9
0
Fork 0
barebox/drivers/mtd/spi-nor/cadence-quadspi.c

1219 lines
31 KiB
C

/*
* Copyright (C) 2015 Pengutronix, Steffen Trumtrar <s.trumtrar@pengutronix.de>
*
* derived from Linux kernel driver by
*
* Driver for Cadence QSPI Controller
*
* Copyright Altera Corporation (C) 2012-2014. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <clock.h>
#include <common.h>
#include <driver.h>
#include <errno.h>
#include <init.h>
#include <io.h>
#include <linux/clk.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/spi-nor.h>
#include <of.h>
#include <platform_data/cadence_qspi.h>
#include <spi/spi.h>
#define CQSPI_MAX_CHIPSELECT 16
struct cqspi_flash_pdata {
struct mtd_info mtd;
struct spi_nor nor;
u32 clk_rate;
unsigned int block_size;
unsigned int read_delay;
unsigned int tshsl_ns;
unsigned int tsd2d_ns;
unsigned int tchsh_ns;
unsigned int tslch_ns;
};
struct cqspi_st {
struct device_d *dev;
struct clk *l4_mp_clk;
struct clk *qspi_clk;
unsigned int sclk;
void __iomem *iobase;
void __iomem *ahb_base;
unsigned int irq_mask;
int current_cs;
unsigned int master_ref_clk_hz;
unsigned int ext_decoder;
unsigned int fifo_depth;
struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
bool no_reconfig;
};
/* Operation timeout value */
#define CQSPI_TIMEOUT_MS 800 * MSECOND
#define CQSPI_READ_TIMEOUT_MS 100 * MSECOND
#define CQSPI_POLL_IDLE_RETRY 3
#define CQSPI_FIFO_WIDTH 4
#define CQSPI_REG_SRAM_THRESHOLD_BYTES 50
/* Instruction type */
#define CQSPI_INST_TYPE_SINGLE 0
#define CQSPI_INST_TYPE_DUAL 1
#define CQSPI_INST_TYPE_QUAD 2
#define CQSPI_DUMMY_CLKS_PER_BYTE 8
#define CQSPI_DUMMY_BYTES_MAX 4
#define CQSPI_STIG_DATA_LEN_MAX 8
#define CQSPI_INDIRECTTRIGGER_ADDR_MASK 0xFFFFF
/* Register map */
#define CQSPI_REG_CONFIG 0x00
#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
#define CQSPI_REG_CONFIG_BAUD_LSB 19
#define CQSPI_REG_CONFIG_IDLE_LSB 31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
#define CQSPI_REG_RD_INSTR 0x04
#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
#define CQSPI_REG_WR_INSTR 0x08
#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
#define CQSPI_REG_DELAY 0x0C
#define CQSPI_REG_DELAY_TSLCH_LSB 0
#define CQSPI_REG_DELAY_TCHSH_LSB 8
#define CQSPI_REG_DELAY_TSD2D_LSB 16
#define CQSPI_REG_DELAY_TSHSL_LSB 24
#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
#define CQSPI_REG_READCAPTURE 0x10
#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
#define CQSPI_REG_SIZE 0x14
#define CQSPI_REG_SIZE_ADDRESS_LSB 0
#define CQSPI_REG_SIZE_PAGE_LSB 4
#define CQSPI_REG_SIZE_BLOCK_LSB 16
#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
#define CQSPI_REG_SRAMPARTITION 0x18
#define CQSPI_REG_INDIRECTTRIGGER 0x1C
#define CQSPI_REG_DMA 0x20
#define CQSPI_REG_DMA_SINGLE_LSB 0
#define CQSPI_REG_DMA_BURST_LSB 8
#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
#define CQSPI_REG_DMA_BURST_MASK 0xFF
#define CQSPI_REG_REMAP 0x24
#define CQSPI_REG_MODE_BIT 0x28
#define CQSPI_REG_SRAMLEVEL 0x2C
#define CQSPI_REG_SRAMLEVEL_RD_LSB 0
#define CQSPI_REG_SRAMLEVEL_WR_LSB 16
#define CQSPI_REG_SRAMLEVEL_RD_MASK 0xFFFF
#define CQSPI_REG_SRAMLEVEL_WR_MASK 0xFFFF
#define CQSPI_REG_IRQSTATUS 0x40
#define CQSPI_REG_IRQMASK 0x44
#define CQSPI_REG_INDIRECTRD 0x60
#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
#define CQSPI_REG_INDIRECTRDBYTES 0x6C
#define CQSPI_REG_CMDCTRL 0x90
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
#define CQSPI_REG_INDIRECTWR 0x70
#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
#define CQSPI_REG_INDIRECTWRBYTES 0x7C
#define CQSPI_REG_CMDADDRESS 0x94
#define CQSPI_REG_CMDREADDATALOWER 0xA0
#define CQSPI_REG_CMDREADDATAUPPER 0xA4
#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
/* Interrupt status bits */
#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
#define CQSPI_REG_IRQ_IND_COMP BIT(2)
#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
#define CQSPI_REG_IRQ_WATERMARK BIT(6)
#define CQSPI_REG_IRQ_IND_RD_OVERFLOW BIT(12)
#define CQSPI_IRQ_STATUS_ERR (CQSPI_REG_IRQ_MODE_ERR | \
CQSPI_REG_IRQ_IND_RD_REJECT | \
CQSPI_REG_IRQ_WR_PROTECTED_ERR | \
CQSPI_REG_IRQ_ILLEGAL_AHB_ERR)
#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
CQSPI_REG_IRQ_IND_RD_OVERFLOW | \
CQSPI_REG_IRQ_IND_COMP)
#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
CQSPI_REG_IRQ_WATERMARK | \
CQSPI_REG_IRQ_UNDERFLOW)
#define CQSPI_IRQ_STATUS_MASK 0x1FFFE
#define CQSPI_REG_IS_IDLE(base) \
((readl(base + CQSPI_REG_CONFIG) >> \
CQSPI_REG_CONFIG_IDLE_LSB) & 0x1)
#define CQSPI_GET_RD_SRAM_LEVEL(reg_base) \
(((readl(reg_base + CQSPI_REG_SRAMLEVEL)) >> \
CQSPI_REG_SRAMLEVEL_RD_LSB) & CQSPI_REG_SRAMLEVEL_RD_MASK)
static void cqspi_fifo_read(void *dest, const void *src_ahb_addr,
unsigned int bytes)
{
unsigned int temp;
int remaining = bytes;
unsigned int *dest_ptr = (unsigned int *)dest;
unsigned int *src_ptr = (unsigned int *)src_ahb_addr;
while (remaining > CQSPI_FIFO_WIDTH) {
*dest_ptr = readl(src_ptr);
dest_ptr++;
remaining -= CQSPI_FIFO_WIDTH;
}
if (remaining > 0) {
/* dangling bytes */
temp = readl(src_ptr);
memcpy(dest_ptr, &temp, remaining);
}
}
static void cqspi_fifo_write(void *dest_ahb_addr,
const void *src, unsigned int bytes)
{
unsigned int temp;
int remaining = bytes;
unsigned int *dest_ptr = (unsigned int *)dest_ahb_addr;
unsigned int *src_ptr = (unsigned int *)src;
while (remaining > CQSPI_FIFO_WIDTH) {
writel(*src_ptr, dest_ptr);
src_ptr++;
remaining -= CQSPI_FIFO_WIDTH;
}
if (remaining > 0) {
/* dangling bytes */
memcpy(&temp, src_ptr, remaining);
writel(temp, dest_ptr);
}
}
static int cqspi_find_chipselect(struct spi_nor *nor)
{
int cs = -1;
struct cqspi_st *cqspi = nor->priv;
for (cs = 0; cs < CQSPI_MAX_CHIPSELECT; cs++)
if (nor == &cqspi->f_pdata[cs].nor)
break;
return cs;
}
static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, u8 opcode)
{
unsigned int rdreg = 0;
struct cqspi_st *cqspi = nor->priv;
struct cqspi_flash_pdata *f_pdata;
f_pdata = &cqspi->f_pdata[cqspi->current_cs];
if (nor->flash_read == SPI_NOR_QUAD)
rdreg |= (CQSPI_INST_TYPE_QUAD
<< CQSPI_REG_RD_INSTR_TYPE_DATA_LSB);
return rdreg;
}
static unsigned int cqspi_wait_idle(struct cqspi_st *cqspi)
{
void __iomem *reg_base = cqspi->iobase;
if (wait_on_timeout(CQSPI_TIMEOUT_MS,
CQSPI_REG_IS_IDLE(reg_base))) {
/* Timeout, in busy mode. */
dev_err(cqspi->dev, "QSPI is still busy after %llums timeout.\n",
CQSPI_TIMEOUT_MS);
return -ETIMEDOUT;
}
return 0;
}
static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
{
void __iomem *reg_base = cqspi->iobase;
/* Write the CMDCTRL without start execution. */
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
/* Start execute */
reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
if (wait_on_timeout(CQSPI_TIMEOUT_MS,
(readl(reg_base + CQSPI_REG_CMDCTRL) &
CQSPI_REG_CMDCTRL_INPROGRESS_MASK) == 0)) {
dev_err(cqspi->dev, "flash cmd execute time out (0x%08x)\n",
readl(reg_base + CQSPI_REG_CMDCTRL));
return -EIO;
}
/* Polling QSPI idle status. */
return cqspi_wait_idle(cqspi);
}
static int cqspi_command_read(struct spi_nor *nor,
const u8 *txbuf, unsigned n_tx,
u8 *rxbuf, unsigned n_rx)
{
unsigned int reg;
unsigned int read_len;
int status;
struct cqspi_st *cqspi = nor->priv;
void __iomem *reg_base = cqspi->iobase;
unsigned int rdreg;
if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || rxbuf == NULL) {
dev_err(nor->dev,
"Invalid input argument, len %d rxbuf 0x%08x\n", n_rx,
(unsigned int)rxbuf);
return -EINVAL;
}
reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
/* 0 means 1 byte. */
reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
status = cqspi_exec_flash_cmd(cqspi, reg);
if (status != 0)
return status;
reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
/* Put the read value into rx_buf */
read_len = (n_rx > 4) ? 4 : n_rx;
memcpy(rxbuf, &reg, read_len);
rxbuf += read_len;
if (n_rx > 4) {
reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
read_len = n_rx - read_len;
memcpy(rxbuf, &reg, read_len);
}
return 0;
}
static __maybe_unused int cqspi_command_write(struct spi_nor *nor,
u8 opcode, const u8 *txbuf, unsigned n_tx)
{
unsigned int reg;
unsigned int data;
struct cqspi_st *cqspi = nor->priv;
void __iomem *reg_base = cqspi->iobase;
if (n_tx > 4 || (n_tx && txbuf == NULL)) {
dev_err(nor->dev,
"Invalid input argument, cmdlen %d txbuf 0x%08x\n",
n_tx, (unsigned int)txbuf);
return -EINVAL;
}
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
if (n_tx) {
reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
data = 0;
memcpy(&data, txbuf, n_tx);
writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
}
return cqspi_exec_flash_cmd(cqspi, reg);
}
static int cqspi_command_write_addr(struct spi_nor *nor,
u8 opcode, unsigned int addr)
{
unsigned int reg;
struct cqspi_st *cqspi = nor->priv;
void __iomem *reg_base = cqspi->iobase;
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
return cqspi_exec_flash_cmd(cqspi, reg);
}
static int cqspi_indirect_read_setup(struct spi_nor *nor,
unsigned int from_addr)
{
struct cqspi_st *cqspi = nor->priv;
unsigned int ahb_base = (unsigned int) cqspi->ahb_base;
void __iomem *reg_base = cqspi->iobase;
unsigned int dummy_clk = 0;
unsigned int dummy_bytes;
unsigned int reg = 0;
writel(ahb_base & CQSPI_INDIRECTTRIGGER_ADDR_MASK,
reg_base + CQSPI_REG_INDIRECTTRIGGER);
writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
/* Setup dummy clock cycles */
dummy_bytes = nor->read_dummy / 8;
if (dummy_bytes) {
struct cqspi_flash_pdata *f_pdata;
f_pdata = &cqspi->f_pdata[cqspi->current_cs];
if (dummy_bytes > CQSPI_DUMMY_BYTES_MAX)
dummy_bytes = CQSPI_DUMMY_BYTES_MAX;
reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
/* Set mode bits high to ensure chip doesn't enter XIP */
writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
/* Convert to clock cycles. */
dummy_clk = dummy_bytes * CQSPI_DUMMY_CLKS_PER_BYTE;
/* Need to subtract the mode byte (8 clocks). */
dummy_clk -= CQSPI_DUMMY_CLKS_PER_BYTE;
if (dummy_clk)
reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
<< CQSPI_REG_RD_INSTR_DUMMY_LSB;
}
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
/* Set address width */
reg = readl(reg_base + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (nor->addr_width) - 1;
writel(reg, reg_base + CQSPI_REG_SIZE);
return 0;
}
static int cqspi_indirect_read_execute(struct spi_nor *nor,
u8 *rxbuf, unsigned n_rx)
{
int ret = 0;
unsigned int reg = 0;
unsigned int bytes_to_read = 0;
unsigned int watermark;
struct cqspi_st *cqspi = nor->priv;
void __iomem *reg_base = cqspi->iobase;
void __iomem *ahb_base = cqspi->ahb_base;
int remaining = (int)n_rx;
watermark = cqspi->fifo_depth * CQSPI_FIFO_WIDTH / 2;
writel(watermark, reg_base + CQSPI_REG_INDIRECTRDWATERMARK);
writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
/* Clear all interrupts. */
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
cqspi->irq_mask = CQSPI_IRQ_MASK_RD;
writel(cqspi->irq_mask, reg_base + CQSPI_REG_IRQMASK);
writel(CQSPI_REG_INDIRECTRD_START_MASK,
reg_base + CQSPI_REG_INDIRECTRD);
while (remaining > 0) {
unsigned int irq_status;
ret = wait_on_timeout(CQSPI_READ_TIMEOUT_MS,
readl(reg_base + CQSPI_REG_IRQSTATUS) & cqspi->irq_mask);
irq_status = readl(reg_base + CQSPI_REG_IRQSTATUS);
bytes_to_read = CQSPI_GET_RD_SRAM_LEVEL(reg_base);
/* Clear all interrupts. */
writel(irq_status, reg_base + CQSPI_REG_IRQSTATUS);
if (!ret && bytes_to_read == 0) {
dev_err(nor->dev, "Indirect read timeout, no bytes\n");
ret = -ETIMEDOUT;
goto failrd;
}
while (bytes_to_read != 0) {
bytes_to_read *= CQSPI_FIFO_WIDTH;
bytes_to_read = bytes_to_read > remaining
? remaining : bytes_to_read;
cqspi_fifo_read(rxbuf, ahb_base, bytes_to_read);
rxbuf += bytes_to_read;
remaining -= bytes_to_read;
bytes_to_read = CQSPI_GET_RD_SRAM_LEVEL(reg_base);
}
}
/* Check indirect done status */
if (wait_on_timeout(CQSPI_TIMEOUT_MS,
readl(reg_base + CQSPI_REG_INDIRECTRD) &
CQSPI_REG_INDIRECTRD_DONE_MASK)) {
dev_err(nor->dev,
"Indirect read completion error 0x%08x\n", reg);
ret = -ETIMEDOUT;
goto failrd;
}
/* Disable interrupt */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
return 0;
failrd:
/* Disable interrupt */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Cancel the indirect read */
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
reg_base + CQSPI_REG_INDIRECTRD);
return ret;
}
static __maybe_unused int cqspi_indirect_write_setup(struct spi_nor *nor,
unsigned int to_addr)
{
unsigned int reg;
struct cqspi_st *cqspi = nor->priv;
void __iomem *reg_base = cqspi->iobase;
/* Set opcode. */
reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
writel(reg, reg_base + CQSPI_REG_WR_INSTR);
reg = cqspi_calc_rdreg(nor, nor->program_opcode);
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
reg = readl(reg_base + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (nor->addr_width - 1);
writel(reg, reg_base + CQSPI_REG_SIZE);
return 0;
}
static __maybe_unused int cqspi_indirect_write_execute(struct spi_nor *nor,
const u8 *txbuf, unsigned n_tx)
{
int ret;
unsigned int reg = 0;
struct cqspi_st *cqspi = nor->priv;
void __iomem *reg_base = cqspi->iobase;
void __iomem *ahb_base = cqspi->ahb_base;
int remaining = (int)n_tx;
unsigned int page_size;
unsigned int write_bytes;
page_size = nor->page_size;
writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
writel(CQSPI_REG_SRAM_THRESHOLD_BYTES, reg_base +
CQSPI_REG_INDIRECTWRWATERMARK);
/* Clear all interrupts. */
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
cqspi->irq_mask = CQSPI_IRQ_MASK_WR;
writel(cqspi->irq_mask, reg_base + CQSPI_REG_IRQMASK);
writel(CQSPI_REG_INDIRECTWR_START_MASK,
reg_base + CQSPI_REG_INDIRECTWR);
/* Write a page or remaining bytes. */
write_bytes = remaining > page_size ? page_size : remaining;
/* Fill up the data at the beginning */
cqspi_fifo_write(ahb_base, txbuf, write_bytes);
txbuf += write_bytes;
remaining -= write_bytes;
while (remaining > 0) {
ret = wait_on_timeout(CQSPI_READ_TIMEOUT_MS,
readl(reg_base + CQSPI_REG_IRQSTATUS) & cqspi->irq_mask);
/* Clear all interrupts. */
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
if (ret < 0) {
dev_err(nor->dev, "Indirect write timeout\n");
ret = -ETIMEDOUT;
goto failwr;
}
write_bytes = remaining > page_size ? page_size : remaining;
cqspi_fifo_write(ahb_base, txbuf, write_bytes);
txbuf += write_bytes;
remaining -= write_bytes;
writel(cqspi->irq_mask, reg_base + CQSPI_REG_IRQMASK);
}
ret = wait_on_timeout(CQSPI_READ_TIMEOUT_MS,
readl(reg_base + CQSPI_REG_IRQSTATUS) & cqspi->irq_mask);
/* Clear all interrupts. */
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
if (ret < 0) {
dev_err(nor->dev, "Indirect write timeout\n");
ret = -ETIMEDOUT;
goto failwr;
}
/* Check indirect done status */
if (wait_on_timeout(CQSPI_TIMEOUT_MS,
readl(reg_base + CQSPI_REG_INDIRECTWR)
& CQSPI_REG_INDIRECTWR_DONE_MASK)) {
dev_err(nor->dev,
"Indirect write completion error 0x%08x\n", reg);
ret = -ETIMEDOUT;
goto failwr;
}
/* Disable interrupt. */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
cqspi_wait_idle(cqspi);
return 0;
failwr:
/* Disable interrupt. */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Cancel the indirect write */
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
reg_base + CQSPI_REG_INDIRECTWR);
return ret;
}
static void cqspi_write(struct spi_nor *nor, loff_t to,
size_t len, size_t *retlen, const u_char *buf)
{
int ret;
if (!IS_ENABLED(CONFIG_MTD_WRITE))
return;
ret = cqspi_indirect_write_setup(nor, to);
if (ret == 0) {
ret = cqspi_indirect_write_execute(nor, buf, len);
if (ret == 0)
*retlen += len;
}
}
static int cqspi_read(struct spi_nor *nor, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
int ret;
ret = cqspi_indirect_read_setup(nor, from);
if (ret == 0) {
ret = cqspi_indirect_read_execute(nor, buf, len);
if (ret == 0)
*retlen += len;
}
return ret;
}
static int cqspi_erase(struct spi_nor *nor, loff_t offs)
{
int ret;
/* Send write enable, then erase commands. */
ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
if (ret)
return ret;
/* Set up command buffer. */
ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
if (ret)
return ret;
return 0;
}
static unsigned int calculate_ticks_for_ns(unsigned int ref_clk_hz,
unsigned int ns_val)
{
unsigned int ticks;
ticks = ref_clk_hz;
ticks /= 1000;
ticks *= ns_val;
ticks += 999999;
ticks /= 1000000;
return ticks;
}
static void cqspi_delay(struct cqspi_st *cqspi,
unsigned int ref_clk_hz, unsigned int sclk_hz)
{
void __iomem *reg_base = cqspi->iobase;
struct cqspi_flash_pdata *f_pdata;
unsigned int ref_clk_ns;
unsigned int sclk_ns;
unsigned int tshsl, tchsh, tslch, tsd2d;
unsigned int reg;
unsigned int tsclk;
if (cqspi->no_reconfig)
return;
f_pdata = &cqspi->f_pdata[cqspi->current_cs];
/* Convert to ns. */
ref_clk_ns = NSEC_PER_SEC / ref_clk_hz;
/* Convert to ns. */
sclk_ns = NSEC_PER_SEC / sclk_hz;
/* calculate the number of ref ticks for one sclk tick */
tsclk = (ref_clk_hz + sclk_hz - 1) / sclk_hz;
tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
/* this particular value must be at least one sclk */
if (tshsl < tsclk)
tshsl = tsclk;
tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
reg = ((tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
<< CQSPI_REG_DELAY_TSHSL_LSB);
reg |= ((tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
<< CQSPI_REG_DELAY_TCHSH_LSB);
reg |= ((tslch & CQSPI_REG_DELAY_TSLCH_MASK)
<< CQSPI_REG_DELAY_TSLCH_LSB);
reg |= ((tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
<< CQSPI_REG_DELAY_TSD2D_LSB);
writel(reg, reg_base + CQSPI_REG_DELAY);
}
static void cqspi_config_baudrate_div(struct cqspi_st *cqspi,
unsigned int ref_clk_hz,
unsigned int sclk_hz)
{
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
unsigned int div;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
div = ref_clk_hz / sclk_hz;
/* Recalculate the baudrate divisor based on QSPI specification. */
if (div > 32)
div = 32;
/* Check if even number. */
if (div & 1)
div = (div / 2);
else
div = (div / 2) - 1;
div = (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
reg |= div;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static void cqspi_readdata_capture(struct cqspi_st *cqspi,
unsigned int bypass, unsigned int delay)
{
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
if (cqspi->no_reconfig)
return;
reg = readl(reg_base + CQSPI_REG_READCAPTURE);
if (bypass)
reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
else
reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
<< CQSPI_REG_READCAPTURE_DELAY_LSB);
reg |= ((delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
<< CQSPI_REG_READCAPTURE_DELAY_LSB);
writel(reg, reg_base + CQSPI_REG_READCAPTURE);
}
static void cqspi_chipselect(struct cqspi_st *cqspi,
unsigned int chip_select,
unsigned int decoder_enable)
{
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
if (decoder_enable) {
reg |= CQSPI_REG_CONFIG_DECODE_MASK;
} else {
reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
/* Convert CS if without decoder.
* CS0 to 4b'1110
* CS1 to 4b'1101
* CS2 to 4b'1011
* CS3 to 4b'0111
*/
chip_select = 0xF & ~(1 << chip_select);
}
reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB);
reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static void cqspi_controller_enable(struct cqspi_st *cqspi)
{
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static void cqspi_controller_disable(struct cqspi_st *cqspi)
{
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static void cqspi_switch_cs(struct cqspi_st *cqspi, unsigned int cs)
{
unsigned int reg;
struct cqspi_flash_pdata *f_pdata = &cqspi->f_pdata[cs];
void __iomem *reg_base = cqspi->iobase;
struct spi_nor *nor = &f_pdata->nor;
cqspi_controller_disable(cqspi);
/* configure page size and block size. */
reg = readl(reg_base + CQSPI_REG_SIZE);
reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
reg |= (f_pdata->block_size << CQSPI_REG_SIZE_BLOCK_LSB);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (nor->addr_width - 1);
writel(reg, reg_base + CQSPI_REG_SIZE);
/* configure the chip select */
cqspi_chipselect(cqspi, cs, cqspi->ext_decoder);
cqspi_controller_enable(cqspi);
}
static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct cqspi_st *cqspi = nor->priv;
int cs = cqspi_find_chipselect(nor);
struct cqspi_flash_pdata *f_pdata;
unsigned int sclk;
/* Switch chip select. */
if (cqspi->current_cs != cs) {
cqspi->current_cs = cs;
cqspi_switch_cs(cqspi, cs);
}
/* Setup baudrate divisor and delays */
f_pdata = &cqspi->f_pdata[cqspi->current_cs];
sclk = f_pdata->clk_rate;
if (cqspi->sclk != sclk) {
cqspi->sclk = sclk;
cqspi_controller_disable(cqspi);
cqspi_config_baudrate_div(cqspi,
cqspi->master_ref_clk_hz, sclk);
cqspi_delay(cqspi, cqspi->master_ref_clk_hz, sclk);
cqspi_readdata_capture(cqspi, 1, f_pdata->read_delay);
cqspi_controller_enable(cqspi);
}
return 0;
}
static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
int ret;
cqspi_prep(nor, SPI_NOR_OPS_READ);
ret = cqspi_command_read(nor, &opcode, 1, buf, len);
return ret;
}
static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
int write_enable)
{
int ret = 0;
if (!IS_ENABLED(CONFIG_MTD_WRITE))
return -ENOTSUPP;
cqspi_prep(nor, SPI_NOR_OPS_WRITE);
ret = cqspi_command_write(nor, opcode, buf, len);
return ret;
}
static int cqspi_of_get_flash_pdata(struct device_d *dev,
struct cqspi_flash_pdata *f_pdata,
struct device_node *np)
{
struct cqspi_st *cqspi = dev->priv;
void __iomem *reg_base = cqspi->iobase;
if (!np) {
f_pdata->block_size = (readl(reg_base + CQSPI_REG_SIZE) >>
CQSPI_REG_SIZE_BLOCK_LSB) &
CQSPI_REG_SIZE_BLOCK_MASK;
cqspi->no_reconfig = true;
return 0;
}
if (of_property_read_u32(np, "cdns,block-size", &f_pdata->block_size)) {
dev_err(dev, "couldn't determine block-size\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
dev_err(dev, "couldn't determine read-delay\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
dev_err(dev, "couldn't determine tshsl-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
dev_err(dev, "couldn't determine tsd2d-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
dev_err(dev, "couldn't determine tchsh-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
dev_err(dev, "couldn't determine tslch-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
dev_err(dev, "couldn't determine spi-max-frequency\n");
return -ENXIO;
}
return 0;
}
static int cqspi_parse_dt(struct cqspi_st *cqspi)
{
struct device_node *np = cqspi->dev->device_node;
struct device_d *dev = cqspi->dev;
if (of_property_read_u32(np, "ext-decoder", &cqspi->ext_decoder)) {
dev_err(dev, "couldn't determine ext-decoder\n");
return -ENXIO;
}
if (of_property_read_u32(np, "fifo-depth", &cqspi->fifo_depth)) {
dev_err(dev, "couldn't determine fifo-depth\n");
return -ENXIO;
}
return 0;
}
static int cqspi_setup_flash(struct device_d *dev,
struct cqspi_flash_pdata *f_pdata,
struct device_node *np)
{
struct cqspi_st *cqspi = dev->priv;
struct mtd_info *mtd;
struct spi_nor *nor;
int ret;
ret = cqspi_of_get_flash_pdata(dev, f_pdata, np);
if (ret)
goto probe_failed;
nor = &f_pdata->nor;
mtd = &f_pdata->mtd;
nor->mtd = mtd;
if (np) {
nor->dev = xzalloc(sizeof(*nor->dev));
strcpy(nor->dev->name, np->name);
nor->dev->device_node = np;
nor->dev->id = DEVICE_ID_SINGLE;
nor->dev->parent = dev;
ret = register_device(nor->dev);
if (ret)
return ret;
mtd->parent = nor->dev;
} else {
nor->dev = dev;
}
nor->priv = cqspi;
mtd->priv = nor;
nor->read_reg = cqspi_read_reg;
nor->write_reg = cqspi_write_reg;
nor->read = cqspi_read;
nor->write = cqspi_write;
nor->erase = cqspi_erase;
ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD, false);
if (ret)
goto probe_failed;
ret = add_mtd_device(mtd, NULL, DEVICE_ID_DYNAMIC);
if (ret)
goto probe_failed;
return 0;
probe_failed:
dev_err(dev, "probing for flashchip failed\n");
return ret;
}
static void cqspi_controller_init(struct cqspi_st *cqspi)
{
cqspi_controller_disable(cqspi);
/* Configure the remap address register, no remap */
writel(0, cqspi->iobase + CQSPI_REG_REMAP);
/* Disable all interrupts */
writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
cqspi_controller_enable(cqspi);
}
static int cqspi_probe(struct device_d *dev)
{
struct resource *iores;
struct device_node *np = dev->device_node;
struct cqspi_st *cqspi;
struct cadence_qspi_platform_data *pdata = dev->platform_data;
int ret;
cqspi = kzalloc(sizeof(*cqspi), GFP_KERNEL);
if (!cqspi)
return -ENOMEM;
cqspi->dev = dev;
dev->priv = cqspi;
if (pdata) {
cqspi->ext_decoder = pdata->ext_decoder;
cqspi->fifo_depth = pdata->fifo_depth;
} else {
ret = cqspi_parse_dt(cqspi);
if (ret) {
dev_err(dev, "Get platform data failed.\n");
return -ENODEV;
}
}
cqspi->qspi_clk = clk_get(dev, "qspi_clk");
if (IS_ERR(cqspi->qspi_clk)) {
dev_err(dev, "cannot get qspi clk\n");
ret = PTR_ERR(cqspi->qspi_clk);
goto probe_failed;
}
cqspi->master_ref_clk_hz = clk_get_rate(cqspi->qspi_clk);
clk_enable(cqspi->qspi_clk);
iores = dev_request_mem_resource(dev, 0);
if (IS_ERR(iores))
return PTR_ERR(iores);
cqspi->iobase = IOMEM(iores->start);
if (IS_ERR(cqspi->iobase)) {
dev_err(dev, "dev_request_mem_region 0 failed\n");
ret = PTR_ERR(cqspi->iobase);
goto probe_failed;
}
iores = dev_request_mem_resource(dev, 1);
if (IS_ERR(iores))
return PTR_ERR(iores);
cqspi->ahb_base = IOMEM(iores->start);
if (IS_ERR(cqspi->ahb_base)) {
dev_err(dev, "dev_request_mem_region 0 failed\n");
ret = PTR_ERR(cqspi->ahb_base);
goto probe_failed;
}
cqspi_wait_idle(cqspi);
cqspi_controller_init(cqspi);
cqspi->current_cs = -1;
cqspi->sclk = 0;
if (!dev->device_node) {
struct cqspi_flash_pdata *f_pdata;
f_pdata = &cqspi->f_pdata[0];
ret = cqspi_setup_flash(dev, f_pdata, NULL);
if (ret)
goto probe_failed;
} else {
/* Get flash device data */
for_each_available_child_of_node(dev->device_node, np) {
struct cqspi_flash_pdata *f_pdata;
unsigned int cs;
if (of_property_read_u32(np, "reg", &cs)) {
dev_err(dev, "couldn't determine chip select\n");
return -ENXIO;
}
if (cs > CQSPI_MAX_CHIPSELECT) {
dev_err(dev, "chip select %d out of range\n", cs);
return -ENXIO;
}
f_pdata = &cqspi->f_pdata[cs];
ret = cqspi_setup_flash(dev, f_pdata, np);
if (ret)
goto probe_failed;
}
}
dev_info(dev, "Cadence QSPI NOR flash driver\n");
return 0;
probe_failed:
dev_err(dev, "Cadence QSPI NOR probe failed\n");
return ret;
}
static __maybe_unused struct of_device_id cqspi_dt_ids[] = {
{.compatible = "cdns,qspi-nor",},
{ /* end of table */ }
};
static struct driver_d cqspi_driver = {
.name = "cadence_qspi",
.probe = cqspi_probe,
.of_compatible = DRV_OF_COMPAT(cqspi_dt_ids),
};
device_platform_driver(cqspi_driver);