9
0
Fork 0
barebox/arch/ppc/ddr-8xxx/lc_common_dimm_params.c

215 lines
5.9 KiB
C

/*
* Copyright 2008-2012 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
#include <common.h>
#include <config.h>
#include <asm/fsl_ddr_sdram.h>
#include "ddr.h"
static unsigned int common_burst_length(
const struct dimm_params_s *dimm_params,
const unsigned int number_of_dimms)
{
unsigned int i, temp;
temp = 0xff;
for (i = 0; i < number_of_dimms; i++)
if (dimm_params[i].n_ranks)
temp &= dimm_params[i].burst_lengths_bitmask;
return temp;
}
/* Compute a CAS latency suitable for all DIMMs */
static unsigned int compute_lowest_caslat(
const struct dimm_params_s *dimm_params,
const unsigned int number_of_dimms)
{
uint32_t temp1, temp2, i, not_ok, lowest_good_caslat,
tCKmin_X_minus_1_ps, tCKmin_X_minus_2_ps;
const unsigned int mclk_ps = get_memory_clk_period_ps();
/*
* Step 1: find CAS latency common to all DIMMs using bitwise
* operation.
*/
temp1 = 0xFF;
for (i = 0; i < number_of_dimms; i++)
if (dimm_params[i].n_ranks) {
temp2 = 0;
temp2 |= 1 << dimm_params[i].caslat_X;
temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
/*
* FIXME: If there was no entry for X-2 (X-1) in
* the SPD, then caslat_X_minus_2
* (caslat_X_minus_1) contains either 255 or
* 0xFFFFFFFF because that's what the __ilog2
* function returns for an input of 0.
* On 32-bit PowerPC, left shift counts with bit
* 26 set (that the value of 255 or 0xFFFFFFFF
* will have), cause the destination register to
* be 0. That is why this works.
*/
temp1 &= temp2;
}
/*
* Step 2: check each common CAS latency against tCK of each
* DIMM's SPD.
*/
lowest_good_caslat = 0;
temp2 = 0;
while (temp1) {
not_ok = 0;
temp2 = __ilog2(temp1);
for (i = 0; i < number_of_dimms; i++) {
if (!dimm_params[i].n_ranks)
continue;
if (dimm_params[i].caslat_X == temp2) {
if (mclk_ps >= dimm_params[i].tCKmin_X_ps)
continue;
else
not_ok++;
}
if (dimm_params[i].caslat_X_minus_1 == temp2) {
tCKmin_X_minus_1_ps =
dimm_params[i].tCKmin_X_minus_1_ps;
if (mclk_ps >= tCKmin_X_minus_1_ps)
continue;
else
not_ok++;
}
if (dimm_params[i].caslat_X_minus_2 == temp2) {
tCKmin_X_minus_2_ps
= dimm_params[i].tCKmin_X_minus_2_ps;
if (mclk_ps >= tCKmin_X_minus_2_ps)
continue;
else
not_ok++;
}
}
if (!not_ok)
lowest_good_caslat = temp2;
temp1 &= ~(1 << temp2);
}
return lowest_good_caslat;
}
/*
* compute_lowest_common_dimm_parameters()
*
* Determine the worst-case DIMM timing parameters from the set of DIMMs
* whose parameters have been computed into the array pointed to
* by dimm_params.
*/
unsigned int
compute_lowest_common_dimm_parameters(const struct dimm_params_s *dimm,
struct common_timing_params_s *out,
const unsigned int number_of_dimms)
{
const uint32_t mclk_ps = get_memory_clk_period_ps();
uint32_t temp1, i;
struct common_timing_params_s tmp = {0};
tmp.tCKmax_ps = 0xFFFFFFFF;
temp1 = 0;
for (i = 0; i < number_of_dimms; i++) {
if (dimm[i].n_ranks == 0) {
temp1++;
continue;
}
/*
* Find minimum tCKmax_ps to find fastest slow speed,
* i.e., this is the slowest the whole system can go.
*/
tmp.tCKmax_ps = min(tmp.tCKmax_ps, dimm[i].tCKmax_ps);
/* Find maximum value to determine slowest speed, delay, etc */
tmp.tCKmin_X_ps = max(tmp.tCKmin_X_ps, dimm[i].tCKmin_X_ps);
tmp.tCKmax_max_ps = max(tmp.tCKmax_max_ps, dimm[i].tCKmax_ps);
tmp.tRCD_ps = max(tmp.tRCD_ps, dimm[i].tRCD_ps);
tmp.tRP_ps = max(tmp.tRP_ps, dimm[i].tRP_ps);
tmp.tRAS_ps = max(tmp.tRAS_ps, dimm[i].tRAS_ps);
tmp.tWR_ps = max(tmp.tWR_ps, dimm[i].tWR_ps);
tmp.tWTR_ps = max(tmp.tWTR_ps, dimm[i].tWTR_ps);
tmp.tRFC_ps = max(tmp.tRFC_ps, dimm[i].tRFC_ps);
tmp.tRRD_ps = max(tmp.tRRD_ps, dimm[i].tRRD_ps);
tmp.tRC_ps = max(tmp.tRC_ps, dimm[i].tRC_ps);
tmp.tIS_ps = max(tmp.tIS_ps, dimm[i].tIS_ps);
tmp.tIH_ps = max(tmp.tIH_ps, dimm[i].tIH_ps);
tmp.tDS_ps = max(tmp.tDS_ps, dimm[i].tDS_ps);
tmp.tDH_ps = max(tmp.tDH_ps, dimm[i].tDH_ps);
tmp.tRTP_ps = max(tmp.tRTP_ps, dimm[i].tRTP_ps);
tmp.tQHS_ps = max(tmp.tQHS_ps, dimm[i].tQHS_ps);
tmp.refresh_rate_ps = max(tmp.refresh_rate_ps,
dimm[i].refresh_rate_ps);
/* Find maximum tDQSQ_max_ps to find slowest timing. */
tmp.tDQSQ_max_ps = max(tmp.tDQSQ_max_ps, dimm[i].tDQSQ_max_ps);
}
tmp.ndimms_present = number_of_dimms - temp1;
if (temp1 == number_of_dimms)
return 0;
temp1 = common_burst_length(dimm, number_of_dimms);
tmp.all_DIMMs_burst_lengths_bitmask = temp1;
tmp.all_DIMMs_registered = 0;
tmp.lowest_common_SPD_caslat = compute_lowest_caslat(dimm,
number_of_dimms);
/*
* Compute a common 'de-rated' CAS latency.
*
* The strategy here is to find the *highest* de-rated cas latency
* with the assumption that all of the DIMMs will support a de-rated
* CAS latency higher than or equal to their lowest de-rated value.
*/
temp1 = 0;
for (i = 0; i < number_of_dimms; i++)
temp1 = max(temp1, dimm[i].caslat_lowest_derated);
tmp.highest_common_derated_caslat = temp1;
temp1 = 1;
for (i = 0; i < number_of_dimms; i++)
if (dimm[i].n_ranks &&
!(dimm[i].edc_config & EDC_ECC)) {
temp1 = 0;
break;
}
tmp.all_DIMMs_ECC_capable = temp1;
if (mclk_ps > tmp.tCKmax_max_ps)
return 1;
/*
* AL must be less or equal to tRCD. Typically, AL would
* be AL = tRCD - 1;
*
* When ODT read or write is enabled the sum of CAS latency +
* additive latency must be at least 3 cycles.
*
*/
if ((tmp.lowest_common_SPD_caslat < 4) && (picos_to_mclk(tmp.tRCD_ps) >
tmp.lowest_common_SPD_caslat))
tmp.additive_latency = picos_to_mclk(tmp.tRCD_ps) -
tmp.lowest_common_SPD_caslat;
memcpy(out, &tmp, sizeof(struct common_timing_params_s));
return 0;
}