9
0
Fork 0
barebox/arch/arm/cpu/mmu.c

436 lines
9.9 KiB
C

/*
* start-pbl.c
*
* Copyright (c) 2009-2013 Sascha Hauer <s.hauer@pengutronix.de>, Pengutronix
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "mmu: " fmt
#include <common.h>
#include <init.h>
#include <asm/mmu.h>
#include <errno.h>
#include <sizes.h>
#include <asm/memory.h>
#include <asm/barebox-arm.h>
#include <asm/system.h>
#include <asm/cache.h>
#include <memory.h>
#include <asm/system_info.h>
#include "mmu.h"
static unsigned long *ttb;
static void create_sections(unsigned long virt, unsigned long phys, int size_m,
unsigned int flags)
{
int i;
phys >>= 20;
virt >>= 20;
for (i = size_m; i > 0; i--, virt++, phys++)
ttb[virt] = (phys << 20) | flags;
__mmu_cache_flush();
}
/*
* Do it the simple way for now and invalidate the entire
* tlb
*/
static inline void tlb_invalidate(void)
{
asm volatile (
"mov r0, #0\n"
"mcr p15, 0, r0, c7, c10, 4; @ drain write buffer\n"
"mcr p15, 0, r0, c8, c6, 0; @ invalidate D TLBs\n"
"mcr p15, 0, r0, c8, c5, 0; @ invalidate I TLBs\n"
:
:
: "r0"
);
}
extern int arm_architecture;
#define PTE_FLAGS_CACHED_V7 (PTE_EXT_TEX(1) | PTE_BUFFERABLE | PTE_CACHEABLE)
#define PTE_FLAGS_UNCACHED_V7 (0)
#define PTE_FLAGS_CACHED_V4 (PTE_SMALL_AP_UNO_SRW | PTE_BUFFERABLE | PTE_CACHEABLE)
#define PTE_FLAGS_UNCACHED_V4 PTE_SMALL_AP_UNO_SRW
/*
* PTE flags to set cached and uncached areas.
* This will be determined at runtime.
*/
static uint32_t pte_flags_cached;
static uint32_t pte_flags_uncached;
#define PTE_MASK ((1 << 12) - 1)
uint32_t mmu_get_pte_cached_flags()
{
return pte_flags_cached;
}
uint32_t mmu_get_pte_uncached_flags()
{
return pte_flags_uncached;
}
static void arm_mmu_not_initialized_error(void)
{
/*
* This means:
* - one of the MMU functions like dma_alloc_coherent
* or remap_range is called too early, before the MMU is initialized
* - Or the MMU initialization has failed earlier
*/
panic("MMU not initialized\n");
}
/*
* Create a second level translation table for the given virtual address.
* We initially create a flat uncached mapping on it.
* Not yet exported, but may be later if someone finds use for it.
*/
static u32 *arm_create_pte(unsigned long virt)
{
u32 *table;
int i;
table = memalign(0x400, 0x400);
if (!ttb)
arm_mmu_not_initialized_error();
ttb[virt >> 20] = (unsigned long)table | PMD_TYPE_TABLE;
for (i = 0; i < 256; i++) {
table[i] = virt | PTE_TYPE_SMALL | pte_flags_uncached;
virt += PAGE_SIZE;
}
return table;
}
static u32 *find_pte(unsigned long adr)
{
u32 *table;
if (!ttb)
arm_mmu_not_initialized_error();
if ((ttb[adr >> 20] & PMD_TYPE_MASK) != PMD_TYPE_TABLE) {
struct memory_bank *bank;
int i = 0;
/*
* This should only be called for page mapped memory inside our
* memory banks. It's a bug to call it with section mapped memory
* locations.
*/
pr_crit("%s: TTB for address 0x%08lx is not of type table\n",
__func__, adr);
pr_crit("Memory banks:\n");
for_each_memory_bank(bank)
pr_crit("#%d 0x%08lx - 0x%08lx\n", i, bank->start,
bank->start + bank->size - 1);
BUG();
}
/* find the coarse page table base address */
table = (u32 *)(ttb[adr >> 20] & ~0x3ff);
/* find second level descriptor */
return &table[(adr >> PAGE_SHIFT) & 0xff];
}
void remap_range(void *_start, size_t size, uint32_t flags)
{
unsigned long start = (unsigned long)_start;
u32 *p;
int numentries, i;
numentries = size >> PAGE_SHIFT;
p = find_pte(start);
for (i = 0; i < numentries; i++) {
p[i] &= ~PTE_MASK;
p[i] |= flags | PTE_TYPE_SMALL;
}
dma_flush_range((unsigned long)p,
(unsigned long)p + numentries * sizeof(u32));
tlb_invalidate();
}
void *map_io_sections(unsigned long phys, void *_start, size_t size)
{
unsigned long start = (unsigned long)_start, sec;
phys >>= 20;
for (sec = start; sec < start + size; sec += (1 << 20))
ttb[sec >> 20] = (phys++ << 20) | PMD_SECT_DEF_UNCACHED;
tlb_invalidate();
return _start;
}
/*
* remap the memory bank described by mem cachable and
* bufferable
*/
static int arm_mmu_remap_sdram(struct memory_bank *bank)
{
unsigned long phys = (unsigned long)bank->start;
unsigned long ttb_start = phys >> 20;
unsigned long ttb_end = (phys >> 20) + (bank->size >> 20);
unsigned long num_ptes = bank->size >> 10;
int i, pte;
u32 *ptes;
pr_debug("remapping SDRAM from 0x%08lx (size 0x%08lx)\n",
phys, bank->size);
/*
* We replace each 1MiB section in this range with second level page
* tables, therefore we must have 1Mib aligment here.
*/
if ((phys & (SZ_1M - 1)) || (bank->size & (SZ_1M - 1)))
return -EINVAL;
ptes = xmemalign(PAGE_SIZE, num_ptes * sizeof(u32));
pr_debug("ptes: 0x%p ttb_start: 0x%08lx ttb_end: 0x%08lx\n",
ptes, ttb_start, ttb_end);
for (i = 0; i < num_ptes; i++) {
ptes[i] = (phys + i * PAGE_SIZE) | PTE_TYPE_SMALL |
pte_flags_cached;
}
pte = 0;
for (i = ttb_start; i < ttb_end; i++) {
ttb[i] = (unsigned long)(&ptes[pte]) | PMD_TYPE_TABLE |
(0 << 4);
pte += 256;
}
dma_flush_range((unsigned long)ttb, (unsigned long)ttb + 0x4000);
dma_flush_range((unsigned long)ptes, num_ptes * sizeof(u32));
tlb_invalidate();
return 0;
}
/*
* We have 8 exception vectors and the table consists of absolute
* jumps, so we need 8 * 4 bytes for the instructions and another
* 8 * 4 bytes for the addresses.
*/
#define ARM_VECTORS_SIZE (sizeof(u32) * 8 * 2)
/*
* Map vectors and zero page
*/
static void vectors_init(void)
{
u32 *exc, *zero = NULL;
void *vectors;
u32 cr;
cr = get_cr();
cr |= CR_V;
set_cr(cr);
cr = get_cr();
if (cr & CR_V) {
/*
* If we can use high vectors, create the second level
* page table for the high vectors and zero page
*/
exc = arm_create_pte(0xfff00000);
zero = arm_create_pte(0x0);
/* Set the zero page to faulting */
zero[0] = 0;
} else {
/*
* Otherwise map the vectors to the zero page. We have to
* live without being able to catch NULL pointer dereferences
*/
exc = arm_create_pte(0x0);
}
arm_fixup_vectors();
vectors = xmemalign(PAGE_SIZE, PAGE_SIZE);
memset(vectors, 0, PAGE_SIZE);
memcpy(vectors, __exceptions_start, __exceptions_stop - __exceptions_start);
if (cr & CR_V)
exc[256 - 16] = (u32)vectors | PTE_TYPE_SMALL |
pte_flags_cached;
else
exc[0] = (u32)vectors | PTE_TYPE_SMALL | pte_flags_cached;
}
/*
* Prepare MMU for usage enable it.
*/
static int mmu_init(void)
{
struct memory_bank *bank;
int i;
if (list_empty(&memory_banks))
/*
* If you see this it means you have no memory registered.
* This can be done either with arm_add_mem_device() in an
* initcall prior to mmu_initcall or via devicetree in the
* memory node.
*/
panic("MMU: No memory bank found! Cannot continue\n");
arm_set_cache_functions();
if (cpu_architecture() >= CPU_ARCH_ARMv7) {
pte_flags_cached = PTE_FLAGS_CACHED_V7;
pte_flags_uncached = PTE_FLAGS_UNCACHED_V7;
} else {
pte_flags_cached = PTE_FLAGS_CACHED_V4;
pte_flags_uncached = PTE_FLAGS_UNCACHED_V4;
}
if (get_cr() & CR_M) {
/*
* Early MMU code has already enabled the MMU. We assume a
* flat 1:1 section mapping in this case.
*/
asm volatile ("mrc p15,0,%0,c2,c0,0" : "=r"(ttb));
/* Clear unpredictable bits [13:0] */
ttb = (unsigned long *)((unsigned long)ttb & ~0x3fff);
if (!request_sdram_region("ttb", (unsigned long)ttb, SZ_16K))
/*
* This can mean that:
* - the early MMU code has put the ttb into a place
* which we don't have inside our available memory
* - Somebody else has occupied the ttb region which means
* the ttb will get corrupted.
*/
pr_crit("Critical Error: Can't request SDRAM region for ttb at %p\n",
ttb);
} else {
ttb = memalign(0x10000, 0x4000);
}
pr_debug("ttb: 0x%p\n", ttb);
/* Set the ttb register */
asm volatile ("mcr p15,0,%0,c2,c0,0" : : "r"(ttb) /*:*/);
/* Set the Domain Access Control Register */
i = 0x3;
asm volatile ("mcr p15,0,%0,c3,c0,0" : : "r"(i) /*:*/);
/* create a flat mapping using 1MiB sections */
create_sections(0, 0, PAGE_SIZE, PMD_SECT_AP_WRITE | PMD_SECT_AP_READ |
PMD_TYPE_SECT);
vectors_init();
/*
* First remap sdram cached using sections.
* This is to speed up the generation of 2nd level page tables
* below
*/
for_each_memory_bank(bank)
create_sections(bank->start, bank->start, bank->size >> 20,
PMD_SECT_DEF_CACHED);
__mmu_cache_on();
/*
* Now that we have the MMU and caches on remap sdram again using
* page tables
*/
for_each_memory_bank(bank)
arm_mmu_remap_sdram(bank);
return 0;
}
mmu_initcall(mmu_init);
void *dma_alloc_coherent(size_t size)
{
void *ret;
size = PAGE_ALIGN(size);
ret = xmemalign(PAGE_SIZE, size);
dma_inv_range((unsigned long)ret, (unsigned long)ret + size);
remap_range(ret, size, pte_flags_uncached);
return ret;
}
unsigned long virt_to_phys(void *virt)
{
return (unsigned long)virt;
}
void *phys_to_virt(unsigned long phys)
{
return (void *)phys;
}
void dma_free_coherent(void *mem, size_t size)
{
size = PAGE_ALIGN(size);
remap_range(mem, size, pte_flags_cached);
free(mem);
}
void dma_clean_range(unsigned long start, unsigned long end)
{
if (outer_cache.clean_range)
outer_cache.clean_range(start, end);
__dma_clean_range(start, end);
}
void dma_flush_range(unsigned long start, unsigned long end)
{
if (outer_cache.flush_range)
outer_cache.flush_range(start, end);
__dma_flush_range(start, end);
}
void dma_inv_range(unsigned long start, unsigned long end)
{
if (outer_cache.inv_range)
outer_cache.inv_range(start, end);
__dma_inv_range(start, end);
}