9
0
Fork 0
barebox/drivers/nor/m25p80.c

829 lines
22 KiB
C

/*
* MTD SPI driver for ST M25Pxx (and similar) serial flash chips
*
* Author: Mike Lavender, mike@steroidmicros.com
* Copyright (c) 2005, Intec Automation Inc.
*
* Adapted to barebox : Franck JULLIEN <elec4fun@gmail.com>
* Copyright (c) 2011
*
* Some parts are based on lart.c by Abraham Van Der Merwe
*
* Cleaned up and generalized based on mtd_dataflash.c
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <common.h>
#include <init.h>
#include <driver.h>
#include <spi/spi.h>
#include <spi/flash.h>
#include <xfuncs.h>
#include <malloc.h>
#include <errno.h>
#include <linux/err.h>
#include <clock.h>
#include <linux/mtd/mtd.h>
#include <progress.h>
#include "m25p80.h"
/****************************************************************************/
/*
* Internal helper functions
*/
/*
* Read the status register, returning its value in the location
* Return the status register value.
* Returns negative if error occurred.
*/
static int read_sr(struct m25p *flash)
{
ssize_t retval;
u8 code = OPCODE_RDSR;
u8 val;
retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
if (retval < 0) {
dev_err(&flash->spi->dev, "error %d reading SR\n",
(int) retval);
return retval;
}
return val;
}
/*
* Write status register 1 byte
* Returns negative if error occurred.
*/
static int write_sr(struct m25p *flash, u8 val)
{
flash->command[0] = OPCODE_WRSR;
flash->command[1] = val;
return spi_write(flash->spi, flash->command, 2);
}
/*
* Set write enable latch with Write Enable command.
* Returns negative if error occurred.
*/
static inline int write_enable(struct m25p *flash)
{
u8 code = OPCODE_WREN;
return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
/*
* Send write disble instruction to the chip.
*/
static inline int write_disable(struct m25p *flash)
{
u8 code = OPCODE_WRDI;
return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
/*
* Enable/disable 4-byte addressing mode.
*/
static inline int set_4byte(struct m25p *flash, int enable)
{
u8 code = enable ? OPCODE_EN4B : OPCODE_EX4B;
return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
/*
* Service routine to read status register until ready, or timeout occurs.
* Returns non-zero if error.
*/
static int wait_till_ready(struct m25p *flash)
{
int sr;
uint64_t timer_start;
timer_start = get_time_ns();
do {
if ((sr = read_sr(flash)) < 0)
break;
else if (!(sr & SR_WIP))
return 0;
} while (!(is_timeout(timer_start, MAX_READY_WAIT * SECOND)));
return -ETIMEDOUT;
}
/*
* Erase the whole flash memory
*
* Returns 0 if successful, non-zero otherwise.
*/
static int erase_chip(struct m25p *flash)
{
dev_dbg(&flash->spi->dev, "%s %lldKiB\n",
__func__, (long long)(flash->size >> 10));
/* Wait until finished previous write command. */
if (wait_till_ready(flash))
return -ETIMEDOUT;
/* Send write enable, then erase commands. */
write_enable(flash);
/* Set up command buffer. */
flash->command[0] = OPCODE_CHIP_ERASE;
spi_write(flash->spi, flash->command, 1);
return 0;
}
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
{
/* opcode is in cmd[0] */
cmd[1] = addr >> (flash->addr_width * 8 - 8);
cmd[2] = addr >> (flash->addr_width * 8 - 16);
cmd[3] = addr >> (flash->addr_width * 8 - 24);
cmd[4] = addr >> (flash->addr_width * 8 - 32);
}
static int m25p_cmdsz(struct m25p *flash)
{
return 1 + flash->addr_width;
}
/*
* Erase one sector of flash memory at offset ``offset'' which is any
* address within the sector which should be erased.
*
* Returns 0 if successful, non-zero otherwise.
*/
static int erase_sector(struct m25p *flash, u32 offset)
{
dev_dbg(&flash->spi->dev, "%s %dKiB at 0x%08x\n",
__func__, flash->erasesize / 1024, offset);
/* Wait until finished previous write command. */
if (wait_till_ready(flash))
return -ETIMEDOUT;
/* Send write enable, then erase commands. */
write_enable(flash);
/* Set up command buffer. */
flash->command[0] = flash->erase_opcode;
m25p_addr2cmd(flash, offset, flash->command);
spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
return 0;
}
/*
* Erase an address range on the flash chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static ssize_t m25p80_erase(struct cdev *cdev, size_t count, loff_t offset)
{
struct m25p *flash = cdev->priv;
u32 addr, len;
u32 start_sector;
u32 end_sector;
u32 progress = 0;
int eraseshift = ffs(flash->erasesize) - 1;
dev_dbg(&flash->spi->dev, "%s %s 0x%llx, len %lld\n",
__func__, "at", (long long)offset, (long long)count);
/* sanity checks */
if (offset + count > flash->size)
return -EINVAL;
addr = offset;
len = count;
start_sector = offset >> eraseshift;
end_sector = (offset + count - 1) >> eraseshift;
init_progression_bar(end_sector - start_sector + 1);
/* whole-chip erase? */
if (len == flash->size) {
show_progress(start_sector);
if (erase_chip(flash))
return -EIO;
show_progress(end_sector);
/* REVISIT in some cases we could speed up erasing large regions
* by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
* to use "small sector erase", but that's not always optimal.
*/
/* "sector"-at-a-time erase */
} else {
while (len) {
if (ctrlc())
return -EINTR;
if (erase_sector(flash, addr))
return -EIO;
show_progress(++progress);
if (len <= flash->erasesize)
break;
addr += flash->erasesize;
len -= flash->erasesize;
}
}
printf("\n");
return 0;
}
ssize_t m25p80_read(struct cdev *cdev, void *buf, size_t count, loff_t offset,
ulong flags)
{
struct m25p *flash = cdev->priv;
struct spi_transfer t[2];
struct spi_message m;
ssize_t retlen;
/* sanity checks */
if (!count)
return 0;
if (offset + count > flash->size)
return -EINVAL;
spi_message_init(&m);
memset(t, 0, (sizeof t));
/* NOTE:
* OPCODE_FAST_READ (if available) is faster.
* Should add 1 byte DUMMY_BYTE.
*/
t[0].tx_buf = flash->command;
t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
spi_message_add_tail(&t[0], &m);
t[1].rx_buf = buf;
t[1].len = count;
spi_message_add_tail(&t[1], &m);
/* Byte count starts at zero. */
retlen = 0;
/* Wait till previous write/erase is done. */
if (wait_till_ready(flash))
return -ETIMEDOUT;
/* FIXME switch to OPCODE_FAST_READ. It's required for higher
* clocks; and at this writing, every chip this driver handles
* supports that opcode.
*/
/* Set up the write data buffer. */
flash->command[0] = OPCODE_READ;
m25p_addr2cmd(flash, offset, flash->command);
spi_sync(flash->spi, &m);
retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
return retlen;
}
ssize_t m25p80_write(struct cdev *cdev, const void *buf, size_t count,
loff_t offset, ulong flags)
{
struct m25p *flash = cdev->priv;
struct spi_transfer t[2];
struct spi_message m;
ssize_t retlen = 0;
u32 page_offset, page_size;
debug("m25p80_write %ld bytes at 0x%08lX\n", (unsigned long)count, offset);
if (offset + count > flash->size)
return -EINVAL;
spi_message_init(&m);
memset(t, 0, (sizeof t));
t[0].tx_buf = flash->command;
t[0].len = m25p_cmdsz(flash);
spi_message_add_tail(&t[0], &m);
t[1].tx_buf = buf;
spi_message_add_tail(&t[1], &m);
/* Wait until finished previous write command. */
if (wait_till_ready(flash))
return -ETIMEDOUT;
write_enable(flash);
/* Set up the opcode in the write buffer. */
flash->command[0] = OPCODE_PP;
m25p_addr2cmd(flash, offset, flash->command);
page_offset = offset & (flash->page_size - 1);
/* do all the bytes fit onto one page? */
if (page_offset + count <= flash->page_size) {
t[1].len = count;
spi_sync(flash->spi, &m);
retlen = m.actual_length - m25p_cmdsz(flash);
} else {
u32 i;
/* the size of data remaining on the first page */
page_size = flash->page_size - page_offset;
t[1].len = page_size;
spi_sync(flash->spi, &m);
retlen = m.actual_length - m25p_cmdsz(flash);
/* write everything in flash->page_size chunks */
for (i = page_size; i < count; i += page_size) {
page_size = count - i;
if (page_size > flash->page_size)
page_size = flash->page_size;
/* write the next page to flash */
m25p_addr2cmd(flash, offset + i, flash->command);
t[1].tx_buf = buf + i;
t[1].len = page_size;
wait_till_ready(flash);
write_enable(flash);
spi_sync(flash->spi, &m);
retlen += m.actual_length - m25p_cmdsz(flash);
}
}
return retlen;
}
#ifdef CONFIG_MTD_SST25L
ssize_t sst_write(struct cdev *cdev, const void *buf, size_t count, loff_t offset,
ulong flags)
{
struct m25p *flash = cdev->priv;
struct spi_transfer t[2];
struct spi_message m;
size_t actual;
ssize_t retlen;
int cmd_sz, ret;
debug("sst_write %ld bytes at 0x%08lX\n", (unsigned long)count, offset);
retlen = 0;
/* sanity checks */
if (!count)
return 0;
if (offset + count > flash->size)
return -EINVAL;
spi_message_init(&m);
memset(t, 0, (sizeof t));
t[0].tx_buf = flash->command;
t[0].len = m25p_cmdsz(flash);
spi_message_add_tail(&t[0], &m);
t[1].tx_buf = buf;
spi_message_add_tail(&t[1], &m);
/* Wait until finished previous write command. */
ret = wait_till_ready(flash);
if (ret)
goto time_out;
write_enable(flash);
actual = offset % 2;
/* Start write from odd address. */
if (actual) {
flash->command[0] = OPCODE_BP;
m25p_addr2cmd(flash, offset, flash->command);
/* write one byte. */
t[1].len = 1;
spi_sync(flash->spi, &m);
ret = wait_till_ready(flash);
if (ret)
goto time_out;
retlen += m.actual_length - m25p_cmdsz(flash);
}
offset += actual;
flash->command[0] = OPCODE_AAI_WP;
m25p_addr2cmd(flash, offset, flash->command);
/* Write out most of the data here. */
cmd_sz = m25p_cmdsz(flash);
for (; actual < count - 1; actual += 2) {
t[0].len = cmd_sz;
/* write two bytes. */
t[1].len = 2;
t[1].tx_buf = buf + actual;
spi_sync(flash->spi, &m);
ret = wait_till_ready(flash);
if (ret)
goto time_out;
retlen += m.actual_length - cmd_sz;
cmd_sz = 1;
offset += 2;
}
write_disable(flash);
ret = wait_till_ready(flash);
if (ret)
goto time_out;
/* Write out trailing byte if it exists. */
if (actual != count) {
write_enable(flash);
flash->command[0] = OPCODE_BP;
m25p_addr2cmd(flash, offset, flash->command);
t[0].len = m25p_cmdsz(flash);
t[1].len = 1;
t[1].tx_buf = buf + actual;
spi_sync(flash->spi, &m);
ret = wait_till_ready(flash);
if (ret)
goto time_out;
retlen += m.actual_length - m25p_cmdsz(flash);
write_disable(flash);
}
time_out:
return retlen;
}
#endif
static void m25p80_info(struct device_d *dev)
{
struct m25p *flash = dev->priv;
struct flash_info *info = flash->info;
printf("Flash type : %s\n", flash->name);
printf("Size : %lldKiB\n", (long long)flash->size / 1024);
printf("Number of sectors : %d\n", info->n_sectors);
printf("Sector size : %dKiB\n", info->sector_size / 1024);
printf("\n");
}
/****************************************************************************/
/*
* SPI device driver setup and teardown
*/
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
((unsigned long)&(struct flash_info) { \
.jedec_id = (_jedec_id), \
.ext_id = (_ext_id), \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = 256, \
.flags = (_flags), \
})
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
((unsigned long)&(struct flash_info) { \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = (_page_size), \
.addr_width = (_addr_width), \
.flags = M25P_NO_ERASE, \
})
/* NOTE: double check command sets and memory organization when you add
* more flash chips. This current list focusses on newer chips, which
* have been converging on command sets which including JEDEC ID.
*/
static const struct spi_device_id m25p_ids[] = {
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
{ "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
{ "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
{ "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
{ "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
/* EON -- en25xxx */
{ "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
{ "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
/* Intel/Numonyx -- xxxs33b */
{ "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
{ "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
{ "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
/* Macronix */
{ "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
{ "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
{ "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
{ "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
/* Spansion -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
{ "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K) },
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
{ "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
{ "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) },
{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
{ "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) },
{ "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) },
{ "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) },
{ "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) },
/* ST Microelectronics -- newer production may have feature updates */
{ "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
{ "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
{ "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
{ "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
{ "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
{ "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
{ "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
{ "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
{ "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
{ "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
{ "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
{ "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
{ "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
{ "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
{ "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
{ "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
{ "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
{ "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
{ "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
{ "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
{ "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
{ "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
{ "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
{ "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
{ "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
{ "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
{ "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
/* Catalyst / On Semiconductor -- non-JEDEC */
{ "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
{ "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
{ },
};
static const struct spi_device_id *jedec_probe(struct spi_device *spi)
{
int tmp;
u8 code = OPCODE_RDID;
u8 id[5];
u32 jedec;
u16 ext_jedec;
struct flash_info *info;
/* JEDEC also defines an optional "extended device information"
* string for after vendor-specific data, after the three bytes
* we use here. Supporting some chips might require using it.
*/
spi_write_then_read(spi, &code, 1, id, 5);
jedec = id[0];
jedec = jedec << 8;
jedec |= id[1];
jedec = jedec << 8;
jedec |= id[2];
ext_jedec = id[3] << 8 | id[4];
for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
info = (void *)m25p_ids[tmp].driver_data;
if (info->jedec_id == jedec) {
if (info->ext_id != 0 && info->ext_id != ext_jedec)
continue;
return &m25p_ids[tmp];
}
}
dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
return NULL;
}
static struct file_operations m25p80_ops = {
.read = m25p80_read,
.write = m25p80_write,
.erase = m25p80_erase,
.lseek = dev_lseek_default,
};
/*
* board specific setup should have ensured the SPI clock used here
* matches what the READ command supports, at least until this driver
* understands FAST_READ (for clocks over 25 MHz).
*/
static int m25p_probe(struct device_d *dev)
{
struct spi_device *spi = (struct spi_device *)dev->type_data;
const struct spi_device_id *id = NULL;
struct flash_info *info = NULL;
struct flash_platform_data *data;
struct m25p *flash;
unsigned i;
unsigned do_jdec_probe = 1;
/* Platform data helps sort out which chip type we have, as
* well as how this board partitions it. If we don't have
* a chip ID, try the JEDEC id commands; they'll work for most
* newer chips, even if we don't recognize the particular chip.
*/
data = dev->platform_data;
if (data && data->type) {
const struct spi_device_id *plat_id;
for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
plat_id = &m25p_ids[i];
if (strcmp(data->type, plat_id->name))
continue;
break;
}
if (i < ARRAY_SIZE(m25p_ids) - 1) {
id = plat_id;
info = (void *)id->driver_data;
/* If flash type is provided but the memory is not
* JEDEC compliant, don't try to probe the JEDEC id */
if (!info->jedec_id)
do_jdec_probe = 0;
} else
dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
}
if (do_jdec_probe) {
const struct spi_device_id *jid;
jid = jedec_probe(spi);
if (!jid) {
return -ENODEV;
} else if (jid != id) {
/*
* JEDEC knows better, so overwrite platform ID. We
* can't trust partitions any longer, but we'll let
* mtd apply them anyway, since some partitions may be
* marked read-only, and we don't want to lose that
* information, even if it's not 100% accurate.
*/
if (id)
dev_warn(dev, "found %s, expected %s\n",
jid->name, id->name);
id = jid;
info = (void *)jid->driver_data;
}
}
flash = xzalloc(sizeof *flash);
flash->command = xmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE);
flash->spi = spi;
dev->priv = (void *)flash;
/*
* Atmel, SST and Intel/Numonyx serial flash tend to power
* up with the software protection bits set
*/
if (info->jedec_id >> 16 == 0x1f ||
info->jedec_id >> 16 == 0x89 ||
info->jedec_id >> 16 == 0xbf) {
write_enable(flash);
write_sr(flash, 0);
}
flash->name = (char *)id->name;
flash->info = info;
flash->size = info->sector_size * info->n_sectors;
flash->erasesize = info->sector_size;
flash->cdev.size = info->sector_size * info->n_sectors;
flash->cdev.dev = dev;
flash->cdev.ops = &m25p80_ops;
flash->cdev.priv = flash;
if (data && data->name)
flash->cdev.name = asprintf("%s%d", data->name, dev->id);
else
flash->cdev.name = asprintf("%s", (char *)dev_name(&spi->dev));
#ifdef CONFIG_MTD_SST25L
/* sst flash chips use AAI word program */
if (info->jedec_id >> 16 == 0xbf)
m25p80_ops.write = sst_write;
else
#endif
m25p80_ops.write = m25p80_write;
/* prefer "small sector" erase if possible */
if (info->flags & SECT_4K) {
flash->erase_opcode = OPCODE_BE_4K;
flash->erasesize = 4096;
} else {
flash->erase_opcode = OPCODE_SE;
}
flash->page_size = info->page_size;
if (info->addr_width)
flash->addr_width = info->addr_width;
else {
/* enable 4-byte addressing if the device exceeds 16MiB */
if (flash->size > 0x1000000) {
flash->addr_width = 4;
set_4byte(flash, 1);
} else
flash->addr_width = 3;
}
dev_info(dev, "%s (%lld Kbytes)\n", id->name, (long long)flash->size >> 10);
devfs_create(&flash->cdev);
return 0;
}
static struct driver_d epcs_flash_driver = {
.name = "m25p",
.probe = m25p_probe,
.info = m25p80_info,
};
static int epcs_init(void)
{
register_driver(&epcs_flash_driver);
return 0;
}
device_initcall(epcs_init);