9
0
Fork 0
barebox/drivers/pci/pci-tegra.c

1306 lines
33 KiB
C

/*
* Copyright (C) 2014 Lucas Stach <l.stach@pengutronix.de>
*
* based on code
* Copyright (c) 2010, CompuLab, Ltd.
* Copyright (c) 2008-2009, NVIDIA Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <common.h>
#include <clock.h>
#include <malloc.h>
#include <io.h>
#include <init.h>
#include <asm/mmu.h>
#include <linux/clk.h>
#include <linux/kernel.h>
#include <of_address.h>
#include <of_pci.h>
#include <linux/pci.h>
#include <linux/phy/phy.h>
#include <linux/reset.h>
#include <linux/sizes.h>
#include <mach/tegra-powergate.h>
#include <regulator.h>
/* register definitions */
#define AFI_AXI_BAR0_SZ 0x00
#define AFI_AXI_BAR1_SZ 0x04
#define AFI_AXI_BAR2_SZ 0x08
#define AFI_AXI_BAR3_SZ 0x0c
#define AFI_AXI_BAR4_SZ 0x10
#define AFI_AXI_BAR5_SZ 0x14
#define AFI_AXI_BAR0_START 0x18
#define AFI_AXI_BAR1_START 0x1c
#define AFI_AXI_BAR2_START 0x20
#define AFI_AXI_BAR3_START 0x24
#define AFI_AXI_BAR4_START 0x28
#define AFI_AXI_BAR5_START 0x2c
#define AFI_FPCI_BAR0 0x30
#define AFI_FPCI_BAR1 0x34
#define AFI_FPCI_BAR2 0x38
#define AFI_FPCI_BAR3 0x3c
#define AFI_FPCI_BAR4 0x40
#define AFI_FPCI_BAR5 0x44
#define AFI_CACHE_BAR0_SZ 0x48
#define AFI_CACHE_BAR0_ST 0x4c
#define AFI_CACHE_BAR1_SZ 0x50
#define AFI_CACHE_BAR1_ST 0x54
#define AFI_MSI_BAR_SZ 0x60
#define AFI_MSI_FPCI_BAR_ST 0x64
#define AFI_MSI_AXI_BAR_ST 0x68
#define AFI_MSI_VEC0 0x6c
#define AFI_MSI_VEC1 0x70
#define AFI_MSI_VEC2 0x74
#define AFI_MSI_VEC3 0x78
#define AFI_MSI_VEC4 0x7c
#define AFI_MSI_VEC5 0x80
#define AFI_MSI_VEC6 0x84
#define AFI_MSI_VEC7 0x88
#define AFI_MSI_EN_VEC0 0x8c
#define AFI_MSI_EN_VEC1 0x90
#define AFI_MSI_EN_VEC2 0x94
#define AFI_MSI_EN_VEC3 0x98
#define AFI_MSI_EN_VEC4 0x9c
#define AFI_MSI_EN_VEC5 0xa0
#define AFI_MSI_EN_VEC6 0xa4
#define AFI_MSI_EN_VEC7 0xa8
#define AFI_CONFIGURATION 0xac
#define AFI_CONFIGURATION_EN_FPCI (1 << 0)
#define AFI_FPCI_ERROR_MASKS 0xb0
#define AFI_INTR_MASK 0xb4
#define AFI_INTR_MASK_INT_MASK (1 << 0)
#define AFI_INTR_MASK_MSI_MASK (1 << 8)
#define AFI_INTR_CODE 0xb8
#define AFI_INTR_CODE_MASK 0xf
#define AFI_INTR_AXI_SLAVE_ERROR 1
#define AFI_INTR_AXI_DECODE_ERROR 2
#define AFI_INTR_TARGET_ABORT 3
#define AFI_INTR_MASTER_ABORT 4
#define AFI_INTR_INVALID_WRITE 5
#define AFI_INTR_LEGACY 6
#define AFI_INTR_FPCI_DECODE_ERROR 7
#define AFI_INTR_SIGNATURE 0xbc
#define AFI_UPPER_FPCI_ADDRESS 0xc0
#define AFI_SM_INTR_ENABLE 0xc4
#define AFI_SM_INTR_INTA_ASSERT (1 << 0)
#define AFI_SM_INTR_INTB_ASSERT (1 << 1)
#define AFI_SM_INTR_INTC_ASSERT (1 << 2)
#define AFI_SM_INTR_INTD_ASSERT (1 << 3)
#define AFI_SM_INTR_INTA_DEASSERT (1 << 4)
#define AFI_SM_INTR_INTB_DEASSERT (1 << 5)
#define AFI_SM_INTR_INTC_DEASSERT (1 << 6)
#define AFI_SM_INTR_INTD_DEASSERT (1 << 7)
#define AFI_AFI_INTR_ENABLE 0xc8
#define AFI_INTR_EN_INI_SLVERR (1 << 0)
#define AFI_INTR_EN_INI_DECERR (1 << 1)
#define AFI_INTR_EN_TGT_SLVERR (1 << 2)
#define AFI_INTR_EN_TGT_DECERR (1 << 3)
#define AFI_INTR_EN_TGT_WRERR (1 << 4)
#define AFI_INTR_EN_DFPCI_DECERR (1 << 5)
#define AFI_INTR_EN_AXI_DECERR (1 << 6)
#define AFI_INTR_EN_FPCI_TIMEOUT (1 << 7)
#define AFI_INTR_EN_PRSNT_SENSE (1 << 8)
#define AFI_PCIE_CONFIG 0x0f8
#define AFI_PCIE_CONFIG_PCIE_DISABLE(x) (1 << ((x) + 1))
#define AFI_PCIE_CONFIG_PCIE_DISABLE_ALL 0xe
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK (0xf << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420 (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1 (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL (0x1 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222 (0x1 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1 (0x1 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411 (0x2 << 20)
#define AFI_FUSE 0x104
#define AFI_FUSE_PCIE_T0_GEN2_DIS (1 << 2)
#define AFI_PEX0_CTRL 0x110
#define AFI_PEX1_CTRL 0x118
#define AFI_PEX2_CTRL 0x128
#define AFI_PEX_CTRL_RST (1 << 0)
#define AFI_PEX_CTRL_CLKREQ_EN (1 << 1)
#define AFI_PEX_CTRL_REFCLK_EN (1 << 3)
#define AFI_PEX_CTRL_OVERRIDE_EN (1 << 4)
#define AFI_PLLE_CONTROL 0x160
#define AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL (1 << 9)
#define AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN (1 << 1)
#define AFI_PEXBIAS_CTRL_0 0x168
#define RP_VEND_XP 0x00000F00
#define RP_VEND_XP_DL_UP (1 << 30)
#define RP_PRIV_MISC 0x00000FE0
#define RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT (0xE << 0)
#define RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT (0xF << 0)
#define RP_LINK_CONTROL_STATUS 0x00000090
#define RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE 0x20000000
#define RP_LINK_CONTROL_STATUS_LINKSTAT_MASK 0x3fff0000
#define PADS_CTL_SEL 0x0000009C
#define PADS_CTL 0x000000A0
#define PADS_CTL_IDDQ_1L (1 << 0)
#define PADS_CTL_TX_DATA_EN_1L (1 << 6)
#define PADS_CTL_RX_DATA_EN_1L (1 << 10)
#define PADS_PLL_CTL_TEGRA20 0x000000B8
#define PADS_PLL_CTL_TEGRA30 0x000000B4
#define PADS_PLL_CTL_RST_B4SM (1 << 1)
#define PADS_PLL_CTL_LOCKDET (1 << 8)
#define PADS_PLL_CTL_REFCLK_MASK (0x3 << 16)
#define PADS_PLL_CTL_REFCLK_INTERNAL_CML (0 << 16)
#define PADS_PLL_CTL_REFCLK_INTERNAL_CMOS (1 << 16)
#define PADS_PLL_CTL_REFCLK_EXTERNAL (2 << 16)
#define PADS_PLL_CTL_TXCLKREF_MASK (0x1 << 20)
#define PADS_PLL_CTL_TXCLKREF_DIV10 (0 << 20)
#define PADS_PLL_CTL_TXCLKREF_DIV5 (1 << 20)
#define PADS_PLL_CTL_TXCLKREF_BUF_EN (1 << 22)
#define PADS_REFCLK_CFG0 0x000000C8
#define PADS_REFCLK_CFG1 0x000000CC
/*
* Fields in PADS_REFCLK_CFG*. Those registers form an array of 16-bit
* entries, one entry per PCIe port. These field definitions and desired
* values aren't in the TRM, but do come from NVIDIA.
*/
#define PADS_REFCLK_CFG_TERM_SHIFT 2 /* 6:2 */
#define PADS_REFCLK_CFG_E_TERM_SHIFT 7
#define PADS_REFCLK_CFG_PREDI_SHIFT 8 /* 11:8 */
#define PADS_REFCLK_CFG_DRVI_SHIFT 12 /* 15:12 */
/* Default value provided by HW engineering is 0xfa5c */
#define PADS_REFCLK_CFG_VALUE \
( \
(0x17 << PADS_REFCLK_CFG_TERM_SHIFT) | \
(0 << PADS_REFCLK_CFG_E_TERM_SHIFT) | \
(0xa << PADS_REFCLK_CFG_PREDI_SHIFT) | \
(0xf << PADS_REFCLK_CFG_DRVI_SHIFT) \
)
/* used to differentiate between Tegra SoC generations */
struct tegra_pcie_soc_data {
unsigned int num_ports;
unsigned int msi_base_shift;
u32 pads_pll_ctl;
u32 tx_ref_sel;
bool has_pex_clkreq_en;
bool has_pex_bias_ctrl;
bool has_intr_prsnt_sense;
bool has_avdd_supply;
bool has_cml_clk;
bool has_gen2;
};
struct tegra_pcie {
struct device_d *dev;
struct pci_controller pci;
void __iomem *pads;
void __iomem *afi;
void __iomem *cs;
struct list_head buses;
struct resource io;
struct resource mem;
struct resource prefetch;
struct resource busn;
struct resource *cs_res;
struct clk *pex_clk;
struct clk *afi_clk;
struct clk *pll_e;
struct clk *cml_clk;
struct reset_control *pex_rst;
struct reset_control *afi_rst;
struct reset_control *pcie_xrst;
struct phy *phy;
struct list_head ports;
unsigned int num_ports;
u32 xbar_config;
struct regulator *pex_clk_supply;
struct regulator *vdd_supply;
struct regulator *avdd_supply;
const struct tegra_pcie_soc_data *soc_data;
};
struct tegra_pcie_port {
struct tegra_pcie *pcie;
struct list_head list;
struct resource regs;
void __iomem *base;
unsigned int index;
unsigned int lanes;
};
static inline struct tegra_pcie *host_to_pcie(struct pci_controller *host)
{
return container_of(host, struct tegra_pcie, pci);
}
static inline void afi_writel(struct tegra_pcie *pcie, u32 value,
unsigned long offset)
{
writel(value, pcie->afi + offset);
}
static inline u32 afi_readl(struct tegra_pcie *pcie, unsigned long offset)
{
return readl(pcie->afi + offset);
}
static inline void pads_writel(struct tegra_pcie *pcie, u32 value,
unsigned long offset)
{
writel(value, pcie->pads + offset);
}
static inline u32 pads_readl(struct tegra_pcie *pcie, unsigned long offset)
{
return readl(pcie->pads + offset);
}
static void __iomem *tegra_pcie_conf_address(struct pci_bus *bus,
unsigned int devfn,
int where)
{
struct tegra_pcie *pcie = host_to_pcie(bus->host);
void __iomem *addr = NULL;
if (bus->number == 0) {
unsigned int slot = PCI_SLOT(devfn);
struct tegra_pcie_port *port;
list_for_each_entry(port, &pcie->ports, list) {
if (port->index + 1 == slot) {
addr = (void __force __iomem *)
port->regs.start + (where & ~3);
break;
}
}
} else {
addr = pcie->cs;
addr += ((where & 0xf00) << 16) | (bus->number << 16) |
(PCI_SLOT(devfn) << 11) | (PCI_FUNC(devfn) << 8) |
(where & 0xfc);
}
return addr;
}
static int tegra_pcie_read_conf(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *value)
{
void __iomem *addr;
addr = tegra_pcie_conf_address(bus, devfn, where);
if (!addr) {
*value = 0xffffffff;
return PCIBIOS_DEVICE_NOT_FOUND;
}
*value = readl(addr);
if (size == 1)
*value = (*value >> (8 * (where & 3))) & 0xff;
else if (size == 2)
*value = (*value >> (8 * (where & 3))) & 0xffff;
return PCIBIOS_SUCCESSFUL;
}
static int tegra_pcie_write_conf(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 value)
{
void __iomem *addr;
u32 mask, tmp;
addr = tegra_pcie_conf_address(bus, devfn, where);
if (!addr)
return PCIBIOS_DEVICE_NOT_FOUND;
if (size == 4) {
writel(value, addr);
return PCIBIOS_SUCCESSFUL;
}
if (size == 2)
mask = ~(0xffff << ((where & 0x3) * 8));
else if (size == 1)
mask = ~(0xff << ((where & 0x3) * 8));
else
return PCIBIOS_BAD_REGISTER_NUMBER;
tmp = readl(addr) & mask;
tmp |= value << ((where & 0x3) * 8);
writel(tmp, addr);
return PCIBIOS_SUCCESSFUL;
}
static int tegra_pcie_res_start(struct pci_bus *bus, resource_size_t res_addr)
{
return res_addr;
}
static struct pci_ops tegra_pcie_ops = {
.read = tegra_pcie_read_conf,
.write = tegra_pcie_write_conf,
.res_start = tegra_pcie_res_start,
};
static unsigned long tegra_pcie_port_get_pex_ctrl(struct tegra_pcie_port *port)
{
unsigned long ret = 0;
switch (port->index) {
case 0:
ret = AFI_PEX0_CTRL;
break;
case 1:
ret = AFI_PEX1_CTRL;
break;
case 2:
ret = AFI_PEX2_CTRL;
break;
}
return ret;
}
static void tegra_pcie_port_reset(struct tegra_pcie_port *port)
{
unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
unsigned long value;
/* pulse reset signal */
value = afi_readl(port->pcie, ctrl);
value &= ~AFI_PEX_CTRL_RST;
afi_writel(port->pcie, value, ctrl);
mdelay(1);
value = afi_readl(port->pcie, ctrl);
value |= AFI_PEX_CTRL_RST;
afi_writel(port->pcie, value, ctrl);
}
static void tegra_pcie_port_enable(struct tegra_pcie_port *port)
{
const struct tegra_pcie_soc_data *soc = port->pcie->soc_data;
unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
unsigned long value;
/* enable reference clock */
value = afi_readl(port->pcie, ctrl);
value |= AFI_PEX_CTRL_REFCLK_EN;
if (soc->has_pex_clkreq_en)
value |= AFI_PEX_CTRL_CLKREQ_EN;
value |= AFI_PEX_CTRL_OVERRIDE_EN;
afi_writel(port->pcie, value, ctrl);
tegra_pcie_port_reset(port);
}
static void tegra_pcie_port_disable(struct tegra_pcie_port *port)
{
unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port);
unsigned long value;
/* assert port reset */
value = afi_readl(port->pcie, ctrl);
value &= ~AFI_PEX_CTRL_RST;
afi_writel(port->pcie, value, ctrl);
/* disable reference clock */
value = afi_readl(port->pcie, ctrl);
value &= ~AFI_PEX_CTRL_REFCLK_EN;
afi_writel(port->pcie, value, ctrl);
}
static void tegra_pcie_port_free(struct tegra_pcie_port *port)
{
list_del(&port->list);
kfree(port);
}
#if 0
static void tegra_pcie_fixup_bridge(struct pci_dev *dev)
{
u16 reg;
if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
pci_read_config_word(dev, PCI_COMMAND, &reg);
reg |= (PCI_COMMAND_IO | PCI_COMMAND_MEMORY |
PCI_COMMAND_MASTER | PCI_COMMAND_SERR);
pci_write_config_word(dev, PCI_COMMAND, reg);
}
}
DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, tegra_pcie_fixup_bridge);
/* Tegra PCIE root complex wrongly reports device class */
static void tegra_pcie_fixup_class(struct pci_dev *dev)
{
dev->class = PCI_CLASS_BRIDGE_PCI << 8;
}
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf0, tegra_pcie_fixup_class);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf1, tegra_pcie_fixup_class);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0e1c, tegra_pcie_fixup_class);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0e1d, tegra_pcie_fixup_class);
/* Tegra PCIE requires relaxed ordering */
static void tegra_pcie_relax_enable(struct pci_dev *dev)
{
pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
}
DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, tegra_pcie_relax_enable);
#endif
/*
* FPCI map is as follows:
* - 0xfdfc000000: I/O space
* - 0xfdfe000000: type 0 configuration space
* - 0xfdff000000: type 1 configuration space
* - 0xfe00000000: type 0 extended configuration space
* - 0xfe10000000: type 1 extended configuration space
*/
static void tegra_pcie_setup_translations(struct tegra_pcie *pcie)
{
u32 fpci_bar, size, axi_address;
/* Bar 0: type 1 extended configuration space */
fpci_bar = 0xfe100000;
size = resource_size(pcie->cs_res);
axi_address = pcie->cs_res->start;
afi_writel(pcie, axi_address, AFI_AXI_BAR0_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR0_SZ);
afi_writel(pcie, fpci_bar, AFI_FPCI_BAR0);
/* Bar 1: downstream IO bar */
fpci_bar = 0xfdfc0000;
size = resource_size(&pcie->io);
axi_address = pcie->io.start;
afi_writel(pcie, axi_address, AFI_AXI_BAR1_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR1_SZ);
afi_writel(pcie, fpci_bar, AFI_FPCI_BAR1);
/* Bar 2: prefetchable memory BAR */
fpci_bar = (((pcie->prefetch.start >> 12) & 0x0fffffff) << 4) | 0x1;
size = resource_size(&pcie->prefetch);
axi_address = pcie->prefetch.start;
afi_writel(pcie, axi_address, AFI_AXI_BAR2_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR2_SZ);
afi_writel(pcie, fpci_bar, AFI_FPCI_BAR2);
/* Bar 3: non prefetchable memory BAR */
fpci_bar = (((pcie->mem.start >> 12) & 0x0fffffff) << 4) | 0x1;
size = resource_size(&pcie->mem);
axi_address = pcie->mem.start;
afi_writel(pcie, axi_address, AFI_AXI_BAR3_START);
afi_writel(pcie, size >> 12, AFI_AXI_BAR3_SZ);
afi_writel(pcie, fpci_bar, AFI_FPCI_BAR3);
/* NULL out the remaining BARs as they are not used */
afi_writel(pcie, 0, AFI_AXI_BAR4_START);
afi_writel(pcie, 0, AFI_AXI_BAR4_SZ);
afi_writel(pcie, 0, AFI_FPCI_BAR4);
afi_writel(pcie, 0, AFI_AXI_BAR5_START);
afi_writel(pcie, 0, AFI_AXI_BAR5_SZ);
afi_writel(pcie, 0, AFI_FPCI_BAR5);
/* map all upstream transactions as uncached */
/* FIXME: is 0 ok for BAR0 start ??? */
afi_writel(pcie, 0, AFI_CACHE_BAR0_ST);
afi_writel(pcie, 0, AFI_CACHE_BAR0_SZ);
afi_writel(pcie, 0, AFI_CACHE_BAR1_ST);
afi_writel(pcie, 0, AFI_CACHE_BAR1_SZ);
/* MSI translations are setup only when needed */
afi_writel(pcie, 0, AFI_MSI_FPCI_BAR_ST);
afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
afi_writel(pcie, 0, AFI_MSI_AXI_BAR_ST);
afi_writel(pcie, 0, AFI_MSI_BAR_SZ);
}
static int tegra_pcie_phy_enable(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc_data *soc = pcie->soc_data;
u32 value;
/* initialize internal PHY, enable up to 16 PCIE lanes */
pads_writel(pcie, 0x0, PADS_CTL_SEL);
/* override IDDQ to 1 on all 4 lanes */
value = pads_readl(pcie, PADS_CTL);
value |= PADS_CTL_IDDQ_1L;
pads_writel(pcie, value, PADS_CTL);
/*
* Set up PHY PLL inputs select PLLE output as refclock,
* set TX ref sel to div10 (not div5).
*/
value = pads_readl(pcie, soc->pads_pll_ctl);
value &= ~(PADS_PLL_CTL_REFCLK_MASK | PADS_PLL_CTL_TXCLKREF_MASK);
value |= PADS_PLL_CTL_REFCLK_INTERNAL_CML | soc->tx_ref_sel;
pads_writel(pcie, value, soc->pads_pll_ctl);
/* reset PLL */
value = pads_readl(pcie, soc->pads_pll_ctl);
value &= ~PADS_PLL_CTL_RST_B4SM;
pads_writel(pcie, value, soc->pads_pll_ctl);
udelay(20);
/* take PLL out of reset */
value = pads_readl(pcie, soc->pads_pll_ctl);
value |= PADS_PLL_CTL_RST_B4SM;
pads_writel(pcie, value, soc->pads_pll_ctl);
/* Configure the reference clock driver */
value = PADS_REFCLK_CFG_VALUE | (PADS_REFCLK_CFG_VALUE << 16);
pads_writel(pcie, value, PADS_REFCLK_CFG0);
if (soc->num_ports > 2)
pads_writel(pcie, PADS_REFCLK_CFG_VALUE, PADS_REFCLK_CFG1);
/* wait for the PLL to lock */
if (wait_on_timeout(300 * MSECOND,
(pads_readl(pcie, soc->pads_pll_ctl) & PADS_PLL_CTL_LOCKDET))) {
pr_err("Tegra PCIe error: timeout waiting for PLL\n");
return -EBUSY;
}
/* turn off IDDQ override */
value = pads_readl(pcie, PADS_CTL);
value &= ~PADS_CTL_IDDQ_1L;
pads_writel(pcie, value, PADS_CTL);
/* enable TX/RX data */
value = pads_readl(pcie, PADS_CTL);
value |= PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L;
pads_writel(pcie, value, PADS_CTL);
return 0;
}
static int tegra_pcie_enable_controller(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc_data *soc = pcie->soc_data;
struct tegra_pcie_port *port;
unsigned long value;
int err;
/* enable PLL power down */
if (pcie->phy) {
value = afi_readl(pcie, AFI_PLLE_CONTROL);
value &= ~AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL;
value |= AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN;
afi_writel(pcie, value, AFI_PLLE_CONTROL);
}
/* power down PCIe slot clock bias pad */
if (soc->has_pex_bias_ctrl)
afi_writel(pcie, 0, AFI_PEXBIAS_CTRL_0);
/* configure mode and disable all ports */
value = afi_readl(pcie, AFI_PCIE_CONFIG);
value &= ~AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK;
value |= AFI_PCIE_CONFIG_PCIE_DISABLE_ALL | pcie->xbar_config;
list_for_each_entry(port, &pcie->ports, list)
value &= ~AFI_PCIE_CONFIG_PCIE_DISABLE(port->index);
afi_writel(pcie, value, AFI_PCIE_CONFIG);
if (soc->has_gen2) {
value = afi_readl(pcie, AFI_FUSE);
value &= ~AFI_FUSE_PCIE_T0_GEN2_DIS;
afi_writel(pcie, value, AFI_FUSE);
} else {
value = afi_readl(pcie, AFI_FUSE);
value |= AFI_FUSE_PCIE_T0_GEN2_DIS;
afi_writel(pcie, value, AFI_FUSE);
}
if (!pcie->phy)
err = tegra_pcie_phy_enable(pcie);
else
err = phy_power_on(pcie->phy);
/* take the PCIe interface module out of reset */
reset_control_deassert(pcie->pcie_xrst);
/* finally enable PCIe */
value = afi_readl(pcie, AFI_CONFIGURATION);
value |= AFI_CONFIGURATION_EN_FPCI;
afi_writel(pcie, value, AFI_CONFIGURATION);
value = AFI_INTR_EN_INI_SLVERR | AFI_INTR_EN_INI_DECERR |
AFI_INTR_EN_TGT_SLVERR | AFI_INTR_EN_TGT_DECERR |
AFI_INTR_EN_TGT_WRERR | AFI_INTR_EN_DFPCI_DECERR;
if (soc->has_intr_prsnt_sense)
value |= AFI_INTR_EN_PRSNT_SENSE;
afi_writel(pcie, value, AFI_AFI_INTR_ENABLE);
afi_writel(pcie, 0xffffffff, AFI_SM_INTR_ENABLE);
/* don't enable MSI for now, only when needed */
afi_writel(pcie, AFI_INTR_MASK_INT_MASK, AFI_INTR_MASK);
/* disable all exceptions */
afi_writel(pcie, 0, AFI_FPCI_ERROR_MASKS);
return 0;
}
static void tegra_pcie_power_off(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc_data *soc = pcie->soc_data;
int err;
/* TODO: disable and unprepare clocks? */
err = phy_power_off(pcie->phy);
if (err < 0)
dev_warn(pcie->dev, "failed to power off PHY: %d\n", err);
reset_control_assert(pcie->pcie_xrst);
reset_control_assert(pcie->afi_rst);
reset_control_assert(pcie->pex_rst);
tegra_powergate_power_off(TEGRA_POWERGATE_PCIE);
if (soc->has_avdd_supply) {
err = regulator_disable(pcie->avdd_supply);
if (err < 0)
dev_warn(pcie->dev,
"failed to disable AVDD regulator: %d\n",
err);
}
err = regulator_disable(pcie->pex_clk_supply);
if (err < 0)
dev_warn(pcie->dev, "failed to disable pex-clk regulator: %d\n",
err);
err = regulator_disable(pcie->vdd_supply);
if (err < 0)
dev_warn(pcie->dev, "failed to disable VDD regulator: %d\n",
err);
}
static int tegra_pcie_power_on(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc_data *soc = pcie->soc_data;
int err;
reset_control_assert(pcie->pcie_xrst);
reset_control_assert(pcie->afi_rst);
reset_control_assert(pcie->pex_rst);
tegra_powergate_power_off(TEGRA_POWERGATE_PCIE);
/* enable regulators */
err = regulator_enable(pcie->vdd_supply);
if (err < 0) {
dev_err(pcie->dev, "failed to enable VDD regulator: %d\n", err);
return err;
}
err = regulator_enable(pcie->pex_clk_supply);
if (err < 0) {
dev_err(pcie->dev, "failed to enable pex-clk regulator: %d\n",
err);
return err;
}
if (soc->has_avdd_supply) {
err = regulator_enable(pcie->avdd_supply);
if (err < 0) {
dev_err(pcie->dev,
"failed to enable AVDD regulator: %d\n",
err);
return err;
}
}
err = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_PCIE,
pcie->pex_clk,
pcie->pex_rst);
if (err) {
dev_err(pcie->dev, "powerup sequence failed: %d\n", err);
return err;
}
reset_control_deassert(pcie->afi_rst);
err = clk_enable(pcie->afi_clk);
if (err < 0) {
dev_err(pcie->dev, "failed to enable AFI clock: %d\n", err);
return err;
}
if (soc->has_cml_clk) {
err = clk_enable(pcie->cml_clk);
if (err < 0) {
dev_err(pcie->dev, "failed to enable CML clock: %d\n",
err);
return err;
}
}
err = clk_enable(pcie->pll_e);
if (err < 0) {
dev_err(pcie->dev, "failed to enable PLLE clock: %d\n", err);
return err;
}
return 0;
}
static int tegra_pcie_clocks_get(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc_data *soc = pcie->soc_data;
pcie->pex_clk = clk_get(pcie->dev, "pex");
if (IS_ERR(pcie->pex_clk))
return PTR_ERR(pcie->pex_clk);
pcie->afi_clk = clk_get(pcie->dev, "afi");
if (IS_ERR(pcie->afi_clk))
return PTR_ERR(pcie->afi_clk);
pcie->pll_e = clk_get(pcie->dev, "pll_e");
if (IS_ERR(pcie->pll_e))
return PTR_ERR(pcie->pll_e);
if (soc->has_cml_clk) {
pcie->cml_clk = clk_get(pcie->dev, "cml");
if (IS_ERR(pcie->cml_clk))
return PTR_ERR(pcie->cml_clk);
}
return 0;
}
static int tegra_pcie_resets_get(struct tegra_pcie *pcie)
{
pcie->pex_rst = reset_control_get(pcie->dev, "pex");
if (IS_ERR(pcie->pex_rst))
return PTR_ERR(pcie->pex_rst);
pcie->afi_rst = reset_control_get(pcie->dev, "afi");
if (IS_ERR(pcie->afi_rst))
return PTR_ERR(pcie->afi_rst);
pcie->pcie_xrst = reset_control_get(pcie->dev, "pcie_x");
if (IS_ERR(pcie->pcie_xrst))
return PTR_ERR(pcie->pcie_xrst);
return 0;
}
static int tegra_pcie_get_resources(struct tegra_pcie *pcie)
{
struct device_d *dev = pcie->dev;
int err;
err = tegra_pcie_clocks_get(pcie);
if (err) {
dev_err(dev, "failed to get clocks: %d\n", err);
return err;
}
err = tegra_pcie_resets_get(pcie);
if (err) {
dev_err(dev, "failed to get resets: %d\n", err);
return err;
}
pcie->phy = phy_optional_get(pcie->dev, "pcie");
if (IS_ERR(pcie->phy)) {
err = PTR_ERR(pcie->phy);
dev_err(dev, "failed to get PHY: %d\n", err);
return err;
}
err = phy_init(pcie->phy);
if (err < 0) {
dev_err(dev, "failed to initialize PHY: %d\n", err);
return err;
}
err = tegra_pcie_power_on(pcie);
if (err) {
dev_err(dev, "failed to power up: %d\n", err);
return err;
}
pcie->pads = dev_request_mem_region_by_name(dev, "pads");
if (IS_ERR(pcie->pads)) {
err = PTR_ERR(pcie->pads);
goto poweroff;
}
pcie->afi = dev_request_mem_region_by_name(dev, "afi");
if (IS_ERR(pcie->afi)) {
err = PTR_ERR(pcie->afi);
goto poweroff;
}
pcie->cs_res = dev_get_resource_by_name(dev, IORESOURCE_MEM, "cs");
pcie->cs = dev_request_mem_region_by_name(dev, "cs");
if (IS_ERR(pcie->cs)) {
err = PTR_ERR(pcie->cs);
goto poweroff;
}
return 0;
poweroff:
tegra_pcie_power_off(pcie);
return err;
}
static int tegra_pcie_put_resources(struct tegra_pcie *pcie)
{
int err;
tegra_pcie_power_off(pcie);
err = phy_exit(pcie->phy);
if (err < 0)
dev_err(pcie->dev, "failed to teardown PHY: %d\n", err);
return 0;
}
static int tegra_pcie_get_xbar_config(struct tegra_pcie *pcie, u32 lanes,
u32 *xbar)
{
struct device_node *np = pcie->dev->device_node;
if (of_device_is_compatible(np, "nvidia,tegra124-pcie")) {
switch (lanes) {
case 0x0000104:
dev_info(pcie->dev, "4x1, 1x1 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1;
return 0;
case 0x0000102:
dev_info(pcie->dev, "2x1, 1x1 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1;
return 0;
}
} else if (of_device_is_compatible(np, "nvidia,tegra30-pcie")) {
switch (lanes) {
case 0x00000204:
dev_info(pcie->dev, "4x1, 2x1 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420;
return 0;
case 0x00020202:
dev_info(pcie->dev, "2x3 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222;
return 0;
case 0x00010104:
dev_info(pcie->dev, "4x1, 1x2 configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411;
return 0;
}
} else if (of_device_is_compatible(np, "nvidia,tegra20-pcie")) {
switch (lanes) {
case 0x00000004:
dev_info(pcie->dev, "single-mode configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE;
return 0;
case 0x00000202:
dev_info(pcie->dev, "dual-mode configuration\n");
*xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL;
return 0;
}
}
return -EINVAL;
}
static int tegra_pcie_parse_dt(struct tegra_pcie *pcie)
{
const struct tegra_pcie_soc_data *soc = pcie->soc_data;
struct device_node *np = pcie->dev->device_node, *port;
struct of_pci_range_parser parser;
struct of_pci_range range;
struct resource *rp_res;
struct resource res;
u32 lanes = 0;
int err;
if (of_pci_range_parser_init(&parser, np)) {
dev_err(pcie->dev, "missing \"ranges\" property\n");
return -EINVAL;
}
pcie->vdd_supply = regulator_get(pcie->dev, "vdd");
if (IS_ERR(pcie->vdd_supply))
return PTR_ERR(pcie->vdd_supply);
pcie->pex_clk_supply = regulator_get(pcie->dev, "pex-clk");
if (IS_ERR(pcie->pex_clk_supply))
return PTR_ERR(pcie->pex_clk_supply);
if (soc->has_avdd_supply) {
pcie->avdd_supply = regulator_get(pcie->dev, "avdd");
if (IS_ERR(pcie->avdd_supply))
return PTR_ERR(pcie->avdd_supply);
}
for_each_of_pci_range(&parser, &range) {
of_pci_range_to_resource(&range, np, &res);
switch (res.flags & IORESOURCE_TYPE_BITS) {
case IORESOURCE_IO:
memcpy(&pcie->io, &res, sizeof(res));
pcie->io.name = "I/O";
break;
case IORESOURCE_MEM:
if (res.flags & IORESOURCE_PREFETCH) {
memcpy(&pcie->prefetch, &res, sizeof(res));
pcie->prefetch.name = "PREFETCH";
} else {
memcpy(&pcie->mem, &res, sizeof(res));
pcie->mem.name = "MEM";
}
break;
}
}
#if 0
err = of_pci_parse_bus_range(np, &pcie->busn);
if (err < 0) {
dev_err(pcie->dev, "failed to parse ranges property: %d\n",
err);
pcie->busn.name = np->name;
pcie->busn.start = 0;
pcie->busn.end = 0xff;
pcie->busn.flags = IORESOURCE_BUS;
}
#endif
/* parse root ports */
for_each_child_of_node(np, port) {
struct tegra_pcie_port *rp;
unsigned int index;
u32 value;
err = of_pci_get_devfn(port);
if (err < 0) {
dev_err(pcie->dev, "failed to parse address: %d\n",
err);
return err;
}
index = PCI_SLOT(err);
if (index < 1 || index > soc->num_ports) {
dev_err(pcie->dev, "invalid port number: %d\n", index);
return -EINVAL;
}
index--;
err = of_property_read_u32(port, "nvidia,num-lanes", &value);
if (err < 0) {
dev_err(pcie->dev, "failed to parse # of lanes: %d\n",
err);
return err;
}
if (value > 16) {
dev_err(pcie->dev, "invalid # of lanes: %u\n", value);
return -EINVAL;
}
lanes |= value << (index << 3);
if (!of_device_is_available(port))
continue;
rp = kzalloc(sizeof(*rp), GFP_KERNEL);
if (!rp)
return -ENOMEM;
err = of_address_to_resource(port, 0, &rp->regs);
if (err < 0) {
dev_err(pcie->dev, "failed to parse address: %d\n",
err);
return err;
}
/*
* if the port address is inside the NULL page we alias this
* range at +1MB and fix up the resource, otherwise just request
*/
if (!(rp->regs.start & 0xfffff000)) {
rp_res = request_iomem_region(dev_name(pcie->dev),
rp->regs.start + SZ_1M,
rp->regs.end + SZ_1M);
if (!rp_res)
return -ENOMEM;
map_io_sections(rp->regs.start,
(void *)rp_res->start, SZ_1M);
rp->regs.start = rp_res->start;
rp->regs.end = rp_res->end;
} else {
rp_res = request_iomem_region(dev_name(pcie->dev),
rp->regs.start, rp->regs.end);
if (!rp_res)
return -ENOMEM;
}
INIT_LIST_HEAD(&rp->list);
rp->index = index;
rp->lanes = value;
rp->pcie = pcie;
rp->base = (void __force __iomem *)rp->regs.start;
if (IS_ERR(rp->base))
return PTR_ERR(rp->base);
list_add_tail(&rp->list, &pcie->ports);
}
err = tegra_pcie_get_xbar_config(pcie, lanes, &pcie->xbar_config);
if (err < 0) {
dev_err(pcie->dev, "invalid lane configuration\n");
return err;
}
return 0;
}
/*
* FIXME: If there are no PCIe cards attached, then calling this function
* can result in the increase of the bootup time as there are big timeout
* loops.
*/
#define TEGRA_PCIE_LINKUP_TIMEOUT 200 /* up to 1.2 seconds */
static bool tegra_pcie_port_check_link(struct tegra_pcie_port *port)
{
unsigned int timeout;
unsigned int retries = 2;
u32 value;
/* override presence detection */
value = readl(port->base + RP_PRIV_MISC);
value &= ~RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT;
value |= RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT;
writel(value, port->base + RP_PRIV_MISC);
do {
timeout = wait_on_timeout(150 * MSECOND,
readl(port->regs.start + RP_VEND_XP) & RP_VEND_XP_DL_UP);
if (timeout) {
dev_dbg(port->pcie->dev, "link %u down, retrying\n",
port->index);
goto retry;
}
timeout = wait_on_timeout(200 * MSECOND,
readl(port->regs.start + RP_LINK_CONTROL_STATUS) &
RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE);
if (!timeout)
return true;
retry:
tegra_pcie_port_reset(port);
} while (--retries);
return false;
}
static int tegra_pcie_enable(struct tegra_pcie *pcie)
{
struct tegra_pcie_port *port, *tmp;
list_for_each_entry_safe(port, tmp, &pcie->ports, list) {
dev_dbg(pcie->dev, "probing port %u, using %u lanes\n",
port->index, port->lanes);
tegra_pcie_port_enable(port);
if (tegra_pcie_port_check_link(port))
continue;
dev_dbg(pcie->dev, "link %u down, ignoring\n", port->index);
tegra_pcie_port_disable(port);
tegra_pcie_port_free(port);
}
pcie->pci.parent = pcie->dev;
pcie->pci.pci_ops = &tegra_pcie_ops;
pcie->pci.mem_resource = &pcie->mem;
pcie->pci.mem_pref_resource = &pcie->prefetch;
pcie->pci.io_resource = &pcie->io;
register_pci_controller(&pcie->pci);
return 0;
}
static const struct tegra_pcie_soc_data tegra20_pcie_data = {
.num_ports = 2,
.msi_base_shift = 0,
.pads_pll_ctl = PADS_PLL_CTL_TEGRA20,
.tx_ref_sel = PADS_PLL_CTL_TXCLKREF_DIV10,
.has_pex_clkreq_en = false,
.has_pex_bias_ctrl = false,
.has_intr_prsnt_sense = false,
.has_avdd_supply = false,
.has_cml_clk = false,
.has_gen2 = false,
};
static const struct tegra_pcie_soc_data tegra30_pcie_data = {
.num_ports = 3,
.msi_base_shift = 8,
.pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
.tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
.has_pex_clkreq_en = true,
.has_pex_bias_ctrl = true,
.has_intr_prsnt_sense = true,
.has_avdd_supply = true,
.has_cml_clk = true,
.has_gen2 = false,
};
static const struct tegra_pcie_soc_data tegra124_pcie_data = {
.num_ports = 2,
.msi_base_shift = 8,
.pads_pll_ctl = PADS_PLL_CTL_TEGRA30,
.tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN,
.has_pex_clkreq_en = true,
.has_pex_bias_ctrl = true,
.has_intr_prsnt_sense = true,
.has_cml_clk = true,
.has_gen2 = true,
};
static __maybe_unused struct of_device_id tegra_pcie_of_match[] = {
{
.compatible = "nvidia,tegra124-pcie",
.data = &tegra124_pcie_data
}, {
.compatible = "nvidia,tegra30-pcie",
.data = &tegra30_pcie_data
}, {
.compatible = "nvidia,tegra20-pcie",
.data = &tegra20_pcie_data
}, {
/* sentinel */
},
};
static int tegra_pcie_probe(struct device_d *dev)
{
struct tegra_pcie *pcie;
int err;
pcie = kzalloc(sizeof(*pcie), GFP_KERNEL);
if (!pcie)
return -ENOMEM;
INIT_LIST_HEAD(&pcie->buses);
INIT_LIST_HEAD(&pcie->ports);
dev_get_drvdata(dev, (const void **)&pcie->soc_data);
pcie->dev = dev;
err = tegra_pcie_parse_dt(pcie);
if (err < 0) {
printk("parse DT failed\n");
return err;
}
err = tegra_pcie_get_resources(pcie);
if (err < 0) {
dev_err(dev, "failed to request resources: %d\n", err);
return err;
}
err = tegra_pcie_enable_controller(pcie);
if (err)
goto put_resources;
/* setup the AFI address translations */
tegra_pcie_setup_translations(pcie);
err = tegra_pcie_enable(pcie);
if (err < 0) {
dev_err(dev, "failed to enable PCIe ports: %d\n", err);
goto put_resources;
}
return 0;
put_resources:
tegra_pcie_put_resources(pcie);
return err;
}
static struct driver_d tegra_pcie_driver = {
.name = "tegra-pcie",
.of_compatible = DRV_OF_COMPAT(tegra_pcie_of_match),
.probe = tegra_pcie_probe,
};
device_platform_driver(tegra_pcie_driver);