9
0
Fork 0
barebox/arch/arm/mach-imx/imx6-mmdc.c

1388 lines
40 KiB
C

/*
* i.MX6 DDR controller calibration functions
* Based on Freescale code
*
* Copyright (C) 2013 Sascha Hauer <s.hauer@pengutronix.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <common.h>
#include <io.h>
#include <mach/imx6-mmdc.h>
#include <mach/imx6-regs.h>
#include <mach/imx6.h>
int mmdc_do_write_level_calibration(void)
{
u32 esdmisc_val, zq_val;
int errorcount = 0;
u32 val;
u32 ddr_mr1 = 0x4;
/* disable DDR logic power down timer */
val = readl((P0_IPS + MDPDC));
val &= 0xffff00ff;
writel(val, (P0_IPS + MDPDC)),
/* disable Adopt power down timer */
val = readl((P0_IPS + MAPSR));
val |= 0x1;
writel(val, (P0_IPS + MAPSR));
pr_debug("Start write leveling calibration \n");
/*
* disable auto refresh and ZQ calibration
* before proceeding with Write Leveling calibration
*/
esdmisc_val = readl(P0_IPS + MDREF);
writel(0x0000C000, (P0_IPS + MDREF));
zq_val = readl(P0_IPS + MPZQHWCTRL);
writel(zq_val & ~(0x3), (P0_IPS + MPZQHWCTRL));
/*
* Configure the external DDR device to enter write leveling mode
* through Load Mode Register command
* Register setting:
* Bits[31:16] MR1 value (0x0080 write leveling enable)
* Bit[9] set WL_EN to enable MMDC DQS output
* Bits[6:4] set CMD bits for Load Mode Register programming
* Bits[2:0] set CMD_BA to 0x1 for DDR MR1 programming
*/
writel(0x00808231, P0_IPS + MDSCR);
/* Activate automatic calibration by setting MPWLGCR[HW_WL_EN] */
writel(0x00000001, P0_IPS + MPWLGCR);
/* Upon completion of this process the MMDC de-asserts the MPWLGCR[HW_WL_EN] */
while (readl(P0_IPS + MPWLGCR) & 0x00000001);
/* check for any errors: check both PHYs for x64 configuration, if x32, check only PHY0 */
if ((readl(P0_IPS + MPWLGCR) & 0x00000F00) ||
(readl(P1_IPS + MPWLGCR) & 0x00000F00)) {
errorcount++;
}
pr_debug("Write leveling calibration completed\n");
/*
* User should issue MRS command to exit write leveling mode
* through Load Mode Register command
* Register setting:
* Bits[31:16] MR1 value "ddr_mr1" value from initialization
* Bit[9] clear WL_EN to disable MMDC DQS output
* Bits[6:4] set CMD bits for Load Mode Register programming
* Bits[2:0] set CMD_BA to 0x1 for DDR MR1 programming
*/
writel(((ddr_mr1 << 16)+0x8031), P0_IPS + MDSCR);
/* re-enable to auto refresh and zq cal */
writel(esdmisc_val, (P0_IPS + MDREF));
writel(zq_val, (P0_IPS + MPZQHWCTRL));
pr_debug("MMDC_MPWLDECTRL0 after write level cal: 0x%08X\n",
readl(P0_IPS + MPWLDECTRL0));
pr_debug("MMDC_MPWLDECTRL1 after write level cal: 0x%08X\n",
readl(P0_IPS + MPWLDECTRL1));
pr_debug("MMDC_MPWLDECTRL0 after write level cal: 0x%08X\n",
readl(P1_IPS + MPWLDECTRL0));
pr_debug("MMDC_MPWLDECTRL1 after write level cal: 0x%08X\n",
readl(P1_IPS + MPWLDECTRL1));
/* enable DDR logic power down timer */
val = readl((P0_IPS + MDPDC));
val |= 0x00005500;
writel(val, (P0_IPS + MDPDC));
/* enable auto power down timer: */
val = readl(P0_IPS + MAPSR);
val &= ~1;
writel(val, (P0_IPS + MAPSR));
/* clear CON_REQ */
writel(0, (P0_IPS + MDSCR));
return 0;
}
static void modify_dg_result(void __iomem *reg_st0, void __iomem *reg_st1,
void __iomem *reg_ctrl)
{
u32 dg_tmp_val, dg_dl_abs_offset, dg_hc_del, val_ctrl;
/*
* DQS gating absolute offset should be modified from reflecting (HW_DG_LOWx + HW_DG_UPx)/2
* to reflecting (HW_DG_UPx - 0x80)
*/
val_ctrl = readl(reg_ctrl);
val_ctrl &= 0xf0000000;
dg_tmp_val = ((readl(reg_st0) & 0x07ff0000) >> 16) - 0xc0;
dg_dl_abs_offset = dg_tmp_val & 0x7f;
dg_hc_del = (dg_tmp_val & 0x780) << 1;
val_ctrl |= dg_dl_abs_offset + dg_hc_del;
dg_tmp_val = ((readl(reg_st1) & 0x07ff0000) >> 16) - 0xc0;
dg_dl_abs_offset = dg_tmp_val & 0x7f;
dg_hc_del = (dg_tmp_val & 0x780) << 1;
val_ctrl |= (dg_dl_abs_offset + dg_hc_del) << 16;
writel(val_ctrl, reg_ctrl);
}
static void mmdc_precharge_all(int cs0_enable, int cs1_enable)
{
/*
* Issue the Precharge-All command to the DDR device for both chip selects
* Note, CON_REQ bit should also remain set
* If only using one chip select, then precharge only the desired chip select
*/
if (cs0_enable)
writel(0x04008050, P0_IPS + MDSCR);
if (cs1_enable)
writel(0x04008058, P0_IPS + MDSCR);
}
static void mmdc_force_delay_measurement(int data_bus_size)
{
writel(0x800, P0_IPS + MPMUR);
if (data_bus_size == 0x2)
writel(0x800, P1_IPS + MPMUR);
}
static void mmdc_reset_read_data_fifos(void)
{
uint32_t v;
/*
* Reset the read data FIFOs (two resets); only need to issue reset to PHY0 since in x64
* mode, the reset will also go to PHY1
* read data FIFOs reset1
*/
v = readl(P0_IPS + MPDGCTRL0);
v |= 0x80000000;
writel(v, P0_IPS + MPDGCTRL0);
while (readl((P0_IPS + MPDGCTRL0)) & 0x80000000);
/* read data FIFOs reset2 */
v = readl(P0_IPS + MPDGCTRL0);
v |= 0x80000000;
writel(v, P0_IPS + MPDGCTRL0);
while (readl((P0_IPS + MPDGCTRL0)) & 0x80000000);
}
int mmdc_do_dqs_calibration(void)
{
u32 esdmisc_val, v;
int g_error_write_cal;
int temp_ref;
int cs0_enable_initial;
int cs1_enable_initial;
int PDDWord = 0x00ffff00;
int errorcount = 0;
int cs0_enable;
int cs1_enable;
int data_bus_size;
/* check to see which chip selects are enabled */
cs0_enable_initial = (readl(P0_IPS + MDCTL) & 0x80000000) >> 31;
cs1_enable_initial = (readl(P0_IPS + MDCTL) & 0x40000000) >> 30;
/* disable DDR logic power down timer */
v = readl(P0_IPS + MDPDC);
v &= ~0xff00;
writel(v, P0_IPS + MDPDC);
/* disable Adopt power down timer */
v = readl(P0_IPS + MAPSR);
v |= 0x1;
writel(v, P0_IPS + MAPSR);
/* set DQS pull ups */
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS4) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS4);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS5) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS5);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS6) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS6);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS7) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS7);
esdmisc_val = readl(P0_IPS + MDMISC);
/* set RALAT and WALAT to max */
v = readl(P0_IPS + MDMISC);
v |= (1 << 6) | (1 << 7) | (1 << 8) | (1 << 16) | (1 << 17);
writel(v, P0_IPS + MDMISC);
/*
* disable auto refresh
* before proceeding with calibration
*/
temp_ref = readl(P0_IPS + MDREF);
writel(0x0000C000, P0_IPS + MDREF);
/*
* per the ref manual, issue one refresh cycle MDSCR[CMD]= 0x2,
* this also sets the CON_REQ bit.
*/
if (cs0_enable_initial)
writel(0x00008020, P0_IPS + MDSCR);
if (cs1_enable_initial)
writel(0x00008028, P0_IPS + MDSCR);
/* poll to make sure the con_ack bit was asserted */
while (!(readl(P0_IPS + MDSCR) & 0x00004000)) ;
/*
* check MDMISC register CALIB_PER_CS to see which CS calibration is
* targeted to (under normal cases, it should be cleared as this is the
* default value, indicating calibration is directed to CS0). Disable
* the other chip select not being target for calibration to avoid any
* potential issues This will get re-enabled at end of calibration.
*/
v = readl(P0_IPS + MDCTL);
if ((readl(P0_IPS + MDMISC) & 0x00100000) == 0)
v &= ~(1 << 30); /* clear SDE_1 */
else
v &= ~(1 << 31); /* clear SDE_0 */
writel(v, P0_IPS + MDCTL);
/*
* check to see which chip selects are now enabled for the remainder
* of the calibration.
*/
cs0_enable = (readl(P0_IPS + MDCTL) & 0x80000000) >> 31;
cs1_enable = (readl(P0_IPS + MDCTL) & 0x40000000) >> 30;
/* check to see what is the data bus size */
data_bus_size = (readl(P0_IPS + MDCTL) & 0x30000) >> 16;
mmdc_precharge_all(cs0_enable, cs1_enable);
/* Write the pre-defined value into MPPDCMPR1 */
writel(PDDWord, P0_IPS + MPPDCMPR1);
/*
* Issue a write access to the external DDR device by setting the bit SW_DUMMY_WR (bit 0)
* in the MPSWDAR0 and then poll this bit until it clears to indicate completion of the
* write access.
*/
v = readl(P0_IPS + MPSWDAR);
v |= (1 << 0);
writel(v, P0_IPS + MPSWDAR);
while (readl(P0_IPS + MPSWDAR) & 0x00000001);
/*
* Set the RD_DL_ABS# bits to their default values (will be calibrated later in
* the read delay-line calibration)
* Both PHYs for x64 configuration, if x32, do only PHY0
*/
writel(0x40404040, P0_IPS + MPRDDLCTL);
if (data_bus_size == 0x2)
writel(0x40404040, P1_IPS + MPRDDLCTL);
/* Force a measurement, for previous delay setup to take effect */
mmdc_force_delay_measurement(data_bus_size);
/*
* Read DQS Gating calibration
*/
pr_debug("Starting DQS gating calibration...\n");
mmdc_reset_read_data_fifos();
/*
* Start the automatic read DQS gating calibration process by asserting
* MPDGCTRL0[HW_DG_EN] and MPDGCTRL0[DG_CMP_CYC] and then poll
* MPDGCTRL0[HW_DG_EN]] until this bit clears to indicate completion.
* Also, ensure that MPDGCTRL0[HW_DG_ERR] is clear to indicate no errors
* were seen during calibration. Set bit 30: chooses option to wait 32
* cycles instead of 16 before comparing read data
*/
v = readl(P0_IPS + MPDGCTRL0);
v |= (1 << 30);
writel(v, P0_IPS + MPDGCTRL0);
/* Set bit 28 to start automatic read DQS gating calibration */
v |= (1 << 28);
writel(v, P0_IPS + MPDGCTRL0);
/*
* Poll for completion
* MPDGCTRL0[HW_DG_EN] should be 0
*/
while (readl(P0_IPS + MPDGCTRL0) & 0x10000000);
/*
* Check to see if any errors were encountered during calibration
* (check MPDGCTRL0[HW_DG_ERR])
* check both PHYs for x64 configuration, if x32, check only PHY0
*/
if (data_bus_size == 0x2) {
if ((readl(P0_IPS + MPDGCTRL0) & 0x00001000) ||
(readl(P1_IPS + MPDGCTRL0) & 0x00001000))
errorcount++;
} else {
if (readl(P0_IPS + MPDGCTRL0) & 0x00001000)
errorcount++;
}
/*
* DQS gating absolute offset should be modified from reflecting
* (HW_DG_LOWx + HW_DG_UPx)/2 to reflecting (HW_DG_UPx - 0x80)
*/
modify_dg_result(P0_IPS + MPDGHWST0,
P0_IPS + MPDGHWST1,
P0_IPS + MPDGCTRL0);
modify_dg_result(P0_IPS + MPDGHWST2,
P0_IPS + MPDGHWST3,
P0_IPS + MPDGCTRL1);
if (data_bus_size == 0x2) {
modify_dg_result(P1_IPS + MPDGHWST0,
P1_IPS + MPDGHWST1,
P1_IPS + MPDGCTRL0);
modify_dg_result(P1_IPS + MPDGHWST2,
P1_IPS + MPDGHWST3,
P1_IPS + MPDGCTRL1);
}
pr_debug("DQS gating calibration completed.\n");
/*
* Read delay Calibration
*/
pr_debug("Starting read calibration...\n");
mmdc_reset_read_data_fifos();
mmdc_precharge_all(cs0_enable, cs1_enable);
/*
* Read delay-line calibration
* Start the automatic read calibration process by asserting MPRDDLHWCTL[ HW_RD_DL_EN]
*/
writel(0x00000030, P0_IPS + MPRDDLHWCTL);
/*
* poll for completion
* MMDC indicates that the write data calibration had finished by setting
* MPRDDLHWCTL[HW_RD_DL_EN] = 0
* Also, ensure that no error bits were set
*/
while (readl(P0_IPS + MPRDDLHWCTL) & 0x00000010) ;
/* check both PHYs for x64 configuration, if x32, check only PHY0 */
if (data_bus_size == 0x2) {
if ((readl(P0_IPS + MPRDDLHWCTL) & 0x0000000f) ||
(readl(P1_IPS + MPRDDLHWCTL) & 0x0000000f)) {
errorcount++;
}
} else {
if (readl(P0_IPS + MPRDDLHWCTL) & 0x0000000f) {
errorcount++;
}
}
pr_debug("Read calibration completed\n");
/*
* Write delay Calibration
*/
pr_debug("Starting write calibration...\n");
mmdc_reset_read_data_fifos();
mmdc_precharge_all(cs0_enable, cs1_enable);
/*
* Set the WR_DL_ABS# bits to their default values
* Both PHYs for x64 configuration, if x32, do only PHY0
*/
writel(0x40404040, P0_IPS + MPWRDLCTL);
if (data_bus_size == 0x2)
writel(0x40404040, P1_IPS + MPWRDLCTL);
mmdc_force_delay_measurement(data_bus_size);
/* Start the automatic write calibration process by asserting MPWRDLHWCTL0[HW_WR_DL_EN] */
writel(0x00000030, P0_IPS + MPWRDLHWCTL);
/*
* poll for completion
* MMDC indicates that the write data calibration had finished by setting
* MPWRDLHWCTL[HW_WR_DL_EN] = 0
* Also, ensure that no error bits were set
*/
while (readl(P0_IPS + MPWRDLHWCTL) & 0x00000010) ;
/* check both PHYs for x64 configuration, if x32, check only PHY0 */
if (data_bus_size == 0x2) {
if ((readl(P0_IPS + MPWRDLHWCTL) & 0x0000000f) ||
(readl(P1_IPS + MPWRDLHWCTL) & 0x0000000f)) {
errorcount++;
g_error_write_cal = 1; // set the g_error_write_cal
}
} else {
if (readl(P0_IPS + MPWRDLHWCTL) & 0x0000000f) {
errorcount++;
g_error_write_cal = 1; // set the g_error_write_cal
}
}
pr_debug("Write calibration completed\n");
mmdc_reset_read_data_fifos();
pr_debug("\n");
/* enable DDR logic power down timer */
v = readl(P0_IPS + MDPDC) | 0x00005500;
writel(v, P0_IPS + MDPDC);
/* enable Adopt power down timer */
v = readl(P0_IPS + MAPSR) & 0xfffffffe;
writel(v, P0_IPS + MAPSR);
/* restore MDMISC value (RALAT, WALAT) */
writel(esdmisc_val, P0_IPS + MDMISC);
/* clear DQS pull ups */
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS4) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS4);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS5) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS5);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS6) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS6);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS7) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS7);
v = readl(P0_IPS + MDCTL);
/* re-enable SDE (chip selects) if they were set initially */
if (cs1_enable_initial == 1)
v |= (1 << 30); /* set SDE_1 */
if (cs0_enable_initial == 1)
v |= (1 << 31); /* set SDE_0 */
writel(v, P0_IPS + MDCTL);
/* re-enable to auto refresh */
writel(temp_ref, P0_IPS + MDREF);
/* clear the MDSCR (including the con_req bit) */
writel(0x0, P0_IPS + MDSCR); /* CS0 */
/* poll to make sure the con_ack bit is clear */
while (readl(P0_IPS + MDSCR) & 0x00004000) ;
return errorcount;
}
void mmdc_print_calibration_results(void)
{
int data_bus_size;
data_bus_size = (readl(P0_IPS + MDCTL) & 0x30000) >> 16;
printf("MMDC registers updated from calibration \n");
printf("\nRead DQS Gating calibration\n");
printf("MPDGCTRL0 PHY0 (0x021b083c) = 0x%08X\n", readl(P0_IPS + MPDGCTRL0));
printf("MPDGCTRL1 PHY0 (0x021b0840) = 0x%08X\n", readl(P0_IPS + MPDGCTRL1));
if (data_bus_size == 0x2) {
printf("MPDGCTRL0 PHY1 (0x021b483c) = 0x%08X\n", readl(P1_IPS + MPDGCTRL0));
printf("MPDGCTRL1 PHY1 (0x021b4840) = 0x%08X\n", readl(P1_IPS + MPDGCTRL1));
}
printf("\nRead calibration\n");
printf("MPRDDLCTL PHY0 (0x021b0848) = 0x%08X\n", readl(P0_IPS + MPRDDLCTL));
if (data_bus_size == 0x2)
printf("MPRDDLCTL PHY1 (0x021b4848) = 0x%08X\n", readl(P1_IPS + MPRDDLCTL));
printf("\nWrite calibration\n");
printf("MPWRDLCTL PHY0 (0x021b0850) = 0x%08X\n", readl(P0_IPS + MPWRDLCTL));
if (data_bus_size == 0x2)
printf("MPWRDLCTL PHY1 (0x021b4850) = 0x%08X\n", readl(P1_IPS + MPWRDLCTL));
printf("\n");
/*
* registers below are for debugging purposes
* these print out the upper and lower boundaries captured during read DQS gating calibration
*/
printf("Status registers, upper and lower bounds, for read DQS gating. \n");
printf("MPDGHWST0 PHY0 (0x021b087c) = 0x%08X\n", readl(P0_IPS + MPDGHWST0));
printf("MPDGHWST1 PHY0 (0x021b0880) = 0x%08X\n", readl(P0_IPS + MPDGHWST1));
printf("MPDGHWST2 PHY0 (0x021b0884) = 0x%08X\n", readl(P0_IPS + MPDGHWST2));
printf("MPDGHWST3 PHY0 (0x021b0888) = 0x%08X\n", readl(P0_IPS + MPDGHWST3));
if (data_bus_size == 0x2) {
printf("MPDGHWST0 PHY1 (0x021b487c) = 0x%08X\n", readl(P1_IPS + MPDGHWST0));
printf("MPDGHWST1 PHY1 (0x021b4880) = 0x%08X\n", readl(P1_IPS + MPDGHWST1));
printf("MPDGHWST2 PHY1 (0x021b4884) = 0x%08X\n", readl(P1_IPS + MPDGHWST2));
printf("MPDGHWST3 PHY1 (0x021b4888) = 0x%08X\n", readl(P1_IPS + MPDGHWST3));
}
}
#ifdef MMDC_SOFTWARE_CALIBRATION
static void mmdc_set_dqs(u32 value)
{
value |= value << 8 | value << 16 | value << 24;
writel(value, P0_IPS + MPRDDLCTL);
if (data_bus_size == 0x2)
writel(value, P1_IPS + MPRDDLCTL);
}
static void mmdc_set_wr_delay(u32 value)
{
value |= value << 8 | value << 16 | value << 24;
writel(value, P0_IPS + MPWRDLCTL);
if (data_bus_size == 0x2)
writel(value, P1_IPS + MPWRDLCTL);
}
static void mmdc_issue_write_access(void __iomem *base)
{
u32 v;
/*
* Issue a write access to the external DDR device by setting the bit SW_DUMMY_WR (bit 0)
* in the MPSWDAR0 and then poll this bit until it clears to indicate completion of the
* write access.
*/
v = readl(P0_IPS + MPSWDAR);
v |= (1 << 0);
writel(v, P0_IPS + MPSWDAR);
while (readl(P0_IPS + MPSWDAR) & 0x00000001);
}
static void mmdc_issue_read_access(void __iomem *base)
{
/*
* Issue a write access to the external DDR device by setting the bit SW_DUMMY_WR (bit 0)
* in the MPSWDAR0 and then poll this bit until it clears to indicate completion of the
* write access.
*/
v = readl(P0_IPS + MPSWDAR);
v |= (1 << 1);
writel(v, P0_IPS + MPSWDAR);
while (readl(P0_IPS + MPSWDAR) & 0x00000002);
}
static int total_lower[2] = { 0x0, 0x0 };
static int total_upper[2] = { 0xff, 0xff };
static int mmdc_is_valid(void __iomem *base, int delay, int rd)
{
u32 val;
if (rd)
mmdc_set_dqs(delay);
else
mmdc_set_wr_delay(delay);
mmdc_force_delay_measurement();
mdelay(1);
if (!rd)
mmdc_issue_write_access(base);
mmdc_issue_read_access(base);
val = readl(base + MPSWDAR);
if ((val & 0x3c) == 0x3c)
return 1;
else
return 0;
#ifdef MMDC_SOFWARE_CALIB_COMPARE_RESULTS
if ((val & 0x3c) == 0x3c) {
if (lower < 0)
lower = i;
}
if ((val & 0x3c) != 0x3c) {
if (lower > 0 && upper < 0)
upper = i;
}
pr_debug("0x%02x: compare: 0x%08x ", i, readl(P0_IPS + MPSWDAR));
for (j = 0; j < 8; j++) {
pr_debug("0x%08x ", readl(P0_IPS + 0x898 + j * 4));
}
pr_debug("\n");
#endif
}
static void mmdc_sw_read_calib(int ch, u32 wr_value)
{
int rd = 1;
void __iomem *base;
int i;
int lower = 0x0, upper = 0x7f;
if (ch)
base = (void *)P1_IPS;
else
base = (void *)P0_IPS;
/* 1. Precharge */
mmdc_precharge_all(cs0_enable, cs1_enable);
/* 2. Configure pre-defined value */
writel(wr_value, P0_IPS + MPPDCMPR1);
/* 3. Issue write access */
mmdc_issue_write_access(base);
for (i = 0; i < 100; i++) {
if (mmdc_is_valid(base, 0x40, rd)) {
goto middle_passed;
}
}
pr_debug("ch: %d value: 0x%08x middle test failed\n", ch, wr_value);
return;
middle_passed:
for (i = 0x40; i < 0x7f; i++) {
if (!mmdc_is_valid(base, i, rd)) {
upper = i;
break;
}
}
for (i = 0; i < 100; i++) {
if (mmdc_is_valid(base, 0x40, rd)) {
goto go_on;
}
}
pr_debug("ch: %d value: 0x%08x middle test 1 failed\n", ch, wr_value);
return;
go_on:
for (i = 0x40; i >= 0; i--) {
if (!mmdc_is_valid(base, i, rd)) {
lower = i;
break;
}
}
if (lower > total_lower[ch])
total_lower[ch] = lower;
if (upper < total_upper[ch])
total_upper[ch] = upper;
pr_debug("ch: %d value: 0x%08x lower: %-3d upper: %-3d\n", ch, wr_value, lower, upper);
}
static void mmdc_sw_write_calib(int ch, u32 wr_value)
{
int rd = 0;
void __iomem *base;
int i;
int lower = 0x0, upper = 0x7f;
if (ch)
base = (void *)P1_IPS;
else
base = (void *)P0_IPS;
/* 1. Precharge */
mmdc_precharge_all(cs0_enable, cs1_enable);
/* 2. Configure pre-defined value */
writel(wr_value, P0_IPS + MPPDCMPR1);
/* 3. Issue write access */
mmdc_issue_write_access(base);
for (i = 0; i < 100; i++) {
if (mmdc_is_valid(base, 0x40, rd)) {
goto middle_passed;
}
}
pr_debug("ch: %d value: 0x%08x middle test failed\n", ch, wr_value);
return;
middle_passed:
for (i = 0x40; i < 0x7f; i++) {
if (!mmdc_is_valid(base, i, rd)) {
upper = i;
break;
}
}
for (i = 0; i < 100; i++) {
if (mmdc_is_valid(base, 0x40, rd)) {
goto go_on;
}
}
pr_debug("ch: %d value: 0x%08x middle test 1 failed\n", ch, wr_value);
return;
go_on:
for (i = 0x40; i >= 0; i--) {
if (!mmdc_is_valid(base, i, rd)) {
lower = i;
break;
}
}
if (lower > total_lower[ch])
total_lower[ch] = lower;
if (upper < total_upper[ch])
total_upper[ch] = upper;
pr_debug("ch: %d value: 0x%08x lower: %-3d upper: %-3d\n", ch, wr_value, lower, upper);
}
int mmdc_do_software_calibration(void)
{
u32 s;
int ch;
for (ch = 0; ch < 2; ch++) {
mmdc_sw_read_calib(ch, 0x00000055);
mmdc_sw_read_calib(ch, 0x00005500);
mmdc_sw_read_calib(ch, 0x00550000);
mmdc_sw_read_calib(ch, 0x55000000);
mmdc_sw_read_calib(ch, 0x00ffff00);
mmdc_sw_read_calib(ch, 0xff0000ff);
mmdc_sw_read_calib(ch, 0x55aaaa55);
mmdc_sw_read_calib(ch, 0xaa5555aa);
for (s = 1; s; s <<= 1)
mmdc_sw_read_calib(ch, s);
}
printk("ch0 total lower: %d upper: %d avg: 0x%02x\n",
total_lower[0], total_upper[0],
(total_lower[0] + total_upper[0]) / 2);
printk("ch1 total lower: %d upper: %d avg: 0x%02x\n",
total_lower[1], total_upper[1],
(total_lower[1] + total_upper[1]) / 2);
mmdc_set_dqs(0x40);
total_lower[0] = 0;
total_lower[1] = 0;
total_upper[0] = 0xff;
total_upper[1] = 0xff;
for (ch = 0; ch < 2; ch++) {
mmdc_sw_write_calib(ch, 0x00000055);
mmdc_sw_write_calib(ch, 0x00005500);
mmdc_sw_write_calib(ch, 0x00550000);
mmdc_sw_write_calib(ch, 0x55000000);
mmdc_sw_write_calib(ch, 0x00ffff00);
mmdc_sw_write_calib(ch, 0xff0000ff);
mmdc_sw_write_calib(ch, 0x55aaaa55);
mmdc_sw_write_calib(ch, 0xaa5555aa);
for (s = 1; s; s <<= 1)
mmdc_sw_write_calib(ch, s);
}
printk("ch0 total lower: %d upper: %d avg: 0x%02x\n",
total_lower[0], total_upper[0],
(total_lower[0] + total_upper[0]) / 2);
printk("ch1 total lower: %d upper: %d avg: 0x%02x\n",
total_lower[1], total_upper[1],
(total_lower[1] + total_upper[1]) / 2);
return 0;
}
#endif /* MMDC_SOFTWARE_CALIBRATION */
/* Configure MX6SX mmdc iomux */
void mx6sx_dram_iocfg(unsigned width,
const struct mx6sx_iomux_ddr_regs *ddr,
const struct mx6sx_iomux_grp_regs *grp)
{
struct mx6sx_iomux_ddr_regs *mx6_ddr_iomux;
struct mx6sx_iomux_grp_regs *mx6_grp_iomux;
mx6_ddr_iomux = (struct mx6sx_iomux_ddr_regs *)MX6SX_IOM_DDR_BASE;
mx6_grp_iomux = (struct mx6sx_iomux_grp_regs *)MX6SX_IOM_GRP_BASE;
/* DDR IO TYPE */
writel(grp->grp_ddr_type, &mx6_grp_iomux->grp_ddr_type);
writel(grp->grp_ddrpke, &mx6_grp_iomux->grp_ddrpke);
/* CLOCK */
writel(ddr->dram_sdclk_0, &mx6_ddr_iomux->dram_sdclk_0);
/* ADDRESS */
writel(ddr->dram_cas, &mx6_ddr_iomux->dram_cas);
writel(ddr->dram_ras, &mx6_ddr_iomux->dram_ras);
writel(grp->grp_addds, &mx6_grp_iomux->grp_addds);
/* Control */
writel(ddr->dram_reset, &mx6_ddr_iomux->dram_reset);
writel(ddr->dram_sdba2, &mx6_ddr_iomux->dram_sdba2);
writel(ddr->dram_sdcke0, &mx6_ddr_iomux->dram_sdcke0);
writel(ddr->dram_sdcke1, &mx6_ddr_iomux->dram_sdcke1);
writel(ddr->dram_odt0, &mx6_ddr_iomux->dram_odt0);
writel(ddr->dram_odt1, &mx6_ddr_iomux->dram_odt1);
writel(grp->grp_ctlds, &mx6_grp_iomux->grp_ctlds);
/* Data Strobes */
writel(grp->grp_ddrmode_ctl, &mx6_grp_iomux->grp_ddrmode_ctl);
writel(ddr->dram_sdqs0, &mx6_ddr_iomux->dram_sdqs0);
writel(ddr->dram_sdqs1, &mx6_ddr_iomux->dram_sdqs1);
if (width >= 32) {
writel(ddr->dram_sdqs2, &mx6_ddr_iomux->dram_sdqs2);
writel(ddr->dram_sdqs3, &mx6_ddr_iomux->dram_sdqs3);
}
/* Data */
writel(grp->grp_ddrmode, &mx6_grp_iomux->grp_ddrmode);
writel(grp->grp_b0ds, &mx6_grp_iomux->grp_b0ds);
writel(grp->grp_b1ds, &mx6_grp_iomux->grp_b1ds);
if (width >= 32) {
writel(grp->grp_b2ds, &mx6_grp_iomux->grp_b2ds);
writel(grp->grp_b3ds, &mx6_grp_iomux->grp_b3ds);
}
writel(ddr->dram_dqm0, &mx6_ddr_iomux->dram_dqm0);
writel(ddr->dram_dqm1, &mx6_ddr_iomux->dram_dqm1);
if (width >= 32) {
writel(ddr->dram_dqm2, &mx6_ddr_iomux->dram_dqm2);
writel(ddr->dram_dqm3, &mx6_ddr_iomux->dram_dqm3);
}
}
/* Configure MX6DQ mmdc iomux */
void mx6dq_dram_iocfg(unsigned width,
const struct mx6dq_iomux_ddr_regs *ddr,
const struct mx6dq_iomux_grp_regs *grp)
{
volatile struct mx6dq_iomux_ddr_regs *mx6_ddr_iomux;
volatile struct mx6dq_iomux_grp_regs *mx6_grp_iomux;
mx6_ddr_iomux = (struct mx6dq_iomux_ddr_regs *)MX6DQ_IOM_DDR_BASE;
mx6_grp_iomux = (struct mx6dq_iomux_grp_regs *)MX6DQ_IOM_GRP_BASE;
/* DDR IO Type */
mx6_grp_iomux->grp_ddr_type = grp->grp_ddr_type;
mx6_grp_iomux->grp_ddrpke = grp->grp_ddrpke;
/* Clock */
mx6_ddr_iomux->dram_sdclk_0 = ddr->dram_sdclk_0;
mx6_ddr_iomux->dram_sdclk_1 = ddr->dram_sdclk_1;
/* Address */
mx6_ddr_iomux->dram_cas = ddr->dram_cas;
mx6_ddr_iomux->dram_ras = ddr->dram_ras;
mx6_grp_iomux->grp_addds = grp->grp_addds;
/* Control */
mx6_ddr_iomux->dram_reset = ddr->dram_reset;
mx6_ddr_iomux->dram_sdcke0 = ddr->dram_sdcke0;
mx6_ddr_iomux->dram_sdcke1 = ddr->dram_sdcke1;
mx6_ddr_iomux->dram_sdba2 = ddr->dram_sdba2;
mx6_ddr_iomux->dram_sdodt0 = ddr->dram_sdodt0;
mx6_ddr_iomux->dram_sdodt1 = ddr->dram_sdodt1;
mx6_grp_iomux->grp_ctlds = grp->grp_ctlds;
/* Data Strobes */
mx6_grp_iomux->grp_ddrmode_ctl = grp->grp_ddrmode_ctl;
mx6_ddr_iomux->dram_sdqs0 = ddr->dram_sdqs0;
mx6_ddr_iomux->dram_sdqs1 = ddr->dram_sdqs1;
if (width >= 32) {
mx6_ddr_iomux->dram_sdqs2 = ddr->dram_sdqs2;
mx6_ddr_iomux->dram_sdqs3 = ddr->dram_sdqs3;
}
if (width >= 64) {
mx6_ddr_iomux->dram_sdqs4 = ddr->dram_sdqs4;
mx6_ddr_iomux->dram_sdqs5 = ddr->dram_sdqs5;
mx6_ddr_iomux->dram_sdqs6 = ddr->dram_sdqs6;
mx6_ddr_iomux->dram_sdqs7 = ddr->dram_sdqs7;
}
/* Data */
mx6_grp_iomux->grp_ddrmode = grp->grp_ddrmode;
mx6_grp_iomux->grp_b0ds = grp->grp_b0ds;
mx6_grp_iomux->grp_b1ds = grp->grp_b1ds;
if (width >= 32) {
mx6_grp_iomux->grp_b2ds = grp->grp_b2ds;
mx6_grp_iomux->grp_b3ds = grp->grp_b3ds;
}
if (width >= 64) {
mx6_grp_iomux->grp_b4ds = grp->grp_b4ds;
mx6_grp_iomux->grp_b5ds = grp->grp_b5ds;
mx6_grp_iomux->grp_b6ds = grp->grp_b6ds;
mx6_grp_iomux->grp_b7ds = grp->grp_b7ds;
}
mx6_ddr_iomux->dram_dqm0 = ddr->dram_dqm0;
mx6_ddr_iomux->dram_dqm1 = ddr->dram_dqm1;
if (width >= 32) {
mx6_ddr_iomux->dram_dqm2 = ddr->dram_dqm2;
mx6_ddr_iomux->dram_dqm3 = ddr->dram_dqm3;
}
if (width >= 64) {
mx6_ddr_iomux->dram_dqm4 = ddr->dram_dqm4;
mx6_ddr_iomux->dram_dqm5 = ddr->dram_dqm5;
mx6_ddr_iomux->dram_dqm6 = ddr->dram_dqm6;
mx6_ddr_iomux->dram_dqm7 = ddr->dram_dqm7;
}
}
/* Configure MX6SDL mmdc iomux */
void mx6sdl_dram_iocfg(unsigned width,
const struct mx6sdl_iomux_ddr_regs *ddr,
const struct mx6sdl_iomux_grp_regs *grp)
{
volatile struct mx6sdl_iomux_ddr_regs *mx6_ddr_iomux;
volatile struct mx6sdl_iomux_grp_regs *mx6_grp_iomux;
mx6_ddr_iomux = (struct mx6sdl_iomux_ddr_regs *)MX6SDL_IOM_DDR_BASE;
mx6_grp_iomux = (struct mx6sdl_iomux_grp_regs *)MX6SDL_IOM_GRP_BASE;
/* DDR IO Type */
mx6_grp_iomux->grp_ddr_type = grp->grp_ddr_type;
mx6_grp_iomux->grp_ddrpke = grp->grp_ddrpke;
/* Clock */
mx6_ddr_iomux->dram_sdclk_0 = ddr->dram_sdclk_0;
mx6_ddr_iomux->dram_sdclk_1 = ddr->dram_sdclk_1;
/* Address */
mx6_ddr_iomux->dram_cas = ddr->dram_cas;
mx6_ddr_iomux->dram_ras = ddr->dram_ras;
mx6_grp_iomux->grp_addds = grp->grp_addds;
/* Control */
mx6_ddr_iomux->dram_reset = ddr->dram_reset;
mx6_ddr_iomux->dram_sdcke0 = ddr->dram_sdcke0;
mx6_ddr_iomux->dram_sdcke1 = ddr->dram_sdcke1;
mx6_ddr_iomux->dram_sdba2 = ddr->dram_sdba2;
mx6_ddr_iomux->dram_sdodt0 = ddr->dram_sdodt0;
mx6_ddr_iomux->dram_sdodt1 = ddr->dram_sdodt1;
mx6_grp_iomux->grp_ctlds = grp->grp_ctlds;
/* Data Strobes */
mx6_grp_iomux->grp_ddrmode_ctl = grp->grp_ddrmode_ctl;
mx6_ddr_iomux->dram_sdqs0 = ddr->dram_sdqs0;
mx6_ddr_iomux->dram_sdqs1 = ddr->dram_sdqs1;
if (width >= 32) {
mx6_ddr_iomux->dram_sdqs2 = ddr->dram_sdqs2;
mx6_ddr_iomux->dram_sdqs3 = ddr->dram_sdqs3;
}
if (width >= 64) {
mx6_ddr_iomux->dram_sdqs4 = ddr->dram_sdqs4;
mx6_ddr_iomux->dram_sdqs5 = ddr->dram_sdqs5;
mx6_ddr_iomux->dram_sdqs6 = ddr->dram_sdqs6;
mx6_ddr_iomux->dram_sdqs7 = ddr->dram_sdqs7;
}
/* Data */
mx6_grp_iomux->grp_ddrmode = grp->grp_ddrmode;
mx6_grp_iomux->grp_b0ds = grp->grp_b0ds;
mx6_grp_iomux->grp_b1ds = grp->grp_b1ds;
if (width >= 32) {
mx6_grp_iomux->grp_b2ds = grp->grp_b2ds;
mx6_grp_iomux->grp_b3ds = grp->grp_b3ds;
}
if (width >= 64) {
mx6_grp_iomux->grp_b4ds = grp->grp_b4ds;
mx6_grp_iomux->grp_b5ds = grp->grp_b5ds;
mx6_grp_iomux->grp_b6ds = grp->grp_b6ds;
mx6_grp_iomux->grp_b7ds = grp->grp_b7ds;
}
mx6_ddr_iomux->dram_dqm0 = ddr->dram_dqm0;
mx6_ddr_iomux->dram_dqm1 = ddr->dram_dqm1;
if (width >= 32) {
mx6_ddr_iomux->dram_dqm2 = ddr->dram_dqm2;
mx6_ddr_iomux->dram_dqm3 = ddr->dram_dqm3;
}
if (width >= 64) {
mx6_ddr_iomux->dram_dqm4 = ddr->dram_dqm4;
mx6_ddr_iomux->dram_dqm5 = ddr->dram_dqm5;
mx6_ddr_iomux->dram_dqm6 = ddr->dram_dqm6;
mx6_ddr_iomux->dram_dqm7 = ddr->dram_dqm7;
}
}
static void __udelay(int us)
{
volatile int i;
for (i = 0; i < us * 1000; i++);
}
/*
* Configure mx6 mmdc registers based on:
* - board-specific memory configuration
* - board-specific calibration data
* - ddr3 chip details
*
* The various calculations here are derived from the Freescale
* i.Mx6DQSDL DDR3 Script Aid spreadsheet (DOC-94917) designed to generate MMDC
* configuration registers based on memory system and memory chip parameters.
*
* The defaults here are those which were specified in the spreadsheet.
* For details on each register, refer to the IMX6DQRM and/or IMX6SDLRM
* section titled MMDC initialization
*/
#define MR(val, ba, cmd, cs1) \
((val << 16) | (1 << 15) | (cmd << 4) | (cs1 << 3) | ba)
#define ROUND(a,b) (((a) + (b) - 1) & ~((b) - 1))
void mx6_dram_cfg(const struct mx6_ddr_sysinfo *sysinfo,
const struct mx6_mmdc_calibration *calib,
const struct mx6_ddr3_cfg *ddr3_cfg)
{
volatile struct mmdc_p_regs *mmdc0;
volatile struct mmdc_p_regs *mmdc1;
u32 val;
u8 tcke, tcksrx, tcksre, txpdll, taofpd, taonpd, trrd;
u8 todtlon, taxpd, tanpd, tcwl, txp, tfaw, tcl;
u8 todt_idle_off = 0x4; /* from DDR3 Script Aid spreadsheet */
u16 trcd, trc, tras, twr, tmrd, trtp, trp, twtr, trfc, txs, txpr;
u16 cs0_end;
u16 tdllk = 0x1ff; /* DLL locking time: 512 cycles (JEDEC DDR3) */
u8 coladdr;
int clkper; /* clock period in picoseconds */
int clock; /* clock freq in MHz */
int cs;
u16 mem_speed = ddr3_cfg->mem_speed;
mmdc0 = (struct mmdc_p_regs *)MX6_MMDC_P0_BASE_ADDR;
mmdc1 = (struct mmdc_p_regs *)MX6_MMDC_P1_BASE_ADDR;
/* Limit mem_speed for MX6D/MX6Q */
if (cpu_mx6_is_mx6q() || cpu_mx6_is_mx6d()) {
if (mem_speed > 1066)
mem_speed = 1066; /* 1066 MT/s */
tcwl = 4;
}
/* Limit mem_speed for MX6S/MX6DL */
else {
if (mem_speed > 800)
mem_speed = 800; /* 800 MT/s */
tcwl = 3;
}
clock = mem_speed / 2;
/*
* Data rate of 1066 MT/s requires 533 MHz DDR3 clock, but MX6D/Q supports
* up to 528 MHz, so reduce the clock to fit chip specs
*/
if (cpu_mx6_is_mx6q() || cpu_mx6_is_mx6d()) {
if (clock > 528)
clock = 528; /* 528 MHz */
}
clkper = (1000 * 1000) / clock; /* pico seconds */
todtlon = tcwl;
taxpd = tcwl;
tanpd = tcwl;
switch (ddr3_cfg->density) {
case 1: /* 1Gb per chip */
trfc = DIV_ROUND_UP(110000, clkper) - 1;
txs = DIV_ROUND_UP(120000, clkper) - 1;
break;
case 2: /* 2Gb per chip */
trfc = DIV_ROUND_UP(160000, clkper) - 1;
txs = DIV_ROUND_UP(170000, clkper) - 1;
break;
case 4: /* 4Gb per chip */
trfc = DIV_ROUND_UP(260000, clkper) - 1;
txs = DIV_ROUND_UP(270000, clkper) - 1;
break;
case 8: /* 8Gb per chip */
trfc = DIV_ROUND_UP(350000, clkper) - 1;
txs = DIV_ROUND_UP(360000, clkper) - 1;
break;
default:
/* invalid density */
pr_err("invalid chip density\n");
hang();
break;
}
txpr = txs;
switch (mem_speed) {
case 800:
txp = DIV_ROUND_UP(max(3 * clkper, 7500), clkper) - 1;
tcke = DIV_ROUND_UP(max(3 * clkper, 7500), clkper) - 1;
if (ddr3_cfg->pagesz == 1) {
tfaw = DIV_ROUND_UP(40000, clkper) - 1;
trrd = DIV_ROUND_UP(max(4 * clkper, 10000), clkper) - 1;
} else {
tfaw = DIV_ROUND_UP(50000, clkper) - 1;
trrd = DIV_ROUND_UP(max(4 * clkper, 10000), clkper) - 1;
}
break;
case 1066:
txp = DIV_ROUND_UP(max(3 * clkper, 7500), clkper) - 1;
tcke = DIV_ROUND_UP(max(3 * clkper, 5625), clkper) - 1;
if (ddr3_cfg->pagesz == 1) {
tfaw = DIV_ROUND_UP(37500, clkper) - 1;
trrd = DIV_ROUND_UP(max(4 * clkper, 7500), clkper) - 1;
} else {
tfaw = DIV_ROUND_UP(50000, clkper) - 1;
trrd = DIV_ROUND_UP(max(4 * clkper, 10000), clkper) - 1;
}
break;
default:
pr_err("invalid memory speed\n");
hang();
break;
}
txpdll = DIV_ROUND_UP(max(10 * clkper, 24000), clkper) - 1;
tcksre = DIV_ROUND_UP(max(5 * clkper, 10000), clkper);
taonpd = DIV_ROUND_UP(2000, clkper) - 1;
tcksrx = tcksre;
taofpd = taonpd;
twr = DIV_ROUND_UP(15000, clkper) - 1;
tmrd = DIV_ROUND_UP(max(12 * clkper, 15000), clkper) - 1;
trc = DIV_ROUND_UP(ddr3_cfg->trcmin, clkper / 10) - 1;
tras = DIV_ROUND_UP(ddr3_cfg->trasmin, clkper / 10) - 1;
tcl = DIV_ROUND_UP(ddr3_cfg->trcd, clkper / 10) - 3;
trp = DIV_ROUND_UP(ddr3_cfg->trcd, clkper / 10) - 1;
twtr = ROUND(max(4 * clkper, 7500) / clkper, 1) - 1;
trcd = trp;
trtp = twtr;
cs0_end = min(4 * sysinfo->cs_density - 1 + 8, 127);
debug("density:%d Gb (%d Gb per chip)\n",
sysinfo->cs_density, ddr3_cfg->density);
debug("clock: %dMHz (%d ps)\n", clock, clkper);
debug("memspd:%d\n", mem_speed);
debug("tcke=%d\n", tcke);
debug("tcksrx=%d\n", tcksrx);
debug("tcksre=%d\n", tcksre);
debug("taofpd=%d\n", taofpd);
debug("taonpd=%d\n", taonpd);
debug("todtlon=%d\n", todtlon);
debug("tanpd=%d\n", tanpd);
debug("taxpd=%d\n", taxpd);
debug("trfc=%d\n", trfc);
debug("txs=%d\n", txs);
debug("txp=%d\n", txp);
debug("txpdll=%d\n", txpdll);
debug("tfaw=%d\n", tfaw);
debug("tcl=%d\n", tcl);
debug("trcd=%d\n", trcd);
debug("trp=%d\n", trp);
debug("trc=%d\n", trc);
debug("tras=%d\n", tras);
debug("twr=%d\n", twr);
debug("tmrd=%d\n", tmrd);
debug("tcwl=%d\n", tcwl);
debug("tdllk=%d\n", tdllk);
debug("trtp=%d\n", trtp);
debug("twtr=%d\n", twtr);
debug("trrd=%d\n", trrd);
debug("txpr=%d\n", txpr);
debug("cs0_end=%d\n", cs0_end);
debug("ncs=%d\n", sysinfo->ncs);
debug("Rtt_wr=%d\n", sysinfo->rtt_wr);
debug("Rtt_nom=%d\n", sysinfo->rtt_nom);
debug("SRT=%d\n", ddr3_cfg->SRT);
debug("tcl=%d\n", tcl);
debug("twr=%d\n", twr);
/*
* board-specific configuration:
* These values are determined empirically and vary per board layout
* see:
* appnote, ddr3 spreadsheet
*/
mmdc0->mpwldectrl0 = calib->p0_mpwldectrl0;
mmdc0->mpwldectrl1 = calib->p0_mpwldectrl1;
mmdc0->mpdgctrl0 = calib->p0_mpdgctrl0;
mmdc0->mpdgctrl1 = calib->p0_mpdgctrl1;
mmdc0->mprddlctl = calib->p0_mprddlctl;
mmdc0->mpwrdlctl = calib->p0_mpwrdlctl;
if (sysinfo->dsize > 1) {
mmdc1->mpwldectrl0 = calib->p1_mpwldectrl0;
mmdc1->mpwldectrl1 = calib->p1_mpwldectrl1;
mmdc1->mpdgctrl0 = calib->p1_mpdgctrl0;
mmdc1->mpdgctrl1 = calib->p1_mpdgctrl1;
mmdc1->mprddlctl = calib->p1_mprddlctl;
mmdc1->mpwrdlctl = calib->p1_mpwrdlctl;
}
/* Read data DQ Byte0-3 delay */
mmdc0->mprddqby0dl = 0x33333333;
mmdc0->mprddqby1dl = 0x33333333;
if (sysinfo->dsize > 0) {
mmdc0->mprddqby2dl = 0x33333333;
mmdc0->mprddqby3dl = 0x33333333;
}
if (sysinfo->dsize > 1) {
mmdc1->mprddqby0dl = 0x33333333;
mmdc1->mprddqby1dl = 0x33333333;
mmdc1->mprddqby2dl = 0x33333333;
mmdc1->mprddqby3dl = 0x33333333;
}
/* MMDC Termination: rtt_nom:2 RZQ/2(120ohm), rtt_nom:1 RZQ/4(60ohm) */
val = (sysinfo->rtt_nom == 2) ? 0x00011117 : 0x00022227;
mmdc0->mpodtctrl = val;
if (sysinfo->dsize > 1)
mmdc1->mpodtctrl = val;
/* complete calibration */
val = (1 << 11); /* Force measurement on delay-lines */
mmdc0->mpmur0 = val;
if (sysinfo->dsize > 1)
mmdc1->mpmur0 = val;
/* Step 1: configuration request */
mmdc0->mdscr = (u32)(1 << 15); /* config request */
/* Step 2: Timing configuration */
mmdc0->mdcfg0 = (trfc << 24) | (txs << 16) | (txp << 13) |
(txpdll << 9) | (tfaw << 4) | tcl;
mmdc0->mdcfg1 = (trcd << 29) | (trp << 26) | (trc << 21) |
(tras << 16) | (1 << 15) /* trpa */ |
(twr << 9) | (tmrd << 5) | tcwl;
mmdc0->mdcfg2 = (tdllk << 16) | (trtp << 6) | (twtr << 3) | trrd;
mmdc0->mdotc = (taofpd << 27) | (taonpd << 24) | (tanpd << 20) |
(taxpd << 16) | (todtlon << 12) | (todt_idle_off << 4);
mmdc0->mdasp = cs0_end; /* CS addressing */
/* Step 3: Configure DDR type */
mmdc0->mdmisc = (sysinfo->cs1_mirror << 19) | (sysinfo->walat << 16) |
(sysinfo->bi_on << 12) | (sysinfo->mif3_mode << 9) |
(sysinfo->ralat << 6);
/* Step 4: Configure delay while leaving reset */
mmdc0->mdor = (txpr << 16) | (sysinfo->sde_to_rst << 8) |
(sysinfo->rst_to_cke << 0);
/* Step 5: Configure DDR physical parameters (density and burst len) */
coladdr = ddr3_cfg->coladdr;
if (ddr3_cfg->coladdr == 8) /* 8-bit COL is 0x3 */
coladdr += 4;
else if (ddr3_cfg->coladdr == 12) /* 12-bit COL is 0x4 */
coladdr += 1;
mmdc0->mdctl = (ddr3_cfg->rowaddr - 11) << 24 | /* ROW */
(coladdr - 9) << 20 | /* COL */
(1 << 19) | /* Burst Length = 8 for DDR3 */
(sysinfo->dsize << 16); /* DDR data bus size */
/* Step 6: Perform ZQ calibration */
val = 0xa1390001; /* one-time HW ZQ calib */
mmdc0->mpzqhwctrl = val;
if (sysinfo->dsize > 1)
mmdc1->mpzqhwctrl = val;
/* Step 7: Enable MMDC with desired chip select */
mmdc0->mdctl |= (1 << 31) | /* SDE_0 for CS0 */
((sysinfo->ncs == 2) ? 1 : 0) << 30; /* SDE_1 for CS1 */
/* Step 8: Write Mode Registers to Init DDR3 devices */
for (cs = 0; cs < sysinfo->ncs; cs++) {
/* MR2 */
val = (sysinfo->rtt_wr & 3) << 9 | (ddr3_cfg->SRT & 1) << 7 |
((tcwl - 3) & 3) << 3;
debug("MR2 CS%d: 0x%08x\n", cs, (u32)MR(val, 2, 3, cs));
mmdc0->mdscr = MR(val, 2, 3, cs);
/* MR3 */
debug("MR3 CS%d: 0x%08x\n", cs, (u32)MR(0, 3, 3, cs));
mmdc0->mdscr = MR(0, 3, 3, cs);
/* MR1 */
val = ((sysinfo->rtt_nom & 1) ? 1 : 0) << 2 |
((sysinfo->rtt_nom & 2) ? 1 : 0) << 6;
debug("MR1 CS%d: 0x%08x\n", cs, (u32)MR(val, 1, 3, cs));
mmdc0->mdscr = MR(val, 1, 3, cs);
/* MR0 */
val = ((tcl - 1) << 4) | /* CAS */
(1 << 8) | /* DLL Reset */
((twr - 3) << 9) | /* Write Recovery */
(sysinfo->pd_fast_exit << 12); /* Precharge PD PLL on */
debug("MR0 CS%d: 0x%08x\n", cs, (u32)MR(val, 0, 3, cs));
mmdc0->mdscr = MR(val, 0, 3, cs);
/* ZQ calibration */
val = (1 << 10);
mmdc0->mdscr = MR(val, 0, 4, cs);
}
/* Step 10: Power down control and self-refresh */
mmdc0->mdpdc = (tcke & 0x7) << 16 |
5 << 12 | /* PWDT_1: 256 cycles */
5 << 8 | /* PWDT_0: 256 cycles */
1 << 6 | /* BOTH_CS_PD */
(tcksrx & 0x7) << 3 |
(tcksre & 0x7);
if (!sysinfo->pd_fast_exit)
mmdc0->mdpdc |= (1 << 7); /* SLOW_PD */
mmdc0->mapsr = 0x00001006; /* ADOPT power down enabled */
/* Step 11: Configure ZQ calibration: one-time and periodic 1ms */
val = 0xa1390003;
mmdc0->mpzqhwctrl = val;
if (sysinfo->dsize > 1)
mmdc1->mpzqhwctrl = val;
/* Step 12: Configure and activate periodic refresh */
mmdc0->mdref = (1 << 14) | /* REF_SEL: Periodic refresh cycle: 32kHz */
(7 << 11); /* REFR: Refresh Rate - 8 refreshes */
/* Step 13: Deassert config request - init complete */
mmdc0->mdscr = 0x00000000;
/* wait for auto-ZQ calibration to complete */
__udelay(100);
}