse_phy_write;
miibus->priv = priv;
miibus->parent = dev;
if (dev->platform_data != NULL)
priv->phy_addr = *((int8_t *)(dev->platform_data));
else
priv->phy_addr = -1;
mdiobus_register(miibus);
return eth_register(edev);
}
static struct driver_d altera_tse_driver = {
.name = "altera_tse",
.probe = tse_probe,
};
device_platform_driver(altera_tse_driver);