9
0
Fork 0
barebox/drivers/net/ks8851_mll.c

877 lines
22 KiB
C

/**
* Copyright (c) 2012 Jan Weitzel <j.weitzel@phytec.de>
* based on kernel driver drivers/net/ks8851_mll.c
* Copyright (c) 2009 Micrel Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/**
* Supports:
* KS8851 16bit MLL chip from Micrel Inc.
*/
#include <common.h>
#include <driver.h>
#include <command.h>
#include <net.h>
#include <malloc.h>
#include <init.h>
#include <xfuncs.h>
#include <errno.h>
#include <clock.h>
#include <io.h>
#include <linux/phy.h>
#define MAX_RECV_FRAMES 32
#define MAX_BUF_SIZE 2048
#define TX_BUF_SIZE 2000
#define RX_BUF_SIZE 2000
#define KS_CCR 0x08
#define CCR_EEPROM (1 << 9)
#define CCR_SPI (1 << 8)
#define CCR_8BIT (1 << 7)
#define CCR_16BIT (1 << 6)
#define CCR_32BIT (1 << 5)
#define CCR_SHARED (1 << 4)
#define CCR_32PIN (1 << 0)
/* MAC address registers */
#define KS_MARL 0x10
#define KS_MARM 0x12
#define KS_MARH 0x14
#define KS_OBCR 0x20
#define OBCR_ODS_16MA (1 << 6)
#define KS_EEPCR 0x22
#define EEPCR_EESA (1 << 4)
#define EEPCR_EESB (1 << 3)
#define EEPCR_EEDO (1 << 2)
#define EEPCR_EESCK (1 << 1)
#define EEPCR_EECS (1 << 0)
#define KS_MBIR 0x24
#define MBIR_TXMBF (1 << 12)
#define MBIR_TXMBFA (1 << 11)
#define MBIR_RXMBF (1 << 4)
#define MBIR_RXMBFA (1 << 3)
#define KS_GRR 0x26
#define GRR_QMU (1 << 1)
#define GRR_GSR (1 << 0)
#define KS_WFCR 0x2A
#define WFCR_MPRXE (1 << 7)
#define WFCR_WF3E (1 << 3)
#define WFCR_WF2E (1 << 2)
#define WFCR_WF1E (1 << 1)
#define WFCR_WF0E (1 << 0)
#define KS_WF0CRC0 0x30
#define KS_WF0CRC1 0x32
#define KS_WF0BM0 0x34
#define KS_WF0BM1 0x36
#define KS_WF0BM2 0x38
#define KS_WF0BM3 0x3A
#define KS_WF1CRC0 0x40
#define KS_WF1CRC1 0x42
#define KS_WF1BM0 0x44
#define KS_WF1BM1 0x46
#define KS_WF1BM2 0x48
#define KS_WF1BM3 0x4A
#define KS_WF2CRC0 0x50
#define KS_WF2CRC1 0x52
#define KS_WF2BM0 0x54
#define KS_WF2BM1 0x56
#define KS_WF2BM2 0x58
#define KS_WF2BM3 0x5A
#define KS_WF3CRC0 0x60
#define KS_WF3CRC1 0x62
#define KS_WF3BM0 0x64
#define KS_WF3BM1 0x66
#define KS_WF3BM2 0x68
#define KS_WF3BM3 0x6A
#define KS_TXCR 0x70
#define TXCR_TCGICMP (1 << 8)
#define TXCR_TCGUDP (1 << 7)
#define TXCR_TCGTCP (1 << 6)
#define TXCR_TCGIP (1 << 5)
#define TXCR_FTXQ (1 << 4)
#define TXCR_TXFCE (1 << 3)
#define TXCR_TXPE (1 << 2)
#define TXCR_TXCRC (1 << 1)
#define TXCR_TXE (1 << 0)
#define KS_TXSR 0x72
#define TXSR_TXLC (1 << 13)
#define TXSR_TXMC (1 << 12)
#define TXSR_TXFID_MASK (0x3f << 0)
#define TXSR_TXFID_SHIFT (0)
#define TXSR_TXFID_GET(_v) (((_v) >> 0) & 0x3f)
#define KS_RXCR1 0x74
#define RXCR1_FRXQ (1 << 15)
#define RXCR1_RXUDPFCC (1 << 14)
#define RXCR1_RXTCPFCC (1 << 13)
#define RXCR1_RXIPFCC (1 << 12)
#define RXCR1_RXPAFMA (1 << 11)
#define RXCR1_RXFCE (1 << 10)
#define RXCR1_RXEFE (1 << 9)
#define RXCR1_RXMAFMA (1 << 8)
#define RXCR1_RXBE (1 << 7)
#define RXCR1_RXME (1 << 6)
#define RXCR1_RXUE (1 << 5)
#define RXCR1_RXAE (1 << 4)
#define RXCR1_RXINVF (1 << 1)
#define RXCR1_RXE (1 << 0)
#define RXCR1_FILTER_MASK (RXCR1_RXINVF | RXCR1_RXAE | \
RXCR1_RXMAFMA | RXCR1_RXPAFMA)
#define KS_RXCR2 0x76
#define RXCR2_SRDBL_MASK (0x7 << 5)
#define RXCR2_SRDBL_SHIFT (5)
#define RXCR2_SRDBL_4B (0x0 << 5)
#define RXCR2_SRDBL_8B (0x1 << 5)
#define RXCR2_SRDBL_16B (0x2 << 5)
#define RXCR2_SRDBL_32B (0x3 << 5)
/* #define RXCR2_SRDBL_FRAME (0x4 << 5) */
#define RXCR2_IUFFP (1 << 4)
#define RXCR2_RXIUFCEZ (1 << 3)
#define RXCR2_UDPLFE (1 << 2)
#define RXCR2_RXICMPFCC (1 << 1)
#define RXCR2_RXSAF (1 << 0)
#define KS_TXMIR 0x78
#define KS_RXFHSR 0x7C
#define RXFSHR_RXFV (1 << 15)
#define RXFSHR_RXICMPFCS (1 << 13)
#define RXFSHR_RXIPFCS (1 << 12)
#define RXFSHR_RXTCPFCS (1 << 11)
#define RXFSHR_RXUDPFCS (1 << 10)
#define RXFSHR_RXBF (1 << 7)
#define RXFSHR_RXMF (1 << 6)
#define RXFSHR_RXUF (1 << 5)
#define RXFSHR_RXMR (1 << 4)
#define RXFSHR_RXFT (1 << 3)
#define RXFSHR_RXFTL (1 << 2)
#define RXFSHR_RXRF (1 << 1)
#define RXFSHR_RXCE (1 << 0)
#define RXFSHR_ERR (RXFSHR_RXCE | RXFSHR_RXRF |\
RXFSHR_RXFTL | RXFSHR_RXMR |\
RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
RXFSHR_RXTCPFCS)
#define KS_RXFHBCR 0x7E
#define RXFHBCR_CNT_MASK 0x0FFF
#define KS_TXQCR 0x80
#define TXQCR_AETFE (1 << 2)
#define TXQCR_TXQMAM (1 << 1)
#define TXQCR_METFE (1 << 0)
#define KS_RXQCR 0x82
#define RXQCR_RXDTTS (1 << 12)
#define RXQCR_RXDBCTS (1 << 11)
#define RXQCR_RXFCTS (1 << 10)
#define RXQCR_RXIPHTOE (1 << 9)
#define RXQCR_RXDTTE (1 << 7)
#define RXQCR_RXDBCTE (1 << 6)
#define RXQCR_RXFCTE (1 << 5)
#define RXQCR_ADRFE (1 << 4)
#define RXQCR_SDA (1 << 3)
#define RXQCR_RRXEF (1 << 0)
#define RXQCR_CMD_CNTL (RXQCR_RXFCTE|RXQCR_ADRFE)
#define KS_TXFDPR 0x84
#define TXFDPR_TXFPAI (1 << 14)
#define TXFDPR_TXFP_MASK (0x7ff << 0)
#define TXFDPR_TXFP_SHIFT (0)
#define KS_RXFDPR 0x86
#define RXFDPR_RXFPAI (1 << 14)
#define KS_RXDTTR 0x8C
#define KS_RXDBCTR 0x8E
#define KS_IER 0x90
#define KS_ISR 0x92
#define IRQ_LCI (1 << 15)
#define IRQ_TXI (1 << 14)
#define IRQ_RXI (1 << 13)
#define IRQ_RXOI (1 << 11)
#define IRQ_TXPSI (1 << 9)
#define IRQ_RXPSI (1 << 8)
#define IRQ_TXSAI (1 << 6)
#define IRQ_RXWFDI (1 << 5)
#define IRQ_RXMPDI (1 << 4)
#define IRQ_LDI (1 << 3)
#define IRQ_EDI (1 << 2)
#define IRQ_SPIBEI (1 << 1)
#define IRQ_DEDI (1 << 0)
#define KS_RXFCTR 0x9C
#define RXFCTR_THRESHOLD_MASK 0x00FF
#define KS_RXFC 0x9D
#define RXFCTR_RXFC_MASK (0xff << 8)
#define RXFCTR_RXFC_SHIFT (8)
#define RXFCTR_RXFC_GET(_v) (((_v) >> 8) & 0xff)
#define RXFCTR_RXFCT_MASK (0xff << 0)
#define RXFCTR_RXFCT_SHIFT (0)
#define KS_TXNTFSR 0x9E
#define KS_MAHTR0 0xA0
#define KS_MAHTR1 0xA2
#define KS_MAHTR2 0xA4
#define KS_MAHTR3 0xA6
#define KS_FCLWR 0xB0
#define KS_FCHWR 0xB2
#define KS_FCOWR 0xB4
#define KS_CIDER 0xC0
#define CIDER_ID 0x8870
#define CIDER_REV_MASK (0x7 << 1)
#define CIDER_REV_SHIFT (1)
#define CIDER_REV_GET(_v) (((_v) >> 1) & 0x7)
#define KS_CGCR 0xC6
#define KS_IACR 0xC8
#define IACR_RDEN (1 << 12)
#define IACR_TSEL_MASK (0x3 << 10)
#define IACR_TSEL_SHIFT (10)
#define IACR_TSEL_MIB (0x3 << 10)
#define IACR_ADDR_MASK (0x1f << 0)
#define IACR_ADDR_SHIFT (0)
#define KS_IADLR 0xD0
#define KS_IADHR 0xD2
#define KS_PMECR 0xD4
#define PMECR_PME_DELAY (1 << 14)
#define PMECR_PME_POL (1 << 12)
#define PMECR_WOL_WAKEUP (1 << 11)
#define PMECR_WOL_MAGICPKT (1 << 10)
#define PMECR_WOL_LINKUP (1 << 9)
#define PMECR_WOL_ENERGY (1 << 8)
#define PMECR_AUTO_WAKE_EN (1 << 7)
#define PMECR_WAKEUP_NORMAL (1 << 6)
#define PMECR_WKEVT_MASK (0xf << 2)
#define PMECR_WKEVT_SHIFT (2)
#define PMECR_WKEVT_GET(_v) (((_v) >> 2) & 0xf)
#define PMECR_WKEVT_ENERGY (0x1 << 2)
#define PMECR_WKEVT_LINK (0x2 << 2)
#define PMECR_WKEVT_MAGICPKT (0x4 << 2)
#define PMECR_WKEVT_FRAME (0x8 << 2)
#define PMECR_PM_MASK (0x3 << 0)
#define PMECR_PM_SHIFT (0)
#define PMECR_PM_NORMAL (0x0 << 0)
#define PMECR_PM_ENERGY (0x1 << 0)
#define PMECR_PM_SOFTDOWN (0x2 << 0)
#define PMECR_PM_POWERSAVE (0x3 << 0)
/* Standard MII PHY data */
#define KS_P1MBCR 0xE4
#define P1MBCR_FORCE_FDX (1 << 8)
#define KS_P1MBSR 0xE6
#define P1MBSR_AN_COMPLETE (1 << 5)
#define P1MBSR_AN_CAPABLE (1 << 3)
#define P1MBSR_LINK_UP (1 << 2)
#define KS_PHY1ILR 0xE8
#define KS_PHY1IHR 0xEA
#define KS_P1ANAR 0xEC
#define KS_P1ANLPR 0xEE
#define KS_P1SCLMD 0xF4
#define P1SCLMD_LEDOFF (1 << 15)
#define P1SCLMD_TXIDS (1 << 14)
#define P1SCLMD_RESTARTAN (1 << 13)
#define P1SCLMD_DISAUTOMDIX (1 << 10)
#define P1SCLMD_FORCEMDIX (1 << 9)
#define P1SCLMD_AUTONEGEN (1 << 7)
#define P1SCLMD_FORCE100 (1 << 6)
#define P1SCLMD_FORCEFDX (1 << 5)
#define P1SCLMD_ADV_FLOW (1 << 4)
#define P1SCLMD_ADV_100BT_FDX (1 << 3)
#define P1SCLMD_ADV_100BT_HDX (1 << 2)
#define P1SCLMD_ADV_10BT_FDX (1 << 1)
#define P1SCLMD_ADV_10BT_HDX (1 << 0)
#define KS_P1CR 0xF6
#define P1CR_HP_MDIX (1 << 15)
#define P1CR_REV_POL (1 << 13)
#define P1CR_OP_100M (1 << 10)
#define P1CR_OP_FDX (1 << 9)
#define P1CR_OP_MDI (1 << 7)
#define P1CR_AN_DONE (1 << 6)
#define P1CR_LINK_GOOD (1 << 5)
#define P1CR_PNTR_FLOW (1 << 4)
#define P1CR_PNTR_100BT_FDX (1 << 3)
#define P1CR_PNTR_100BT_HDX (1 << 2)
#define P1CR_PNTR_10BT_FDX (1 << 1)
#define P1CR_PNTR_10BT_HDX (1 << 0)
/* TX Frame control */
#define TXFR_TXIC (1 << 15)
#define TXFR_TXFID_MASK (0x3f << 0)
#define TXFR_TXFID_SHIFT (0)
#define KS_P1SR 0xF8
#define P1SR_HP_MDIX (1 << 15)
#define P1SR_REV_POL (1 << 13)
#define P1SR_OP_100M (1 << 10)
#define P1SR_OP_FDX (1 << 9)
#define P1SR_OP_MDI (1 << 7)
#define P1SR_AN_DONE (1 << 6)
#define P1SR_LINK_GOOD (1 << 5)
#define P1SR_PNTR_FLOW (1 << 4)
#define P1SR_PNTR_100BT_FDX (1 << 3)
#define P1SR_PNTR_100BT_HDX (1 << 2)
#define P1SR_PNTR_10BT_FDX (1 << 1)
#define P1SR_PNTR_10BT_HDX (1 << 0)
#define ENUM_BUS_NONE 0
#define ENUM_BUS_8BIT 1
#define ENUM_BUS_16BIT 2
#define ENUM_BUS_32BIT 3
#define MAX_MCAST_LST 32
#define HW_MCAST_SIZE 8
/**
* struct ks_net - KS8851 driver private data
* @hw_addr : start address of data register.
* @hw_addr_cmd : start address of command register.
* @pdev : Pointer to platform device.
* @bus_width : i/o bus width.
* @extra_byte : number of extra byte prepended rx pkt.
*
*/
struct ks_net {
struct eth_device edev;
struct mii_bus miibus;
void __iomem *hw_addr;
void __iomem *hw_addr_cmd;
struct platform_device *pdev;
int bus_width;
};
#define BE3 0x8000 /* Byte Enable 3 */
#define BE2 0x4000 /* Byte Enable 2 */
#define BE1 0x2000 /* Byte Enable 1 */
#define BE0 0x1000 /* Byte Enable 0 */
/**
* ks_rdreg16 - read 16 bit register from device
* @ks : The chip information
* @offset: The register address
*
* Read a 16bit register from the chip, returning the result
*/
static u16 ks_rdreg16(struct ks_net *ks, int offset)
{
u16 value;
u16 cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
writew(cmd_reg_cache, ks->hw_addr_cmd);
value = readw(ks->hw_addr);
return value;
}
/**
* ks_wrreg16 - write 16bit register value to chip
* @ks: The chip information
* @offset: The register address
* @value: The value to write
*
*/
static void ks_wrreg16(struct ks_net *ks, int offset, u16 value)
{
u16 cmd_reg_cache = (u16)offset | ((BE1 | BE0) << (offset & 0x02));
writew(cmd_reg_cache, ks->hw_addr_cmd);
writew(value, ks->hw_addr);
}
/**
* ks_inblk - read a block of data from QMU.
* @ks: The chip state
* @wptr: buffer address to save data
* @len: length in byte to read
*
*/
static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
*wptr++ = (u16)readw(ks->hw_addr);
}
/**
* ks_outblk - write data to QMU.
* @ks: The chip information
* @wptr: buffer address
* @len: length in byte to write
*
*/
static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
writew(*wptr++, ks->hw_addr);
}
void ks_enable_qmu(struct ks_net *ks)
{
u16 w;
w = ks_rdreg16(ks, KS_TXCR);
/* Enables QMU Transmit (TXCR). */
ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
/*
* RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
* Enable
*/
w = ks_rdreg16(ks, KS_RXQCR);
ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
/* Enables QMU Receive (RXCR1). */
w = ks_rdreg16(ks, KS_RXCR1);
ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
} /* ks_enable_qmu */
static void ks_disable_qmu(struct ks_net *ks)
{
u16 w;
w = ks_rdreg16(ks, KS_TXCR);
/* Disables QMU Transmit (TXCR). */
w &= ~TXCR_TXE;
ks_wrreg16(ks, KS_TXCR, w);
/* Disables QMU Receive (RXCR1). */
w = ks_rdreg16(ks, KS_RXCR1);
w &= ~RXCR1_RXE ;
ks_wrreg16(ks, KS_RXCR1, w);
} /* ks_disable_qmu */
/* MII interface controls */
/**
* ks_phy_reg - convert MII register into a KS8851 register
* @reg: MII register number.
*
* Return the KS8851 register number for the corresponding MII PHY register
* if possible. Return zero if the MII register has no direct mapping to the
* KS8851 register set.
*/
static int ks_phy_reg(int reg)
{
int retval;
switch (reg) {
case MII_BMCR:
retval = KS_P1MBCR;
break;
case MII_BMSR:
retval = KS_P1MBSR;
break;
case MII_PHYSID1:
retval = KS_PHY1ILR;
break;
case MII_PHYSID2:
retval = KS_PHY1IHR;
break;
case MII_ADVERTISE:
retval = KS_P1ANAR;
break;
case MII_LPA:
retval = KS_P1ANLPR;
break;
default:
retval = 0x0;
}
return retval;
}
/**
* ks_phy_read - MII interface PHY register read.
*
* This call reads data from the PHY register specified in @reg. Since the
* device does not support all the MII registers, the non-existent values
* are always returned as zero.
*
* We return zero for unsupported registers as the MII code does not check
* the value returned for any error status, and simply returns it to the
* caller. The mii-tool that the driver was tested with takes any -ve error
* as real PHY capabilities, thus displaying incorrect data to the user.
*/
static int ks_phy_read(struct mii_bus *bus, int addr, int reg)
{
struct ks_net *priv = (struct ks_net *)bus->priv;
int ksreg;
int result;
ksreg = ks_phy_reg(reg);
if (!ksreg)
return 0x0; /* no error return allowed, so use zero */
result = ks_rdreg16(priv, ksreg);
return result;
}
static int ks_phy_write(struct mii_bus *bus, int addr, int reg, u16 val)
{
struct ks_net *priv = (struct ks_net *)bus->priv;
int ksreg;
ksreg = ks_phy_reg(reg);
if (ksreg)
ks_wrreg16(priv, ksreg, val);
return 0;
}
static int ks8851_get_ethaddr(struct eth_device *edev, unsigned char *adr)
{
struct ks_net *priv = (struct ks_net *)edev->priv;
((u16 *) adr)[0] = be16_to_cpu(ks_rdreg16(priv, KS_MARH));
((u16 *) adr)[1] = be16_to_cpu(ks_rdreg16(priv, KS_MARM));
((u16 *) adr)[2] = be16_to_cpu(ks_rdreg16(priv, KS_MARL));
return 0;
}
static int ks8851_set_ethaddr(struct eth_device *edev, unsigned char *adr)
{
struct ks_net *priv = (struct ks_net *)edev->priv;
ks_wrreg16(priv, KS_MARH, cpu_to_be16(((u16 *) adr)[0]));
ks_wrreg16(priv, KS_MARM, cpu_to_be16(((u16 *) adr)[1]));
ks_wrreg16(priv, KS_MARL, cpu_to_be16(((u16 *) adr)[2]));
return 0;
}
static void ks_soft_reset(struct ks_net *ks, unsigned op)
{
/* Disable interrupt first */
ks_wrreg16(ks, KS_IER, 0x0000);
ks_wrreg16(ks, KS_GRR, op);
mdelay(10); /* wait a short time to effect reset */
ks_wrreg16(ks, KS_GRR, 0);
mdelay(1); /* wait for condition to clear */
}
/**
* ks_read_selftest - read the selftest memory info.
* @ks: The device state
*
* Read and check the TX/RX memory selftest information.
*/
static int ks_read_selftest(struct ks_net *ks)
{
struct device_d *dev = &ks->edev.dev;
unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
int ret = 0;
unsigned rd;
rd = ks_rdreg16(ks, KS_MBIR);
if ((rd & both_done) != both_done) {
dev_err(dev, "Memory selftest not finished\n");
return 0;
}
if (rd & MBIR_TXMBFA) {
dev_err(dev, "TX memory selftest fails\n");
ret |= 1;
}
if (rd & MBIR_RXMBFA) {
dev_err(dev, "RX memory selftest fails\n");
ret |= 2;
}
dev_dbg(dev, "the selftest passes\n");
return ret;
}
static void ks_setup(struct ks_net *ks)
{
u16 w;
/**
* Configure QMU Transmit
*/
/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
/* Setup Receive Frame Data Pointer Auto-Increment */
ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
/* Setup RxQ Command Control (RXQCR) */
ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL);
/**
* set the force mode to half duplex, default is full duplex
* because if the auto-negotiation fails, most switch uses
* half-duplex.
*/
w = ks_rdreg16(ks, KS_P1MBCR);
w &= ~P1MBCR_FORCE_FDX;
ks_wrreg16(ks, KS_P1MBCR, w);
w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
ks_wrreg16(ks, KS_TXCR, w);
w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC |
RXCR1_RXPAFMA;
ks_wrreg16(ks, KS_RXCR1, w);
} /*ks_setup */
static int ks8851_rx_frame(struct ks_net *ks)
{
struct device_d *dev = &ks->edev.dev;
u16 *rdptr = (u16 *) NetRxPackets[0];
u16 RxStatus, RxLen = 0;
u16 tmp_rxqcr;
dev_dbg(dev, "receiving packet\n");
RxStatus = ks_rdreg16(ks, KS_RXFHSR);
RxLen = ks_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK;
dev_dbg(dev, "%s RxLen %d (%d) RxStatus 0x%04x\n",
__func__, RxLen, ALIGN(RxLen, 4), RxStatus);
if (RxLen > PKTSIZE)
dev_err(dev, "rx length too big\n");
/* reset Frame pointer */
ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
tmp_rxqcr = ks_rdreg16(ks, KS_RXQCR);
ks_wrreg16(ks, KS_RXQCR, tmp_rxqcr | RXQCR_SDA);
/* read 2 bytes for dummy, 2 for status, 2 for len*/
ks_inblk(ks, rdptr, 2 + 2 + 2);
ks_inblk(ks, rdptr, ALIGN(RxLen, 4));
ks_wrreg16(ks, KS_RXQCR, tmp_rxqcr);
if (RxStatus & RXFSHR_RXFV) {
/* Pass to upper layer */
dev_dbg(dev, "passing packet to upper layer\n\n");
net_receive(&ks->edev, NetRxPackets[0], RxLen);
return RxLen;
} else if (RxStatus & RXFSHR_ERR) {
dev_err(dev, "RxStatus error 0x%04x\n", RxStatus & RXFSHR_ERR);
if (RxStatus & RXFSHR_RXICMPFCS)
dev_dbg(dev, "ICMP frame checksum field is incorrect\n");
if (RxStatus & RXFSHR_RXIPFCS)
dev_dbg(dev, "IP frame checksum field is incorrect\n");
if (RxStatus & RXFSHR_RXTCPFCS)
dev_dbg(dev, "TCP frame checksum field is incorrect\n");
if (RxStatus & RXFSHR_RXCE)
dev_dbg(dev, "CRC Error\n");
if (RxStatus & RXFSHR_RXRF)
dev_dbg(dev, "frame collision\n");
if (RxStatus & RXFSHR_RXFTL)
dev_dbg(dev, "frame too long\n");
if (RxStatus & RXFSHR_RXMR)
dev_dbg(dev, "MII symbol error\n");
} else
dev_err(dev, "other RxStatus error 0x%04x\n", RxStatus);
return 0;
}
static int ks8851_eth_rx(struct eth_device *edev)
{
struct ks_net *ks = (struct ks_net *)edev->priv;
struct device_d *dev = &edev->dev;
u16 frame_cnt;
if (!(ks_rdreg16(ks, KS_ISR) & IRQ_RXI))
return 0;
ks_wrreg16(ks, KS_ISR, IRQ_RXI);
frame_cnt = RXFCTR_RXFC_GET(ks_rdreg16(ks, KS_RXFCTR));
while (frame_cnt--) {
dev_dbg(dev, "%s frame %d\n", __func__, frame_cnt);
ks8851_rx_frame(ks);
}
return 0;
}
static int ks8851_eth_send(struct eth_device *edev,
void *packet, int length)
{
struct ks_net *ks = (struct ks_net *)edev->priv;
struct device_d *dev = &edev->dev;
uint64_t tmo;
u16 tmp_rxqcr;
dev_dbg(dev, "%s: length: %d (%d)\n", __func__, length, ALIGN(length, 4));
/* Enable TXQ write access */
tmp_rxqcr = ks_rdreg16(ks, KS_RXQCR);
ks_wrreg16(ks, KS_RXQCR, tmp_rxqcr | RXQCR_SDA);
/* write status/lenth info */
writew(0, ks->hw_addr);
writew(cpu_to_le16(length), ks->hw_addr);
/* write pkt data */
ks_outblk(ks, (u16 *) packet, ALIGN(length, 4));
ks_wrreg16(ks, KS_RXQCR, tmp_rxqcr);
/* (move the pkt from TX buffer into TXQ) */
ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
/* wait for transmit done */
tmo = get_time_ns();
while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE) {
if (is_timeout(tmo, 5 * SECOND)) {
dev_err(dev, "transmission timeout\n");
break;
}
}
dev_dbg(dev, "transmit done\n\n");
return 0;
}
static int ks8851_eth_open(struct eth_device *edev)
{
struct ks_net *priv = (struct ks_net *)edev->priv;
struct device_d *dev = &edev->dev;
int ret;
ks_enable_qmu(priv);
ret = phy_device_connect(edev, &priv->miibus, 1, NULL,
0, PHY_INTERFACE_MODE_NA);
if (ret)
return ret;
dev_dbg(dev, "eth_open\n");
return 0;
}
static int ks8851_init_dev(struct eth_device *edev)
{
return 0;
}
static void ks8851_eth_halt(struct eth_device *edev)
{
struct ks_net *priv = (struct ks_net *)edev->priv;
struct device_d *dev = &edev->dev;
ks_disable_qmu(priv);
dev_dbg(dev, "eth_halt\n");
}
static int ks8851_probe(struct device_d *dev)
{
struct eth_device *edev;
struct ks_net *ks;
u16 id;
ks = xzalloc(sizeof(struct ks_net));
edev = &ks->edev;
dev->type_data = edev;
edev->priv = ks;
if (dev->num_resources < 2) {
dev_err(dev, "ks8851: need 2 resources addr and addr_cmd");
return -ENODEV;
}
ks->hw_addr = dev_request_mem_region(dev, 0);
ks->hw_addr_cmd = dev_request_mem_region(dev, 1);
ks->bus_width = dev->resource[0].flags & IORESOURCE_MEM_TYPE_MASK;
edev->init = ks8851_init_dev;
edev->open = ks8851_eth_open;
edev->send = ks8851_eth_send;
edev->recv = ks8851_eth_rx;
edev->halt = ks8851_eth_halt;
edev->set_ethaddr = ks8851_set_ethaddr;
edev->get_ethaddr = ks8851_get_ethaddr;
edev->parent = dev;
/* setup mii state */
ks->miibus.read = ks_phy_read;
ks->miibus.write = ks_phy_write;
ks->miibus.priv = ks;
ks->miibus.parent = dev;
/* simple check for a valid chip being connected to the bus */
id = ks_rdreg16(ks, KS_CIDER);
if ((id & ~CIDER_REV_MASK) != CIDER_ID) {
dev_err(dev, "failed to read device ID\n");
return -ENODEV;
}
dev_dbg(dev, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
(id >> 8) & 0xff, (id >> 4) & 0xf, (id >> 1) & 0x7);
if (ks_read_selftest(ks)) {
dev_err(dev, "failed to read device ID\n");
return -ENODEV;
}
ks_soft_reset(ks, GRR_GSR);
ks_setup(ks);
mdiobus_register(&ks->miibus);
eth_register(edev);
dev_dbg(dev, "%s MARL 0x%04x MARM 0x%04x MARH 0x%04x\n", __func__,
ks_rdreg16(ks, KS_MARL), ks_rdreg16(ks, KS_MARM),
ks_rdreg16(ks, KS_MARH));
return 0;
}
static struct driver_d ks8851_driver = {
.name = "ks8851_mll",
.probe = ks8851_probe,
};
device_platform_driver(ks8851_driver);