9
0
Fork 0
barebox/drivers/of/base.c

1086 lines
23 KiB
C

/*
* base.c - basic devicetree functions
*
* Copyright (c) 2012 Sascha Hauer <s.hauer@pengutronix.de>, Pengutronix
*
* based on Linux devicetree support
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <common.h>
#include <of.h>
#include <errno.h>
#include <libfdt.h>
#include <malloc.h>
#include <init.h>
#include <memory.h>
#include <sizes.h>
#include <linux/ctype.h>
#include <linux/amba/bus.h>
/**
* struct alias_prop - Alias property in 'aliases' node
* @link: List node to link the structure in aliases_lookup list
* @alias: Alias property name
* @np: Pointer to device_node that the alias stands for
* @id: Index value from end of alias name
* @stem: Alias string without the index
*
* The structure represents one alias property of 'aliases' node as
* an entry in aliases_lookup list.
*/
struct alias_prop {
struct list_head link;
const char *alias;
struct device_node *np;
int id;
char stem[0];
};
static LIST_HEAD(aliases_lookup);
static LIST_HEAD(phandle_list);
static LIST_HEAD(allnodes);
struct device_node *root_node;
struct device_node *of_aliases;
int of_n_addr_cells(struct device_node *np)
{
const __be32 *ip;
do {
if (np->parent)
np = np->parent;
ip = of_get_property(np, "#address-cells", NULL);
if (ip)
return be32_to_cpup(ip);
} while (np->parent);
/* No #address-cells property for the root node */
return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_addr_cells);
int of_n_size_cells(struct device_node *np)
{
const __be32 *ip;
do {
if (np->parent)
np = np->parent;
ip = of_get_property(np, "#size-cells", NULL);
if (ip)
return be32_to_cpup(ip);
} while (np->parent);
/* No #size-cells property for the root node */
return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_size_cells);
static void of_bus_default_count_cells(struct device_node *dev,
int *addrc, int *sizec)
{
if (addrc)
*addrc = of_n_addr_cells(dev);
if (sizec)
*sizec = of_n_size_cells(dev);
}
void of_bus_count_cells(struct device_node *dev,
int *addrc, int *sizec)
{
of_bus_default_count_cells(dev, addrc, sizec);
}
struct property *of_find_property(const struct device_node *node, const char *name)
{
struct property *p;
if (!node)
return NULL;
list_for_each_entry(p, &node->properties, list)
if (!strcmp(p->name, name))
return p;
return NULL;
}
EXPORT_SYMBOL(of_find_property);
static void of_alias_add(struct alias_prop *ap, struct device_node *np,
int id, const char *stem, int stem_len)
{
ap->np = np;
ap->id = id;
strncpy(ap->stem, stem, stem_len);
ap->stem[stem_len] = 0;
list_add_tail(&ap->link, &aliases_lookup);
pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
ap->alias, ap->stem, ap->id, np->full_name);
}
/**
* of_alias_scan - Scan all properties of 'aliases' node
*
* The function scans all the properties of 'aliases' node and populates
* the global lookup table with the properties. It returns the
* number of alias_prop found, or error code in error case.
*/
void of_alias_scan(void)
{
struct property *pp;
struct alias_prop *app, *tmp;
list_for_each_entry_safe(app, tmp, &aliases_lookup, link)
free(app);
INIT_LIST_HEAD(&aliases_lookup);
of_aliases = of_find_node_by_path("/aliases");
if (!of_aliases)
return;
list_for_each_entry(pp, &of_aliases->properties, list) {
const char *start = pp->name;
const char *end = start + strlen(start);
struct device_node *np;
struct alias_prop *ap;
int id, len;
/* Skip those we do not want to proceed */
if (!strcmp(pp->name, "name") ||
!strcmp(pp->name, "phandle") ||
!strcmp(pp->name, "linux,phandle"))
continue;
np = of_find_node_by_path(pp->value);
if (!np)
continue;
/* walk the alias backwards to extract the id and work out
* the 'stem' string */
while (isdigit(*(end-1)) && end > start)
end--;
len = end - start;
id = simple_strtol(end, 0, 10);
if (id < 0)
continue;
/* Allocate an alias_prop with enough space for the stem */
ap = xzalloc(sizeof(*ap) + len + 1);
if (!ap)
continue;
ap->alias = start;
of_alias_add(ap, np, id, start, len);
}
}
/**
* of_alias_get_id - Get alias id for the given device_node
* @np: Pointer to the given device_node
* @stem: Alias stem of the given device_node
*
* The function travels the lookup table to get alias id for the given
* device_node and alias stem. It returns the alias id if find it.
*/
int of_alias_get_id(struct device_node *np, const char *stem)
{
struct alias_prop *app;
int id = -ENODEV;
list_for_each_entry(app, &aliases_lookup, link) {
if (strcmp(app->stem, stem) != 0)
continue;
if (np == app->np) {
id = app->id;
break;
}
}
return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_id);
u64 of_translate_address(struct device_node *node, const __be32 *in_addr)
{
struct property *p;
u64 addr = be32_to_cpu(*in_addr);
while (1) {
int na, nc;
if (!node->parent)
return addr;
node = node->parent;
p = of_find_property(node, "ranges");
if (!p && node->parent)
return OF_BAD_ADDR;
of_bus_count_cells(node, &na, &nc);
if (na != 1 || nc != 1) {
printk("%s: #size-cells != 1 or #address-cells != 1 "
"currently not supported\n", node->name);
return OF_BAD_ADDR;
}
}
}
EXPORT_SYMBOL(of_translate_address);
/*
* of_find_node_by_phandle - Find a node given a phandle
* @handle: phandle of the node to find
*/
struct device_node *of_find_node_by_phandle(phandle phandle)
{
struct device_node *node;
list_for_each_entry(node, &phandle_list, phandles)
if (node->phandle == phandle)
return node;
return NULL;
}
EXPORT_SYMBOL(of_find_node_by_phandle);
/*
* Find a property with a given name for a given node
* and return the value.
*/
const void *of_get_property(const struct device_node *np, const char *name,
int *lenp)
{
struct property *pp = of_find_property(np, name);
if (!pp)
return NULL;
if (lenp)
*lenp = pp->length;
return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(of_get_property);
/** Checks if the given "compat" string matches one of the strings in
* the device's "compatible" property
*/
int of_device_is_compatible(const struct device_node *device,
const char *compat)
{
const char *cp;
int cplen, l;
cp = of_get_property(device, "compatible", &cplen);
if (cp == NULL)
return 0;
while (cplen > 0) {
if (strcmp(cp, compat) == 0)
return 1;
l = strlen(cp) + 1;
cp += l;
cplen -= l;
}
return 0;
}
EXPORT_SYMBOL(of_device_is_compatible);
int of_match(struct device_d *dev, struct driver_d *drv)
{
struct of_device_id *id;
id = drv->of_compatible;
while (id->compatible) {
if (of_device_is_compatible(dev->device_node, id->compatible) == 1) {
dev->of_id_entry = id;
return 0;
}
id++;
}
return 1;
}
EXPORT_SYMBOL(of_match);
/**
* of_property_read_u32_array - Find and read an array of 32 bit integers
* from a property.
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @out_value: pointer to return value, modified only if return value is 0.
*
* Search for a property in a device node and read 32-bit value(s) from
* it. Returns 0 on success, -EINVAL if the property does not exist,
* -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*
* The out_value is modified only if a valid u32 value can be decoded.
*/
int of_property_read_u32_array(const struct device_node *np,
const char *propname, u32 *out_values,
size_t sz)
{
struct property *prop = of_find_property(np, propname);
const __be32 *val;
if (!prop)
return -EINVAL;
if (!prop->value)
return -ENODATA;
if ((sz * sizeof(*out_values)) > prop->length)
return -EOVERFLOW;
val = prop->value;
while (sz--)
*out_values++ = be32_to_cpup(val++);
return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u32_array);
/**
* of_parse_phandles_with_args - Find a node pointed by phandle in a list
* @np: pointer to a device tree node containing a list
* @list_name: property name that contains a list
* @cells_name: property name that specifies phandles' arguments count
* @index: index of a phandle to parse out
* @out_node: optional pointer to device_node struct pointer (will be filled)
* @out_args: optional pointer to arguments pointer (will be filled)
*
* This function is useful to parse lists of phandles and their arguments.
* Returns 0 on success and fills out_node and out_args, on error returns
* appropriate errno value.
*
* Example:
*
* phandle1: node1 {
* #list-cells = <2>;
* }
*
* phandle2: node2 {
* #list-cells = <1>;
* }
*
* node3 {
* list = <&phandle1 1 2 &phandle2 3>;
* }
*
* To get a device_node of the `node2' node you may call this:
* of_parse_phandles_with_args(node3, "list", "#list-cells", 2, &node2, &args);
*/
int of_parse_phandles_with_args(struct device_node *np, const char *list_name,
const char *cells_name, int index,
struct device_node **out_node,
const void **out_args)
{
int ret = -EINVAL;
const __be32 *list;
const __be32 *list_end;
int size;
int cur_index = 0;
struct device_node *node = NULL;
const void *args = NULL;
list = of_get_property(np, list_name, &size);
if (!list) {
ret = -ENOENT;
goto err0;
}
list_end = list + size / sizeof(*list);
while (list < list_end) {
const __be32 *cells;
phandle phandle;
phandle = be32_to_cpup(list++);
args = list;
/* one cell hole in the list = <>; */
if (!phandle)
goto next;
node = of_find_node_by_phandle(phandle);
if (!node) {
pr_debug("%s: could not find phandle %d\n",
np->full_name, phandle);
goto err0;
}
cells = of_get_property(node, cells_name, &size);
if (!cells || size != sizeof(*cells)) {
pr_debug("%s: could not get %s for %s\n",
np->full_name, cells_name, node->full_name);
goto err1;
}
list += be32_to_cpup(cells);
if (list > list_end) {
pr_debug("%s: insufficient arguments length\n",
np->full_name);
goto err1;
}
next:
if (cur_index == index)
break;
node = NULL;
args = NULL;
cur_index++;
}
if (!node) {
/*
* args w/o node indicates that the loop above has stopped at
* the 'hole' cell. Report this differently.
*/
if (args)
ret = -EEXIST;
else
ret = -ENOENT;
goto err0;
}
if (out_node)
*out_node = node;
if (out_args)
*out_args = args;
return 0;
err1:
err0:
pr_debug("%s failed with status %d\n", __func__, ret);
return ret;
}
EXPORT_SYMBOL(of_parse_phandles_with_args);
/**
* of_machine_is_compatible - Test root of device tree for a given compatible value
* @compat: compatible string to look for in root node's compatible property.
*
* Returns true if the root node has the given value in its
* compatible property.
*/
int of_machine_is_compatible(const char *compat)
{
if (!root_node)
return 0;
return of_device_is_compatible(root_node, compat);
}
EXPORT_SYMBOL(of_machine_is_compatible);
/**
* of_find_node_by_path - Find a node matching a full OF path
* @path: The full path to match
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_node_by_path(const char *path)
{
struct device_node *np;
if (!strcmp(path, "/"))
return root_node;
list_for_each_entry(np, &allnodes, list) {
if (np->full_name && (strcmp(np->full_name, path) == 0))
return np;
}
return NULL;
}
EXPORT_SYMBOL(of_find_node_by_path);
/**
* of_property_read_string - Find and read a string from a property
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @out_string: pointer to null terminated return string, modified only if
* return value is 0.
*
* Search for a property in a device tree node and retrieve a null
* terminated string value (pointer to data, not a copy). Returns 0 on
* success, -EINVAL if the property does not exist, -ENODATA if property
* does not have a value, and -EILSEQ if the string is not null-terminated
* within the length of the property data.
*
* The out_string pointer is modified only if a valid string can be decoded.
*/
int of_property_read_string(struct device_node *np, const char *propname,
const char **out_string)
{
struct property *prop = of_find_property(np, propname);
if (!prop)
return -EINVAL;
if (!prop->value)
return -ENODATA;
if (strnlen(prop->value, prop->length) >= prop->length)
return -EILSEQ;
*out_string = prop->value;
return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_string);
struct device_node *of_get_root_node(void)
{
return root_node;
}
static int of_node_disabled(struct device_node *node)
{
struct property *p;
p = of_find_property(node, "status");
if (p) {
if (!strcmp("disabled", p->value))
return 1;
}
return 0;
}
void of_print_nodes(struct device_node *node, int indent)
{
struct device_node *n;
struct property *p;
int i;
if (!node)
return;
if (of_node_disabled(node))
return;
for (i = 0; i < indent; i++)
printf("\t");
printf("%s%s\n", node->name, node->name ? " {" : "{");
list_for_each_entry(p, &node->properties, list) {
for (i = 0; i < indent + 1; i++)
printf("\t");
printf("%s: ", p->name);
of_print_property(p->value, p->length);
printf("\n");
}
list_for_each_entry(n, &node->children, parent_list) {
of_print_nodes(n, indent + 1);
}
for (i = 0; i < indent; i++)
printf("\t");
printf("};\n");
}
struct device_node *of_new_node(struct device_node *parent, const char *name)
{
struct device_node *node;
if (!parent && root_node)
return NULL;
node = xzalloc(sizeof(*node));
node->parent = parent;
if (parent)
list_add_tail(&node->parent_list, &parent->children);
else
root_node = node;
INIT_LIST_HEAD(&node->children);
INIT_LIST_HEAD(&node->properties);
if (parent) {
node->name = xstrdup(name);
node->full_name = asprintf("%s/%s", node->parent->full_name, name);
} else {
node->name = xstrdup("");
node->full_name = xstrdup("");
}
list_add_tail(&node->list, &allnodes);
return node;
}
struct property *of_new_property(struct device_node *node, const char *name,
const void *data, int len)
{
struct property *prop;
prop = xzalloc(sizeof(*prop));
prop->name = strdup(name);
prop->length = len;
prop->value = xzalloc(len);
memcpy(prop->value, data, len);
list_add_tail(&prop->list, &node->properties);
return prop;
}
void of_delete_property(struct property *pp)
{
list_del(&pp->list);
free(pp->name);
free(pp->value);
free(pp);
}
static struct device_d *add_of_amba_device(struct device_node *node)
{
struct amba_device *dev;
char *name, *at;
dev = xzalloc(sizeof(*dev));
name = xstrdup(node->name);
at = strchr(name, '@');
if (at) {
*at = 0;
snprintf(dev->dev.name, MAX_DRIVER_NAME, "%s.%s", at + 1, name);
} else {
strncpy(dev->dev.name, node->name, MAX_DRIVER_NAME);
}
dev->dev.id = DEVICE_ID_SINGLE;
memcpy(&dev->res, &node->resource[0], sizeof(struct resource));
dev->dev.resource = node->resource;
dev->dev.num_resources = 1;
dev->dev.device_node = node;
node->device = &dev->dev;
of_property_read_u32(node, "arm,primecell-periphid", &dev->periphid);
debug("register device 0x%08x\n", node->resource[0].start);
amba_device_add(dev);
free(name);
return &dev->dev;
}
static struct device_d *add_of_platform_device(struct device_node *node)
{
struct device_d *dev;
char *name, *at;
dev = xzalloc(sizeof(*dev));
name = xstrdup(node->name);
at = strchr(name, '@');
if (at) {
*at = 0;
snprintf(dev->name, MAX_DRIVER_NAME, "%s.%s", at + 1, name);
} else {
strncpy(dev->name, node->name, MAX_DRIVER_NAME);
}
dev->id = DEVICE_ID_SINGLE;
dev->resource = node->resource;
dev->num_resources = 1;
dev->device_node = node;
node->device = dev;
debug("register device 0x%08x\n", node->resource[0].start);
platform_device_register(dev);
free(name);
return dev;
}
static struct device_d *add_of_device(struct device_node *node)
{
const struct property *cp;
if (of_node_disabled(node))
return NULL;
cp = of_get_property(node, "compatible", NULL);
if (!cp)
return NULL;
if (IS_ENABLED(CONFIG_ARM_AMBA) &&
of_device_is_compatible(node, "arm,primecell") == 1)
return add_of_amba_device(node);
else
return add_of_platform_device(node);
}
EXPORT_SYMBOL(add_of_device);
u64 dt_mem_next_cell(int s, const __be32 **cellp)
{
const __be32 *p = *cellp;
*cellp = p + s;
return of_read_number(p, s);
}
static int of_add_memory(struct device_node *node)
{
int na, nc;
const __be32 *reg, *endp;
int len, r = 0;
static char str[6];
of_bus_count_cells(node, &na, &nc);
reg = of_get_property(node, "reg", &len);
if (!reg)
return 0;
endp = reg + (len / sizeof(__be32));
while ((endp - reg) >= (na + nc)) {
u64 base, size;
base = dt_mem_next_cell(na, &reg);
size = dt_mem_next_cell(nc, &reg);
if (size == 0)
continue;
sprintf(str, "ram%d", r);
barebox_add_memory_bank(str, base, size);
r++;
}
return 0;
}
static int add_of_device_resource(struct device_node *node)
{
struct property *reg, *type;
u64 address, size;
struct resource *res;
struct device_d *dev;
phandle phandle;
int ret;
ret = of_property_read_u32(node, "phandle", &phandle);
if (!ret) {
node->phandle = phandle;
list_add_tail(&node->phandles, &phandle_list);
}
type = of_find_property(node, "device_type");
if (type)
return of_add_memory(node);
reg = of_find_property(node, "reg");
if (!reg)
return -ENODEV;
address = of_translate_address(node, reg->value);
if (address == OF_BAD_ADDR)
return -EINVAL;
size = be32_to_cpu(((u32 *)reg->value)[1]);
/*
* A device may already be registered as platform_device.
* Instead of registering the same device again, just
* add this node to the existing device.
*/
for_each_device(dev) {
if (!dev->resource)
continue;
if (dev->resource->start == address) {
debug("connecting %s to %s\n", node->name, dev_name(dev));
node->device = dev;
dev->device_node = node;
node->resource = dev->resource;
return 0;
}
}
res = xzalloc(sizeof(*res));
res->start = address;
res->end = address + size - 1;
res->flags = IORESOURCE_MEM;
node->resource = res;
add_of_device(node);
return 0;
}
void of_free(struct device_node *node)
{
struct device_node *n, *nt;
struct property *p, *pt;
if (!node)
return;
list_del(&node->list);
list_for_each_entry_safe(p, pt, &node->properties, list) {
list_del(&p->list);
free(p->name);
free(p->value);
free(p);
}
list_for_each_entry_safe(n, nt, &node->children, parent_list) {
of_free(n);
}
if (node->parent)
list_del(&node->parent_list);
if (node->device)
node->device->device_node = NULL;
else
free(node->resource);
free(node->name);
free(node->full_name);
free(node);
if (node == root_node)
root_node = NULL;
of_alias_scan();
}
static void __of_probe(struct device_node *node)
{
struct device_node *n;
if (node->device)
return;
add_of_device_resource(node);
list_for_each_entry(n, &node->children, parent_list)
__of_probe(n);
}
struct device_node *of_chosen;
const char *of_model;
const char *of_get_model(void)
{
return of_model;
}
int of_probe(void)
{
if(!root_node)
return -ENODEV;
of_chosen = of_find_node_by_path("/chosen");
of_property_read_string(root_node, "model", &of_model);
__of_probe(root_node);
return 0;
}
static struct device_node *of_find_child(struct device_node *node, const char *name)
{
struct device_node *_n;
if (!root_node)
return NULL;
if (!node && !*name)
return root_node;
if (!node)
node = root_node;
list_for_each_entry(_n, &node->children, parent_list) {
if (!strcmp(_n->name, name))
return _n;
}
return NULL;
}
/*
* Parse a flat device tree binary blob and store it in the barebox
* internal tree format,
*/
int of_unflatten_dtb(struct fdt_header *fdt)
{
const void *nodep; /* property node pointer */
int nodeoffset; /* node offset from libfdt */
int nextoffset; /* next node offset from libfdt */
uint32_t tag; /* tag */
int len; /* length of the property */
int level = 0; /* keep track of nesting level */
const struct fdt_property *fdt_prop;
const char *pathp;
int depth = 10000;
struct device_node *node = NULL, *n;
struct property *p;
nodeoffset = fdt_path_offset(fdt, "/");
if (nodeoffset < 0) {
/*
* Not found or something else bad happened.
*/
printf ("libfdt fdt_path_offset() returned %s\n",
fdt_strerror(nodeoffset));
return -EINVAL;
}
while (1) {
tag = fdt_next_tag(fdt, nodeoffset, &nextoffset);
switch (tag) {
case FDT_BEGIN_NODE:
pathp = fdt_get_name(fdt, nodeoffset, NULL);
if (pathp == NULL)
pathp = "/* NULL pointer error */";
n = of_find_child(node, pathp);
if (n) {
node = n;
} else {
node = of_new_node(node, pathp);
}
break;
case FDT_END_NODE:
node = node->parent;
break;
case FDT_PROP:
fdt_prop = fdt_offset_ptr(fdt, nodeoffset,
sizeof(*fdt_prop));
pathp = fdt_string(fdt,
fdt32_to_cpu(fdt_prop->nameoff));
len = fdt32_to_cpu(fdt_prop->len);
nodep = fdt_prop->data;
p = of_find_property(node, pathp);
if (p) {
free(p->value);
p->value = xzalloc(len);
memcpy(p->value, nodep, len);
} else {
of_new_property(node, pathp, nodep, len);
}
break;
case FDT_NOP:
break;
case FDT_END:
of_alias_scan();
return 0;
default:
if (level <= depth)
printf("Unknown tag 0x%08X\n", tag);
return -EINVAL;
}
nodeoffset = nextoffset;
}
return 0;
}
static int __of_flatten_dtb(void *fdt, struct device_node *node)
{
struct property *p;
struct device_node *n;
int ret;
ret = fdt_begin_node(fdt, node->name);
if (ret)
return ret;
list_for_each_entry(p, &node->properties, list) {
ret = fdt_property(fdt, p->name, p->value, p->length);
if (ret)
return ret;
}
list_for_each_entry(n, &node->children, parent_list) {
ret = __of_flatten_dtb(fdt, n);
if (ret)
return ret;
}
ret = fdt_end_node(fdt);
return ret;
}
#define DTB_SIZE SZ_128K
void *of_flatten_dtb(void)
{
void *fdt;
int ret;
if (!root_node)
return NULL;
fdt = malloc(DTB_SIZE);
if (!fdt)
return NULL;
memset(fdt, 0, DTB_SIZE);
ret = fdt_create(fdt, DTB_SIZE);
if (ret)
goto out_free;
ret = fdt_finish_reservemap(fdt);
if (ret)
goto out_free;
ret = __of_flatten_dtb(fdt, root_node);
if (ret)
goto out_free;
fdt_finish(fdt);
return fdt;
out_free:
free(fdt);
return NULL;
}
int of_device_is_stdout_path(struct device_d *dev)
{
struct device_node *dn;
const char *name;
name = of_get_property(of_chosen, "linux,stdout-path", NULL);
if (name == NULL)
return 0;
dn = of_find_node_by_path(name);
if (!dn)
return 0;
if (dn == dev->device_node)
return 1;
return 0;
}