9
0
Fork 0
barebox/drivers/net/cpsw.c

1227 lines
28 KiB
C

/*
* CPSW Ethernet Switch Driver
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <common.h>
#include <driver.h>
#include <init.h>
#include <command.h>
#include <net.h>
#include <malloc.h>
#include <net.h>
#include <linux/phy.h>
#include <errno.h>
#include <io.h>
#include <of.h>
#include <pinctrl.h>
#include <of_net.h>
#include <of_address.h>
#include <xfuncs.h>
#include <asm/mmu.h>
#include <asm/system.h>
#include <mach/cpsw.h>
#define CPSW_VERSION_1 0x19010a
#define CPSW_VERSION_2 0x19010c
#define BITMASK(bits) ((1 << (bits)) - 1)
#define PHY_REG_MASK 0x1f
#define PHY_ID_MASK 0x1f
#define NUM_DESCS (PKTBUFSRX * 2)
#define PKT_MIN 60
#define PKT_MAX (1500 + 14 + 4 + 4)
/* DMA Registers */
#define CPDMA_TXCONTROL 0x004
#define CPDMA_RXCONTROL 0x014
#define CPDMA_SOFTRESET 0x01c
#define CPDMA_RXFREE 0x0e0
#define STATERAM_TXHDP 0x000
#define STATERAM_RXHDP 0x020
#define STATERAM_TXCP 0x040
#define STATERAM_RXCP 0x060
#define CPDMA_RAM_ADDR 0x4a102000
/* Descriptor mode bits */
#define CPDMA_DESC_SOP BIT(31)
#define CPDMA_DESC_EOP BIT(30)
#define CPDMA_DESC_OWNER BIT(29)
#define CPDMA_DESC_EOQ BIT(28)
#define SLIVER_SIZE 0x40
struct cpsw_mdio_regs {
u32 version;
u32 control;
#define CONTROL_IDLE (1 << 31)
#define CONTROL_ENABLE (1 << 30)
u32 alive;
u32 link;
u32 linkintraw;
u32 linkintmasked;
u32 __reserved_0[2];
u32 userintraw;
u32 userintmasked;
u32 userintmaskset;
u32 userintmaskclr;
u32 __reserved_1[20];
struct {
u32 access;
u32 physel;
#define USERACCESS_GO (1 << 31)
#define USERACCESS_WRITE (1 << 30)
#define USERACCESS_ACK (1 << 29)
#define USERACCESS_READ (0)
#define USERACCESS_DATA (0xffff)
} user[0];
};
struct cpsw_regs {
u32 id_ver;
u32 control;
u32 soft_reset;
u32 stat_port_en;
u32 ptype;
};
struct cpsw_slave_regs {
u32 max_blks;
u32 blk_cnt;
u32 flow_thresh;
u32 port_vlan;
u32 tx_pri_map;
u32 sa_lo;
u32 sa_hi;
};
struct cpsw_host_regs {
u32 max_blks;
u32 blk_cnt;
u32 flow_thresh;
u32 port_vlan;
u32 tx_pri_map;
u32 cpdma_tx_pri_map;
u32 cpdma_rx_chan_map;
};
struct cpsw_sliver_regs {
u32 id_ver;
u32 mac_control;
u32 mac_status;
u32 soft_reset;
u32 rx_maxlen;
u32 __reserved_0;
u32 rx_pause;
u32 tx_pause;
u32 __reserved_1;
u32 rx_pri_map;
};
#define ALE_ENTRY_BITS 68
#define ALE_ENTRY_WORDS DIV_ROUND_UP(ALE_ENTRY_BITS, 32)
/* ALE Registers */
#define ALE_CONTROL 0x08
#define ALE_UNKNOWNVLAN 0x18
#define ALE_TABLE_CONTROL 0x20
#define ALE_TABLE 0x34
#define ALE_PORTCTL 0x40
#define ALE_TABLE_WRITE BIT(31)
#define ALE_TYPE_FREE 0
#define ALE_TYPE_ADDR 1
#define ALE_TYPE_VLAN 2
#define ALE_TYPE_VLAN_ADDR 3
#define ALE_UCAST_PERSISTANT 0
#define ALE_UCAST_UNTOUCHED 1
#define ALE_UCAST_OUI 2
#define ALE_UCAST_TOUCHED 3
#define ALE_MCAST_FWD 0
#define ALE_MCAST_BLOCK_LEARN_FWD 1
#define ALE_MCAST_FWD_LEARN 2
#define ALE_MCAST_FWD_2 3
enum cpsw_ale_port_state {
ALE_PORT_STATE_DISABLE = 0x00,
ALE_PORT_STATE_BLOCK = 0x01,
ALE_PORT_STATE_LEARN = 0x02,
ALE_PORT_STATE_FORWARD = 0x03,
};
/* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */
#define ALE_SECURE 1
#define ALE_BLOCKED 2
struct cpsw_slave {
struct cpsw_slave_regs *regs;
struct cpsw_sliver_regs *sliver;
int slave_num;
int phy_id;
phy_interface_t phy_if;
struct eth_device edev;
struct cpsw_priv *cpsw;
struct device_d dev;
};
struct cpdma_desc {
/* hardware fields */
u32 hw_next;
u32 hw_buffer;
u32 hw_len;
u32 hw_mode;
/* software fields */
u32 sw_buffer;
u32 sw_len;
};
struct cpdma_chan {
struct cpdma_desc *head, *tail;
void *hdp, *cp, *rxfree;
};
struct cpsw_priv {
struct device_d *dev;
struct mii_bus miibus;
u32 version;
struct cpsw_platform_data data;
int host_port;
uint8_t mac_addr[6];
struct cpsw_regs *regs;
struct cpsw_mdio_regs *mdio_regs;
void *dma_regs;
struct cpsw_host_regs *host_port_regs;
void *ale_regs;
void *state_ram;
unsigned int ale_entries;
unsigned int num_slaves;
unsigned int channels;
unsigned int slave_ofs;
unsigned int slave_size;
unsigned int sliver_ofs;
struct cpdma_desc *descs;
struct cpdma_desc *desc_free;
struct cpdma_chan rx_chan, tx_chan;
struct cpsw_slave *slaves;
};
static int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits)
{
int idx;
idx = start / 32;
start -= idx * 32;
idx = 2 - idx; /* flip */
return (ale_entry[idx] >> start) & BITMASK(bits);
}
static void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits,
u32 value)
{
int idx;
value &= BITMASK(bits);
idx = start / 32;
start -= idx * 32;
idx = 2 - idx; /* flip */
ale_entry[idx] &= ~(BITMASK(bits) << start);
ale_entry[idx] |= (value << start);
}
#define DEFINE_ALE_FIELD(name, start, bits) \
static inline int cpsw_ale_get_##name(u32 *ale_entry) \
{ \
return cpsw_ale_get_field(ale_entry, start, bits); \
} \
static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \
{ \
cpsw_ale_set_field(ale_entry, start, bits, value); \
}
DEFINE_ALE_FIELD(entry_type, 60, 2)
DEFINE_ALE_FIELD(mcast_state, 62, 2)
DEFINE_ALE_FIELD(port_mask, 66, 3)
DEFINE_ALE_FIELD(ucast_type, 62, 2)
DEFINE_ALE_FIELD(port_num, 66, 2)
DEFINE_ALE_FIELD(blocked, 65, 1)
DEFINE_ALE_FIELD(secure, 64, 1)
DEFINE_ALE_FIELD(mcast, 40, 1)
static char ethbdaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
/* The MAC address field in the ALE entry cannot be macroized as above */
static void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr)
{
int i;
for (i = 0; i < 6; i++)
addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8);
}
static void cpsw_ale_set_addr(u32 *ale_entry, u8 *addr)
{
int i;
for (i = 0; i < 6; i++)
cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]);
}
static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry)
{
int i;
writel(idx, priv->ale_regs + ALE_TABLE_CONTROL);
for (i = 0; i < ALE_ENTRY_WORDS; i++)
ale_entry[i] = readl(priv->ale_regs + ALE_TABLE + 4 * i);
return idx;
}
static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry)
{
int i;
for (i = 0; i < ALE_ENTRY_WORDS; i++)
writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i);
writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL);
return idx;
}
static int cpsw_ale_match_addr(struct cpsw_priv *priv, u8* addr)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < priv->ale_entries; idx++) {
u8 entry_addr[6];
cpsw_ale_read(priv, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
continue;
cpsw_ale_get_addr(ale_entry, entry_addr);
if (memcmp(entry_addr, addr, 6) == 0)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_match_free(struct cpsw_priv *priv)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < priv->ale_entries; idx++) {
cpsw_ale_read(priv, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type == ALE_TYPE_FREE)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_find_ageable(struct cpsw_priv *priv)
{
u32 ale_entry[ALE_ENTRY_WORDS];
int type, idx;
for (idx = 0; idx < priv->ale_entries; idx++) {
cpsw_ale_read(priv, idx, ale_entry);
type = cpsw_ale_get_entry_type(ale_entry);
if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR)
continue;
if (cpsw_ale_get_mcast(ale_entry))
continue;
type = cpsw_ale_get_ucast_type(ale_entry);
if (type != ALE_UCAST_PERSISTANT &&
type != ALE_UCAST_OUI)
return idx;
}
return -ENOENT;
}
static int cpsw_ale_add_ucast(struct cpsw_priv *priv, u8 *addr,
int port, int flags)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx;
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
cpsw_ale_set_addr(ale_entry, addr);
cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT);
cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0);
cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0);
cpsw_ale_set_port_num(ale_entry, port);
idx = cpsw_ale_match_addr(priv, addr);
if (idx < 0)
idx = cpsw_ale_match_free(priv);
if (idx < 0)
idx = cpsw_ale_find_ageable(priv);
if (idx < 0)
return -ENOMEM;
cpsw_ale_write(priv, idx, ale_entry);
return 0;
}
static int cpsw_ale_add_mcast(struct cpsw_priv *priv, u8 *addr, int port_mask)
{
u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0};
int idx, mask;
idx = cpsw_ale_match_addr(priv, addr);
if (idx >= 0)
cpsw_ale_read(priv, idx, ale_entry);
cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR);
cpsw_ale_set_addr(ale_entry, addr);
cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2);
mask = cpsw_ale_get_port_mask(ale_entry);
port_mask |= mask;
cpsw_ale_set_port_mask(ale_entry, port_mask);
if (idx < 0)
idx = cpsw_ale_match_free(priv);
if (idx < 0)
idx = cpsw_ale_find_ageable(priv);
if (idx < 0)
return -ENOMEM;
cpsw_ale_write(priv, idx, ale_entry);
return 0;
}
static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val)
{
u32 tmp, mask = BIT(bit);
tmp = readl(priv->ale_regs + ALE_CONTROL);
tmp &= ~mask;
tmp |= val ? mask : 0;
writel(tmp, priv->ale_regs + ALE_CONTROL);
}
#define cpsw_ale_enable(priv, val) cpsw_ale_control(priv, 31, val)
#define cpsw_ale_clear(priv, val) cpsw_ale_control(priv, 30, val)
#define cpsw_ale_bypass(priv, val) cpsw_ale_control(priv, 4, val)
#define cpsw_ale_vlan_aware(priv, val) cpsw_ale_control(priv, 2, val)
static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port,
int val)
{
int offset = ALE_PORTCTL + 4 * port;
u32 tmp, mask = 0x3;
tmp = readl(priv->ale_regs + offset);
tmp &= ~mask;
tmp |= val & 0x3;
writel(tmp, priv->ale_regs + offset);
}
/* wait until hardware is ready for another user access */
static u32 wait_for_user_access(struct cpsw_priv *priv)
{
struct cpsw_mdio_regs *mdio_regs = priv->mdio_regs;
u32 tmp;
uint64_t start = get_time_ns();
do {
tmp = readl(&mdio_regs->user[0].access);
if (!(tmp & USERACCESS_GO))
break;
if (is_timeout(start, 100 * MSECOND)) {
dev_err(priv->dev, "timeout waiting for user access\n");
break;
}
} while (1);
return tmp;
}
static int cpsw_mdio_read(struct mii_bus *bus, int phy_id, int phy_reg)
{
struct cpsw_priv *priv = bus->priv;
struct cpsw_mdio_regs *mdio_regs = priv->mdio_regs;
u32 tmp;
if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
return -EINVAL;
wait_for_user_access(priv);
tmp = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) |
(phy_id << 16));
writel(tmp, &mdio_regs->user[0].access);
tmp = wait_for_user_access(priv);
return (tmp & USERACCESS_ACK) ? (tmp & USERACCESS_DATA) : -1;
}
static int cpsw_mdio_write(struct mii_bus *bus, int phy_id, int phy_reg, u16 value)
{
struct cpsw_priv *priv = bus->priv;
struct cpsw_mdio_regs *mdio_regs = priv->mdio_regs;
u32 tmp;
if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK)
return -EINVAL;
wait_for_user_access(priv);
tmp = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) |
(phy_id << 16) | (value & USERACCESS_DATA));
writel(tmp, &mdio_regs->user[0].access);
wait_for_user_access(priv);
return 0;
}
static inline void soft_reset(struct cpsw_priv *priv, void *reg)
{
int ret;
writel(1, reg);
ret = wait_on_timeout(100 * MSECOND, (readl(reg) & 1) == 0);
if (ret)
dev_err(priv->dev, "reset timeout\n");
}
#define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
((mac)[2] << 16) | ((mac)[3] << 24))
#define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
static int cpsw_get_hwaddr(struct eth_device *edev, unsigned char *mac)
{
struct cpsw_slave *slave = edev->priv;
dev_dbg(&slave->dev, "* %s\n", __func__);
return -1;
}
static int cpsw_set_hwaddr(struct eth_device *edev, unsigned char *mac)
{
struct cpsw_slave *slave = edev->priv;
struct cpsw_priv *priv = slave->cpsw;
dev_dbg(&slave->dev, "* %s\n", __func__);
memcpy(&priv->mac_addr, mac, sizeof(priv->mac_addr));
writel(mac_hi(mac), &slave->regs->sa_hi);
writel(mac_lo(mac), &slave->regs->sa_lo);
return 0;
}
static void cpsw_slave_update_link(struct cpsw_slave *slave,
struct cpsw_priv *priv, int *link)
{
struct phy_device *phydev = slave->edev.phydev;
u32 mac_control = 0;
dev_dbg(&slave->dev, "* %s\n", __func__);
if (!phydev)
return;
if (phydev->link) {
*link = 1;
mac_control = BIT(5); /* MIIEN */
if (phydev->speed == SPEED_10)
mac_control |= BIT(18); /* In Band mode */
else if (phydev->speed == SPEED_100)
mac_control |= BIT(15);
else if (phydev->speed == SPEED_1000)
mac_control &= ~BIT(7); /* TODO: Do not enable
* gig support now */
if (phydev->duplex == DUPLEX_FULL)
mac_control |= BIT(0); /* FULLDUPLEXEN */
}
if (mac_control) {
dev_dbg(&slave->dev, "link up, speed %d, %s duplex\n",
phydev->speed,
(phydev->duplex == DUPLEX_FULL) ? "full" : "half");
} else {
dev_dbg(&slave->dev, "link down\n");
}
writel(mac_control, &slave->sliver->mac_control);
}
static int cpsw_update_link(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
int link = 0;
dev_dbg(&slave->dev, "* %s\n", __func__);
cpsw_slave_update_link(slave, priv, &link);
return link;
}
static void cpsw_adjust_link(struct eth_device *edev)
{
struct cpsw_slave *slave = edev->priv;
struct cpsw_priv *priv = slave->cpsw;
dev_dbg(&slave->dev, "* %s\n", __func__);
cpsw_update_link(slave, priv);
}
static inline u32 cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
{
if (priv->host_port == 0)
return slave_num + 1;
else
return slave_num;
}
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
u32 slave_port;
dev_dbg(&slave->dev, "* %s\n", __func__);
soft_reset(priv, &slave->sliver->soft_reset);
/* setup priority mapping */
writel(0x76543210, &slave->sliver->rx_pri_map);
writel(0x33221100, &slave->regs->tx_pri_map);
/* setup max packet size, and mac address */
writel(PKT_MAX, &slave->sliver->rx_maxlen);
/* enable forwarding */
slave_port = cpsw_get_slave_port(priv, slave->slave_num);
cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD);
/* add broadcast address */
cpsw_ale_add_mcast(priv, ethbdaddr, 1 << slave_port);
}
static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv)
{
struct cpdma_desc *desc = priv->desc_free;
if (desc)
priv->desc_free = (void *)readl(&desc->hw_next);
return desc;
}
static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc)
{
dev_dbg(priv->dev, "%s: free desc=0x%p\n", __func__, desc);
if (desc) {
writel((u32)priv->desc_free, &desc->hw_next);
priv->desc_free = desc;
}
}
static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan,
void *buffer, int len)
{
struct cpdma_desc *desc, *prev;
u32 mode;
desc = cpdma_desc_alloc(priv);
if (!desc)
return -ENOMEM;
if (len < PKT_MIN)
len = PKT_MIN;
mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP;
writel(0, &desc->hw_next);
writel((u32)buffer, &desc->hw_buffer);
writel(len, &desc->hw_len);
writel(mode | len, &desc->hw_mode);
writel((u32)buffer, &desc->sw_buffer);
writel((u32)len, &desc->sw_len);
if (!chan->head) {
/* simple case - first packet enqueued */
chan->head = desc;
chan->tail = desc;
writel((u32)desc, chan->hdp);
goto done;
}
/* not the first packet - enqueue at the tail */
prev = chan->tail;
writel((u32)desc, &prev->hw_next);
chan->tail = desc;
/* next check if EOQ has been triggered already */
if (readl(&prev->hw_mode) & CPDMA_DESC_EOQ)
writel((u32)desc, chan->hdp);
done:
if (chan->rxfree)
writel(1, chan->rxfree);
return 0;
}
static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan,
void **buffer, int *len)
{
struct cpdma_desc *desc = chan->head;
u32 status;
if (!desc)
return -ENOENT;
status = readl(&desc->hw_mode);
if (len)
*len = status & 0x7ff;
if (buffer)
*buffer = (void *)readl(&desc->sw_buffer);
if (status & CPDMA_DESC_OWNER) {
if (readl(chan->hdp) == 0) {
if (readl(&desc->hw_mode) & CPDMA_DESC_OWNER)
writel((u32)desc, chan->hdp);
}
return -EBUSY;
}
chan->head = (void *)readl(&desc->hw_next);
writel((u32)desc, chan->cp);
cpdma_desc_free(priv, desc);
return 0;
}
static int cpsw_init(struct eth_device *edev)
{
return 0;
}
static int cpsw_open(struct eth_device *edev)
{
struct cpsw_slave *slave = edev->priv;
struct cpsw_priv *priv = slave->cpsw;
int i, ret;
dev_dbg(&slave->dev, "* %s\n", __func__);
ret = phy_device_connect(edev, &priv->miibus, slave->phy_id,
cpsw_adjust_link, 0, slave->phy_if);
if (ret)
return ret;
/* soft reset the controller and initialize priv */
soft_reset(priv, &priv->regs->soft_reset);
/* initialize and reset the address lookup engine */
cpsw_ale_enable(priv, 1);
cpsw_ale_clear(priv, 1);
cpsw_ale_bypass(priv, 0);
cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */
/* setup host port priority mapping */
writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map);
writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
/* disable priority elevation and enable statistics on all ports */
writel(0, &priv->regs->ptype);
/* enable statistics collection only on the host port */
writel(BIT(priv->host_port), &priv->regs->stat_port_en);
cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD);
cpsw_ale_add_ucast(priv, priv->mac_addr, priv->host_port,
ALE_SECURE);
cpsw_ale_add_mcast(priv, ethbdaddr, 1 << priv->host_port);
cpsw_slave_init(slave, priv);
cpsw_update_link(slave, priv);
/* init descriptor pool */
for (i = 0; i < NUM_DESCS; i++) {
u32 val = (i == (NUM_DESCS - 1)) ? 0 : (u32)&priv->descs[i + 1];
writel(val, &priv->descs[i].hw_next);
}
priv->desc_free = &priv->descs[0];
/* initialize channels */
memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan));
priv->rx_chan.hdp = priv->state_ram + STATERAM_RXHDP;
priv->rx_chan.cp = priv->state_ram + STATERAM_RXCP;
priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE;
memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan));
priv->tx_chan.hdp = priv->state_ram + STATERAM_TXHDP;
priv->tx_chan.cp = priv->state_ram + STATERAM_TXCP;
/* clear dma state */
soft_reset(priv, priv->dma_regs + CPDMA_SOFTRESET);
for (i = 0; i < priv->channels; i++) {
writel(0, priv->state_ram + STATERAM_RXHDP + 4 * i);
writel(0, priv->dma_regs + CPDMA_RXFREE + 4 * i);
writel(0, priv->state_ram + STATERAM_RXCP + 4 * i);
writel(0, priv->state_ram + STATERAM_TXHDP + 4 * i);
writel(0, priv->state_ram + STATERAM_TXCP + 4 * i);
}
writel(1, priv->dma_regs + CPDMA_TXCONTROL);
writel(1, priv->dma_regs + CPDMA_RXCONTROL);
/* submit rx descs */
for (i = 0; i < PKTBUFSRX - 2; i++) {
ret = cpdma_submit(priv, &priv->rx_chan, NetRxPackets[i],
PKTSIZE);
if (ret < 0) {
dev_err(&slave->dev, "error %d submitting rx desc\n", ret);
break;
}
}
return 0;
}
static void cpsw_halt(struct eth_device *edev)
{
struct cpsw_slave *slave = edev->priv;
struct cpsw_priv *priv = slave->cpsw;
dev_dbg(priv->dev, "* %s slave %d\n", __func__, slave->slave_num);
writel(0, priv->dma_regs + CPDMA_TXCONTROL);
writel(0, priv->dma_regs + CPDMA_RXCONTROL);
/* soft reset the controller */
soft_reset(priv, &priv->regs->soft_reset);
/* clear dma state */
soft_reset(priv, priv->dma_regs + CPDMA_SOFTRESET);
}
static int cpsw_send(struct eth_device *edev, void *packet, int length)
{
struct cpsw_slave *slave = edev->priv;
struct cpsw_priv *priv = slave->cpsw;
void *buffer;
int ret, len;
dev_dbg(&slave->dev, "* %s slave %d\n", __func__, slave->slave_num);
/* first reap completed packets */
while (cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0);
dev_dbg(&slave->dev, "%s: %i bytes @ 0x%p\n", __func__, length, packet);
dma_flush_range((ulong) packet, (ulong)packet + length);
ret = cpdma_submit(priv, &priv->tx_chan, packet, length);
return ret;
}
static int cpsw_recv(struct eth_device *edev)
{
struct cpsw_slave *slave = edev->priv;
struct cpsw_priv *priv = slave->cpsw;
void *buffer;
int len;
while (cpdma_process(priv, &priv->rx_chan, &buffer, &len) >= 0) {
dma_inv_range((ulong)buffer, (ulong)buffer + len);
net_receive(edev, buffer, len);
cpdma_submit(priv, &priv->rx_chan, buffer, PKTSIZE);
}
return 0;
}
static void cpsw_slave_init_data(struct cpsw_slave *slave, int slave_num,
struct cpsw_priv *priv)
{
struct cpsw_slave_data *data = priv->data.slave_data + slave_num;
slave->phy_id = data->phy_id;
slave->phy_if = data->phy_if;
}
static int cpsw_slave_setup(struct cpsw_slave *slave, int slave_num,
struct cpsw_priv *priv)
{
void *regs = priv->regs;
struct eth_device *edev = &slave->edev;
struct device_d *dev = &slave->dev;
int ret;
sprintf(dev->name, "cpsw-slave");
dev->id = slave->slave_num;
dev->parent = priv->dev;
ret = register_device(dev);
if (ret)
return ret;
dev_dbg(&slave->dev, "* %s\n", __func__);
slave->slave_num = slave_num;
slave->regs = regs + priv->slave_ofs + priv->slave_size * slave_num;
slave->sliver = regs + priv->sliver_ofs + SLIVER_SIZE * slave_num;
slave->cpsw = priv;
edev->priv = slave;
edev->init = cpsw_init;
edev->open = cpsw_open;
edev->halt = cpsw_halt;
edev->send = cpsw_send;
edev->recv = cpsw_recv;
edev->get_ethaddr = cpsw_get_hwaddr;
edev->set_ethaddr = cpsw_set_hwaddr;
edev->parent = dev;
return eth_register(edev);
}
struct cpsw_data {
unsigned int host_port_reg_ofs;
unsigned int cpdma_reg_ofs;
unsigned int ale_reg_ofs;
unsigned int state_ram_ofs;
unsigned int slave_ofs;
unsigned int slave_size;
unsigned int sliver_ofs;
unsigned int mdio_reg_ofs;
unsigned int cppi_ram_ofs;
};
static struct cpsw_data cpsw1_data = {
.host_port_reg_ofs = 0x028,
.cpdma_reg_ofs = 0x100,
.state_ram_ofs = 0x200,
.ale_reg_ofs = 0x600,
.slave_ofs = 0x050,
.slave_size = 0x040,
.sliver_ofs = 0x700,
/* FIXME: mdio_reg_ofs and cppi_ram_ofs missing */
};
static struct cpsw_data cpsw2_data = {
.host_port_reg_ofs = 0x108,
.cpdma_reg_ofs = 0x800,
.state_ram_ofs = 0xa00,
.ale_reg_ofs = 0xd00,
.slave_ofs = 0x200,
.slave_size = 0x100,
.sliver_ofs = 0xd80,
.mdio_reg_ofs = 0x1000,
.cppi_ram_ofs = 0x2000,
};
static void __iomem *phy_sel_addr;
static bool rmii_clock_external;
static int cpsw_phy_sel_init(struct cpsw_priv *priv, struct device_node *np)
{
const void *reg;
unsigned long addr;
reg = of_get_property(np, "reg", NULL);
if (!reg)
return -EINVAL;
addr = of_translate_address(np, reg);
phy_sel_addr = (void *)addr;
if (of_property_read_bool(np, "rmii-clock-ext"))
rmii_clock_external = true;
return 0;
}
/* AM33xx SoC specific definitions for the CONTROL port */
#define AM33XX_GMII_SEL_MODE_MII 0
#define AM33XX_GMII_SEL_MODE_RMII 1
#define AM33XX_GMII_SEL_MODE_RGMII 2
#define AM33XX_GMII_SEL_RMII2_IO_CLK_EN BIT(7)
#define AM33XX_GMII_SEL_RMII1_IO_CLK_EN BIT(6)
static void cpsw_gmii_sel_am335x(struct cpsw_slave *slave)
{
u32 reg;
u32 mask;
u32 mode = 0;
reg = readl(phy_sel_addr);
switch (slave->phy_if) {
case PHY_INTERFACE_MODE_RMII:
mode = AM33XX_GMII_SEL_MODE_RMII;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
mode = AM33XX_GMII_SEL_MODE_RGMII;
break;
case PHY_INTERFACE_MODE_MII:
default:
mode = AM33XX_GMII_SEL_MODE_MII;
break;
};
mask = 0x3 << (slave->slave_num * 2) | BIT(slave->slave_num + 6);
mode <<= slave->slave_num * 2;
if (rmii_clock_external) {
if (slave->slave_num == 0)
mode |= AM33XX_GMII_SEL_RMII1_IO_CLK_EN;
else
mode |= AM33XX_GMII_SEL_RMII2_IO_CLK_EN;
}
reg &= ~mask;
reg |= mode;
writel(reg, phy_sel_addr);
}
static int cpsw_probe_dt(struct cpsw_priv *priv)
{
struct device_d *dev = priv->dev;
struct device_node *np = dev->device_node, *child;
int ret, i = 0;
ret = of_property_read_u32(np, "slaves", &priv->num_slaves);
if (ret)
return ret;
priv->slaves = xzalloc(sizeof(struct cpsw_slave) * priv->num_slaves);
for_each_child_of_node(np, child) {
if (of_device_is_compatible(child, "ti,am3352-cpsw-phy-sel")) {
ret = cpsw_phy_sel_init(priv, child);
if (ret)
return ret;
}
if (of_device_is_compatible(child, "ti,davinci_mdio")) {
ret = of_pinctrl_select_state_default(child);
if (ret)
return ret;
}
if (!strncmp(child->name, "slave", 5)) {
struct cpsw_slave *slave = &priv->slaves[i];
uint32_t phy_id[2];
ret = of_property_read_u32_array(child, "phy_id", phy_id, 2);
if (ret)
return ret;
slave->dev.device_node = child;
slave->phy_id = phy_id[1];
slave->phy_if = of_get_phy_mode(child);
slave->slave_num = i;
i++;
}
}
for (i = 0; i < 2; i++) {
struct cpsw_slave *slave = &priv->slaves[i];
cpsw_gmii_sel_am335x(slave);
}
return 0;
}
int cpsw_probe(struct device_d *dev)
{
struct cpsw_platform_data *data = (struct cpsw_platform_data *)dev->platform_data;
struct cpsw_priv *priv;
void __iomem *regs;
uint64_t start;
uint32_t phy_mask;
struct cpsw_data *cpsw_data;
int i, ret;
dev_dbg(dev, "* %s\n", __func__);
regs = dev_request_mem_region(dev, 0);
priv = xzalloc(sizeof(*priv));
priv->dev = dev;
if (dev->device_node) {
ret = cpsw_probe_dt(priv);
if (ret)
goto out;
} else {
priv->data = *data;
priv->num_slaves = data->num_slaves;
priv->slaves = xzalloc(sizeof(struct cpsw_slave) * priv->num_slaves);
cpsw_slave_init_data(&priv->slaves[0], 0, priv);
}
priv->channels = 8;
priv->ale_entries = 1024;
priv->host_port = 0;
priv->regs = regs;
priv->version = readl(&priv->regs->id_ver);
switch (priv->version) {
case CPSW_VERSION_1:
cpsw_data = &cpsw1_data;
break;
case CPSW_VERSION_2:
cpsw_data = &cpsw2_data;
break;
default:
ret = -EINVAL;
goto out;
}
priv->descs = regs + cpsw_data->cppi_ram_ofs;
priv->host_port_regs = regs + cpsw_data->host_port_reg_ofs;
priv->dma_regs = regs + cpsw_data->cpdma_reg_ofs;
priv->ale_regs = regs + cpsw_data->ale_reg_ofs;
priv->state_ram = regs + cpsw_data->state_ram_ofs;
priv->mdio_regs = regs + cpsw_data->mdio_reg_ofs;
priv->slave_ofs = cpsw_data->slave_ofs;
priv->slave_size = cpsw_data->slave_size;
priv->sliver_ofs = cpsw_data->sliver_ofs;
priv->miibus.read = cpsw_mdio_read;
priv->miibus.write = cpsw_mdio_write;
priv->miibus.priv = priv;
priv->miibus.parent = dev;
/*
* set enable and clock divider
*
* FIXME: Use a clock to calculate the divider
*/
writel(0xff | CONTROL_ENABLE, &priv->mdio_regs->control);
/*
* wait for scan logic to settle:
* the scan time consists of (a) a large fixed component, and (b) a
* small component that varies with the mii bus frequency. These
* were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x
* silicon. Since the effect of (b) was found to be largely
* negligible, we keep things simple here.
*/
udelay(1000);
start = get_time_ns();
while (1) {
phy_mask = readl(&priv->mdio_regs->alive);
if (phy_mask) {
dev_info(dev, "detected phy mask 0x%x\n", phy_mask);
phy_mask = ~phy_mask;
break;
}
if (is_timeout(start, 256 * MSECOND)) {
dev_err(dev, "no live phy, scanning all\n");
phy_mask = 0;
break;
}
}
priv->miibus.phy_mask = phy_mask;
mdiobus_register(&priv->miibus);
for (i = 0; i < priv->num_slaves; i++) {
ret = cpsw_slave_setup(&priv->slaves[i], i, priv);
if (ret)
goto out;
}
return 0;
out:
free(priv->slaves);
free(priv);
return ret;
}
static __maybe_unused struct of_device_id cpsw_dt_ids[] = {
{
.compatible = "ti,cpsw",
}, {
/* sentinel */
}
};
static struct driver_d cpsw_driver = {
.name = "cpsw",
.probe = cpsw_probe,
.of_compatible = DRV_OF_COMPAT(cpsw_dt_ids),
};
device_platform_driver(cpsw_driver);