9
0
Fork 0
barebox/arch/ppc/ddr-8xxx/ddr3_dimm_params.c

194 lines
5.3 KiB
C

/*
* Copyright 2008-2012 Freescale Semiconductor, Inc.
* Dave Liu <daveliu@freescale.com>
*
* calculate the organization and timing parameter
* from ddr3 spd, please refer to the spec
* JEDEC standard No.21-C 4_01_02_11R18.pdf
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
#include <common.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
/*
* Calculate the Density of each Physical Rank.
* Returned size is in bytes.
*
* each rank size =
* sdram capacity(bit) / 8 * primary bus width / sdram width
*
* where: sdram capacity = spd byte4[3:0]
* primary bus width = spd byte8[2:0]
* sdram width = spd byte7[2:0]
*
* SPD byte4 - sdram density and banks
* bit[3:0] size(bit) size(byte)
* 0000 256Mb 32MB
* 0001 512Mb 64MB
* 0010 1Gb 128MB
* 0011 2Gb 256MB
* 0100 4Gb 512MB
* 0101 8Gb 1GB
* 0110 16Gb 2GB
*
* SPD byte8 - module memory bus width
* bit[2:0] primary bus width
* 000 8bits
* 001 16bits
* 010 32bits
* 011 64bits
*
* SPD byte7 - module organiztion
* bit[2:0] sdram device width
* 000 4bits
* 001 8bits
* 010 16bits
* 011 32bits
*/
static uint64_t compute_ranksize(const struct ddr3_spd_eeprom_s *spd)
{
uint64_t bsize;
int sdram_cap_bsize = 0, prim_bus_width = 0, sdram_width = 0;
if ((spd->density_banks & 0xf) < 7)
sdram_cap_bsize = (spd->density_banks & 0xf) + 28;
if ((spd->bus_width & 0x7) < 4)
prim_bus_width = (spd->bus_width & 0x7) + 3;
if ((spd->organization & 0x7) < 4)
sdram_width = (spd->organization & 0x7) + 2;
bsize = 1ULL << (sdram_cap_bsize - 3 + prim_bus_width - sdram_width);
return bsize;
}
/*
* compute_dimm_parameters for DDR3 SPD
*
* Compute DIMM parameters based upon the SPD information in spd.
* Writes the results to the dimm_params_s structure pointed by pdimm.
*
*/
uint32_t
compute_dimm_parameters(const generic_spd_eeprom_t *spdin,
struct dimm_params_s *pdimm)
{
const struct ddr3_spd_eeprom_s *spd = spdin;
uint32_t retval, mtb_ps;
int ftb_tmp;
if (spd->mem_type != SPD_MEMTYPE_DDR3)
goto error;
retval = ddr3_spd_checksum_pass(spd);
if (retval)
goto error;
memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
if ((spd->info_size_crc & 0xf) > 1)
memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
/* DIMM organization parameters */
pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1;
pdimm->rank_density = compute_ranksize(spd);
pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
pdimm->data_width = pdimm->primary_sdram_width + pdimm->ec_sdram_width;
pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7));
if ((spd->bus_width >> 3) & 0x3)
pdimm->ec_sdram_width = 8;
else
pdimm->ec_sdram_width = 0;
pdimm->device_width = 1 << ((spd->organization & 0x7) + 2);
/* These are the types defined by the JEDEC DDR3 SPD spec */
pdimm->mirrored_dimm = 0;
pdimm->registered_dimm = 0;
switch (spd->module_type & DDR3_SPD_MODULETYPE_MASK) {
case DDR3_SPD_MODULETYPE_UDIMM:
/* Unbuffered DIMMs */
if (spd->mod_section.unbuffered.addr_mapping & 0x1)
pdimm->mirrored_dimm = 1;
break;
default:
goto error;
}
/* SDRAM device parameters */
pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12;
pdimm->n_col_addr = (spd->addressing & 0x7) + 9;
pdimm->n_banks_per_sdram_device =
8 << ((spd->density_banks >> 4) & 0x7);
/*
* The SPD spec does not define an ECC bit. The DIMM is considered
* to have ECC capability if the extension bus exists.
*/
if (pdimm->ec_sdram_width)
pdimm->edc_config = 0x02;
else
pdimm->edc_config = 0x00;
/*
* The SPD spec does not define the burst length byte.
* but the DDR3 spec defines BL8 and BC4, on bit 3 and
* bit 2.
*/
pdimm->burst_lengths_bitmask = 0x0c;
pdimm->row_density = __ilog2(pdimm->rank_density);
mtb_ps = (spd->mtb_dividend * 1000) / spd->mtb_divisor;
pdimm->mtb_ps = mtb_ps;
ftb_tmp = spd->ftb_div & 0xf0;
pdimm->ftb_10th_ps = ((ftb_tmp >> 4) * 10) / ftb_tmp;
pdimm->tCKmin_X_ps = spd->tck_min * mtb_ps +
(spd->fine_tck_min * ftb_tmp) / 10;
pdimm->caslat_X = ((spd->caslat_msb << 8) | spd->caslat_lsb) << 4;
pdimm->taa_ps = spd->taa_min * mtb_ps +
(spd->fine_taa_min * ftb_tmp) / 10;
pdimm->tRCD_ps = spd->trcd_min * mtb_ps +
(spd->fine_trcd_min * ftb_tmp) / 10;
pdimm->tRP_ps = spd->trp_min * mtb_ps +
(spd->fine_trp_min * ftb_tmp) / 10;
pdimm->tRAS_ps = (((spd->tras_trc_ext & 0xf) << 8) | spd->tras_min_lsb)
* mtb_ps;
pdimm->tWR_ps = spd->twr_min * mtb_ps;
pdimm->tWTR_ps = spd->twtr_min * mtb_ps;
pdimm->tRFC_ps = ((spd->trfc_min_msb << 8) | spd->trfc_min_lsb)
* mtb_ps;
pdimm->tRRD_ps = spd->trrd_min * mtb_ps;
pdimm->tRC_ps = (((spd->tras_trc_ext & 0xf0) << 4) | spd->trc_min_lsb);
pdimm->tRC_ps *= mtb_ps;
pdimm->tRC_ps += (spd->fine_trc_min * ftb_tmp) / 10;
pdimm->tRTP_ps = spd->trtp_min * mtb_ps;
/*
* Average periodic refresh interval
* tREFI = 7.8 us at normal temperature range
* = 3.9 us at ext temperature range
*/
pdimm->refresh_rate_ps = 7800000;
if ((spd->therm_ref_opt & 0x1) && !(spd->therm_ref_opt & 0x2)) {
pdimm->refresh_rate_ps = 3900000;
pdimm->extended_op_srt = 1;
}
pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min)
* mtb_ps;
return 0;
error:
return 1;
}