9
0
Fork 0
barebox/fs/ext4/ext4_common.c

552 lines
13 KiB
C

/*
* (C) Copyright 2011 - 2012 Samsung Electronics
* EXT4 filesystem implementation in Uboot by
* Uma Shankar <uma.shankar@samsung.com>
* Manjunatha C Achar <a.manjunatha@samsung.com>
*
* ext4ls and ext4load : Based on ext2 ls load support in Uboot.
*
* (C) Copyright 2004
* esd gmbh <www.esd-electronics.com>
* Reinhard Arlt <reinhard.arlt@esd-electronics.com>
*
* based on code from grub2 fs/ext2.c and fs/fshelp.c by
* GRUB -- GRand Unified Bootloader
* Copyright (C) 2003, 2004 Free Software Foundation, Inc.
*
* ext4write : Based on generic ext4 protocol.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <common.h>
#include <malloc.h>
#include <stddef.h>
#include <linux/stat.h>
#include <linux/time.h>
#include <asm/byteorder.h>
#include <dma.h>
#include "ext4_common.h"
static struct ext4_extent_header *ext4fs_get_extent_block(struct ext2_data *data,
char *buf, struct ext4_extent_header *ext_block,
uint32_t fileblock, int log2_blksz)
{
struct ext4_extent_idx *index;
unsigned long long block;
struct ext_filesystem *fs = data->fs;
int i, ret;
while (1) {
index = (struct ext4_extent_idx *)(ext_block + 1);
if (le32_to_cpu(ext_block->eh_magic) != EXT4_EXT_MAGIC)
return 0;
if (ext_block->eh_depth == 0)
return ext_block;
i = -1;
do {
i++;
if (i >= le32_to_cpu(ext_block->eh_entries))
break;
} while (fileblock > le32_to_cpu(index[i].ei_block));
if (--i < 0)
return 0;
block = le32_to_cpu(index[i].ei_leaf_hi);
block = (block << 32) + le32_to_cpu(index[i].ei_leaf_lo);
ret = ext4fs_devread(fs, block << log2_blksz, 0, fs->blksz, buf);
if (ret)
return NULL;
else
ext_block = (struct ext4_extent_header *)buf;
}
}
static int ext4fs_blockgroup(struct ext2_data *data, int group,
struct ext2_block_group *blkgrp)
{
long int blkno;
unsigned int blkoff, desc_per_blk;
struct ext_filesystem *fs = data->fs;
desc_per_blk = EXT2_BLOCK_SIZE(data) / sizeof(struct ext2_block_group);
blkno = __le32_to_cpu(data->sblock.first_data_block) + 1 +
group / desc_per_blk;
blkoff = (group % desc_per_blk) * sizeof(struct ext2_block_group);
dev_dbg(fs->dev, "read %d group descriptor (blkno %ld blkoff %u)\n",
group, blkno, blkoff);
return ext4fs_devread(fs, blkno << LOG2_EXT2_BLOCK_SIZE(data),
blkoff, sizeof(struct ext2_block_group),
(char *)blkgrp);
}
int ext4fs_read_inode(struct ext2_data *data, int ino, struct ext2_inode *inode)
{
struct ext2_block_group blkgrp;
struct ext2_sblock *sblock = &data->sblock;
struct ext_filesystem *fs = data->fs;
int inodes_per_block, ret;
long int blkno;
unsigned int blkoff;
/* It is easier to calculate if the first inode is 0. */
ino--;
ret = ext4fs_blockgroup(data, ino / __le32_to_cpu
(sblock->inodes_per_group), &blkgrp);
if (ret)
return ret;
inodes_per_block = EXT2_BLOCK_SIZE(data) / fs->inodesz;
blkno = __le32_to_cpu(blkgrp.inode_table_id) +
(ino % __le32_to_cpu(sblock->inodes_per_group)) / inodes_per_block;
blkoff = (ino % inodes_per_block) * fs->inodesz;
/* Read the inode. */
ret = ext4fs_devread(fs, blkno << LOG2_EXT2_BLOCK_SIZE(data), blkoff,
sizeof(struct ext2_inode), (char *)inode);
if (ret)
return ret;
return 0;
}
int ext4fs_get_indir_block(struct ext2fs_node *node, struct ext4fs_indir_block *indir, int blkno)
{
struct ext_filesystem *fs = node->data->fs;
int blksz;
int ret;
blksz = EXT2_BLOCK_SIZE(node->data);
if (indir->blkno == blkno)
return 0;
ret = ext4fs_devread(fs, blkno, 0, blksz, (void *)indir->data);
if (ret) {
dev_err(fs->dev, "** SI ext2fs read block (indir 1)"
"failed. **\n");
return ret;
}
return 0;
}
long int read_allocated_block(struct ext2fs_node *node, int fileblock)
{
long int blknr;
int blksz;
int log2_blksz;
long int rblock;
long int perblock_parent;
long int perblock_child;
unsigned long long start;
struct ext2_inode *inode = &node->inode;
struct ext2_data *data = node->data;
int ret;
/* get the blocksize of the filesystem */
blksz = EXT2_BLOCK_SIZE(node->data);
log2_blksz = LOG2_EXT2_BLOCK_SIZE(node->data);
if (le32_to_cpu(inode->flags) & EXT4_EXTENTS_FL) {
char *buf = zalloc(blksz);
struct ext4_extent_header *ext_block;
struct ext4_extent *extent;
int i = -1;
if (!buf)
return -ENOMEM;
ext_block = ext4fs_get_extent_block(node->data, buf,
(struct ext4_extent_header *)inode->b.blocks.dir_blocks,
fileblock, log2_blksz);
if (!ext_block) {
pr_err("invalid extent block\n");
free(buf);
return -EINVAL;
}
extent = (struct ext4_extent *)(ext_block + 1);
do {
i++;
if (i >= le32_to_cpu(ext_block->eh_entries))
break;
} while (fileblock >= le32_to_cpu(extent[i].ee_block));
if (--i >= 0) {
fileblock -= le32_to_cpu(extent[i].ee_block);
if (fileblock >= le32_to_cpu(extent[i].ee_len)) {
free(buf);
return 0;
}
start = le32_to_cpu(extent[i].ee_start_hi);
start = (start << 32) +
le32_to_cpu(extent[i].ee_start_lo);
free(buf);
return fileblock + start;
}
free(buf);
return -EIO;
}
if (fileblock < INDIRECT_BLOCKS) {
/* Direct blocks. */
blknr = __le32_to_cpu(inode->b.blocks.dir_blocks[fileblock]);
} else if (fileblock < (INDIRECT_BLOCKS + (blksz / 4))) {
/* Indirect. */
ret = ext4fs_get_indir_block(node, &data->indir1,
__le32_to_cpu(inode->b.blocks.indir_block) << log2_blksz);
if (ret)
return ret;
blknr = __le32_to_cpu(data->indir1.data[fileblock - INDIRECT_BLOCKS]);
} else if (fileblock < (INDIRECT_BLOCKS + (blksz / 4 *
(blksz / 4 + 1)))) {
/* Double indirect. */
long int perblock = blksz / 4;
long int rblock = fileblock - (INDIRECT_BLOCKS + blksz / 4);
ret = ext4fs_get_indir_block(node, &data->indir1,
__le32_to_cpu(inode->b.blocks.double_indir_block) << log2_blksz);
if (ret)
return ret;
ret = ext4fs_get_indir_block(node, &data->indir2,
__le32_to_cpu(data->indir1.data[rblock / perblock]) << log2_blksz);
if (ret)
return ret;
blknr = __le32_to_cpu(data->indir2.data[rblock % perblock]);
} else {
/* Triple indirect. */
rblock = fileblock - (INDIRECT_BLOCKS + blksz / 4 +
(blksz / 4 * blksz / 4));
perblock_child = blksz / 4;
perblock_parent = ((blksz / 4) * (blksz / 4));
ret = ext4fs_get_indir_block(node, &data->indir1,
__le32_to_cpu(inode->b.blocks.triple_indir_block) << log2_blksz);
if (ret)
return ret;
ret = ext4fs_get_indir_block(node, &data->indir2,
__le32_to_cpu(data->indir1.data[rblock / perblock_parent]) << log2_blksz);
if (ret)
return ret;
ret = ext4fs_get_indir_block(node, &data->indir3,
__le32_to_cpu(data->indir2.data[rblock / perblock_child]) << log2_blksz);
if (ret)
return ret;
blknr = __le32_to_cpu(data->indir3.data[rblock % perblock_child]);
}
return blknr;
}
int ext4fs_iterate_dir(struct ext2fs_node *dir, char *name,
struct ext2fs_node **fnode, int *ftype)
{
unsigned int fpos = 0;
int status, ret;
struct ext2fs_node *diro = (struct ext2fs_node *) dir;
struct ext_filesystem *fs = dir->data->fs;
if (name != NULL)
dev_dbg(fs->dev, "Iterate dir %s\n", name);
if (!diro->inode_read) {
ret = ext4fs_read_inode(diro->data, diro->ino, &diro->inode);
if (ret)
return ret;
}
/* Search the file. */
while (fpos < __le32_to_cpu(diro->inode.size)) {
struct ext2_dirent dirent;
status = ext4fs_read_file(diro, fpos,
sizeof(struct ext2_dirent),
(char *) &dirent);
if (status < 1)
return -EINVAL;
if (dirent.namelen != 0) {
char filename[dirent.namelen + 1];
struct ext2fs_node *fdiro;
int type = FILETYPE_UNKNOWN;
status = ext4fs_read_file(diro,
fpos +
sizeof(struct ext2_dirent),
dirent.namelen, filename);
if (status < 1)
return -EINVAL;
fdiro = zalloc(sizeof(struct ext2fs_node));
if (!fdiro)
return -ENOMEM;
fdiro->data = diro->data;
fdiro->ino = __le32_to_cpu(dirent.inode);
filename[dirent.namelen] = '\0';
if (dirent.filetype != FILETYPE_UNKNOWN) {
fdiro->inode_read = 0;
if (dirent.filetype == FILETYPE_DIRECTORY)
type = FILETYPE_DIRECTORY;
else if (dirent.filetype == FILETYPE_SYMLINK)
type = FILETYPE_SYMLINK;
else if (dirent.filetype == FILETYPE_REG)
type = FILETYPE_REG;
} else {
ret = ext4fs_read_inode(diro->data,
__le32_to_cpu
(dirent.inode),
&fdiro->inode);
if (ret) {
free(fdiro);
return ret;
}
fdiro->inode_read = 1;
if ((__le16_to_cpu(fdiro->inode.mode) &
FILETYPE_INO_MASK) ==
FILETYPE_INO_DIRECTORY) {
type = FILETYPE_DIRECTORY;
} else if ((__le16_to_cpu(fdiro->inode.mode)
& FILETYPE_INO_MASK) ==
FILETYPE_INO_SYMLINK) {
type = FILETYPE_SYMLINK;
} else if ((__le16_to_cpu(fdiro->inode.mode)
& FILETYPE_INO_MASK) ==
FILETYPE_INO_REG) {
type = FILETYPE_REG;
}
}
dev_dbg(fs->dev, "iterate >%s<\n", filename);
if (strcmp(filename, name) == 0) {
*ftype = type;
*fnode = fdiro;
return 0;
}
free(fdiro);
}
fpos += __le16_to_cpu(dirent.direntlen);
}
return -ENOENT;
}
char *ext4fs_read_symlink(struct ext2fs_node *node)
{
char *symlink;
struct ext2fs_node *diro = node;
int status, ret;
if (!diro->inode_read) {
ret = ext4fs_read_inode(diro->data, diro->ino, &diro->inode);
if (ret)
return NULL;
}
symlink = zalloc(__le32_to_cpu(diro->inode.size) + 1);
if (!symlink)
return 0;
if (__le32_to_cpu(diro->inode.size) <= 60) {
strncpy(symlink, diro->inode.b.symlink,
__le32_to_cpu(diro->inode.size));
} else {
status = ext4fs_read_file(diro, 0,
__le32_to_cpu(diro->inode.size),
symlink);
if (status == 0) {
free(symlink);
return NULL;
}
}
symlink[__le32_to_cpu(diro->inode.size)] = '\0';
return symlink;
}
int ext4fs_find_file(const char *currpath,
struct ext2fs_node *currroot,
struct ext2fs_node **currfound, int *foundtype)
{
char fpath[strlen(currpath) + 1];
char *name = fpath;
char *next;
int type = FILETYPE_DIRECTORY;
struct ext2fs_node *currnode = currroot;
struct ext2fs_node *oldnode = currroot;
int ret = 0;
strncpy(fpath, currpath, strlen(currpath) + 1);
/* Remove all leading slashes. */
while (*name == '/')
name++;
if (!*name) {
*currfound = currnode;
goto out;
}
for (;;) {
/* Extract the actual part from the pathname. */
next = strchr(name, '/');
if (next) {
/* Remove all leading slashes. */
while (*next == '/')
*(next++) = '\0';
}
if (type != FILETYPE_DIRECTORY) {
ext4fs_free_node(currnode, currroot);
return -ENOENT;
}
oldnode = currnode;
/* Iterate over the directory. */
ret = ext4fs_iterate_dir(currnode, name, &currnode, &type);
if (ret)
return ret;
ext4fs_free_node(oldnode, currroot);
/* Found the node! */
if (!next || *next == '\0') {
*currfound = currnode;
goto out;
}
name = next;
}
out:
if (foundtype)
*foundtype = type;
return ret;
}
int ext4fs_open(struct ext2_data *data, const char *filename, struct ext2fs_node **inode)
{
struct ext2fs_node *fdiro = NULL;
int status, ret;
int type;
status = ext4fs_find_file(filename, &data->diropen, &fdiro, &type);
if (status)
goto fail;
if (type != FILETYPE_REG)
return -EINVAL;
if (!fdiro->inode_read) {
ret = ext4fs_read_inode(fdiro->data, fdiro->ino,
&fdiro->inode);
if (ret)
goto fail;
}
*inode = fdiro;
return 0;
fail:
ext4fs_free_node(fdiro, &data->diropen);
return -ENOENT;
}
int ext4fs_mount(struct ext_filesystem *fs)
{
struct ext2_data *data;
int ret, blksz;
data = zalloc(sizeof(struct ext2_data));
if (!data)
return -ENOMEM;
/* Read the superblock. */
ret = ext4fs_devread(fs, 1 * 2, 0, sizeof(struct ext2_sblock),
(char *)&data->sblock);
if (ret)
goto fail;
/* Make sure this is an ext2 filesystem. */
if (__le16_to_cpu(data->sblock.magic) != EXT2_MAGIC) {
ret = -EINVAL;
goto fail;
}
if (__le32_to_cpu(data->sblock.revision_level == 0))
fs->inodesz = 128;
else
fs->inodesz = __le16_to_cpu(data->sblock.inode_size);
dev_info(fs->dev, "EXT2 rev %d, inode_size %d\n",
__le32_to_cpu(data->sblock.revision_level), fs->inodesz);
data->diropen.data = data;
data->diropen.ino = 2;
data->diropen.inode_read = 1;
data->inode = &data->diropen.inode;
data->fs = fs;
fs->data = data;
blksz = EXT2_BLOCK_SIZE(data);
fs->data->indir1.data = malloc(blksz);
fs->data->indir2.data = malloc(blksz);
fs->data->indir3.data = malloc(blksz);
if (!fs->data->indir1.data || !fs->data->indir2.data ||
!fs->data->indir3.data) {
ret = -ENOMEM;
goto fail;
}
ret = ext4fs_read_inode(data, 2, data->inode);
if (ret)
goto fail;
return 0;
fail:
free(data);
return ret;
}
void ext4fs_umount(struct ext_filesystem *fs)
{
free(fs->data->indir1.data);
free(fs->data->indir2.data);
free(fs->data->indir3.data);
free(fs->data);
}