9
0
Fork 0
barebox/drivers/nand/nand_imx.c

1232 lines
29 KiB
C

/*
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
/*
* MX21 Hardware contains a bug which causes HW ECC to fail for two
* consecutive read pages containing 1bit Errors (See MX21 Chip Erata,
* Erratum 16). Use software ECC for this chip.
*/
#include <common.h>
#include <driver.h>
#include <malloc.h>
#include <init.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <asm/arch/imx-nand.h>
#include <asm/arch/imx-regs.h>
#include <asm/io.h>
#include <errno.h>
#define NFMS (*((volatile u32 *)(IMX_SYSTEM_CTL_BASE + 0x14)))
#define NFMS_BIT 5
#define DVR_VER "2.0"
/*
* Addresses for NFC registers
*/
#define NFC_BUF_SIZE 0xE00
#define NFC_BUF_ADDR 0xE04
#define NFC_FLASH_ADDR 0xE06
#define NFC_FLASH_CMD 0xE08
#define NFC_CONFIG 0xE0A
#define NFC_ECC_STATUS_RESULT 0xE0C
#define NFC_RSLTMAIN_AREA 0xE0E
#define NFC_RSLTSPARE_AREA 0xE10
#define NFC_WRPROT 0xE12
#define NFC_UNLOCKSTART_BLKADDR 0xE14
#define NFC_UNLOCKEND_BLKADDR 0xE16
#define NFC_NF_WRPRST 0xE18
#define NFC_CONFIG1 0xE1A
#define NFC_CONFIG2 0xE1C
/*
* Addresses for NFC RAM BUFFER Main area 0
*/
#define MAIN_AREA0 0x000
#define MAIN_AREA1 0x200
#define MAIN_AREA2 0x400
#define MAIN_AREA3 0x600
/*
* Addresses for NFC SPARE BUFFER Spare area 0
*/
#define SPARE_AREA0 0x800
#define SPARE_AREA1 0x810
#define SPARE_AREA2 0x820
#define SPARE_AREA3 0x830
/*
* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register for Command
* operation
*/
#define NFC_CMD 0x1
/*
* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register for Address
* operation
*/
#define NFC_ADDR 0x2
/*
* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register for Input
* operation
*/
#define NFC_INPUT 0x4
/*
* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register for Data Output
* operation
*/
#define NFC_OUTPUT 0x8
/*
* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register for Read ID
* operation
*/
#define NFC_ID 0x10
/*
* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register for Read Status
* operation
*/
#define NFC_STATUS 0x20
/*
* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read Status
* operation
*/
#define NFC_INT 0x8000
#define NFC_SP_EN (1 << 2)
#define NFC_ECC_EN (1 << 3)
#define NFC_INT_MSK (1 << 4)
#define NFC_BIG (1 << 5)
#define NFC_RST (1 << 6)
#define NFC_CE (1 << 7)
#define NFC_ONE_CYCLE (1 << 8)
#ifdef CONFIG_NAND_IMX_BOOT
#define __nand_boot_init __bare_init
#else
#define __nand_boot_init
#endif
struct imx_nand_host {
struct mtd_info mtd;
struct nand_chip nand;
struct mtd_partition *parts;
struct device_d *dev;
void __iomem *regs;
int spare_only;
int status_request;
u16 col_addr;
struct clk *clk;
int pagesize_2k;
};
/*
* Macros to get byte and bit positions of ECC
*/
#define COLPOS(x) ((x) >> 3)
#define BITPOS(x) ((x)& 0xf)
/* Define single bit Error positions in Main & Spare area */
#define MAIN_SINGLEBIT_ERROR 0x4
#define SPARE_SINGLEBIT_ERROR 0x1
/*
* OOB placement block for use with hardware ecc generation
*/
static struct nand_ecclayout nand_hw_eccoob_8 = {
.eccbytes = 5,
.eccpos = {6, 7, 8, 9, 10},
.oobfree = {{0, 5}, {11, 5}}
};
static struct nand_ecclayout nand_hw_eccoob_16 = {
.eccbytes = 5,
.eccpos = {6, 7, 8, 9, 10},
.oobfree = {{0, 6}, {12, 4}}
};
/*
* This function polls the NANDFC to wait for the basic operation to complete by
* checking the INT bit of config2 register.
*
* @param max_retries number of retry attempts (separated by 1 us)
* @param param parameter for debug
*/
static void __nand_boot_init wait_op_done(struct imx_nand_host *host, u16 param)
{
u32 tmp;
int i;
/* This is a timeout of roughly 15ms on my system. We
* need about 2us, but be generous. Don't use udelay
* here as we might be here from nand booting.
*/
for (i = 0; i < 100000; i++) {
if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
tmp = readw(host->regs + NFC_CONFIG2);
tmp &= ~NFC_INT;
writew(tmp, host->regs + NFC_CONFIG2);
return;
}
}
}
/*
* This function issues the specified command to the NAND device and
* waits for completion.
*
* @param cmd command for NAND Flash
*/
static void __nand_boot_init send_cmd(struct imx_nand_host *host, u16 cmd)
{
MTD_DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
writew(cmd, host->regs + NFC_FLASH_CMD);
writew(NFC_CMD, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, cmd);
}
/*
* This function sends an address (or partial address) to the
* NAND device. The address is used to select the source/destination for
* a NAND command.
*
* @param addr address to be written to NFC.
* @param islast True if this is the last address cycle for command
*/
static void __nand_boot_init send_addr(struct imx_nand_host *host, u16 addr)
{
MTD_DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
writew(addr, host->regs + NFC_FLASH_ADDR);
writew(NFC_ADDR, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, addr);
}
/*
* This function requests the NANDFC to initate the transfer
* of data currently in the NANDFC RAM buffer to the NAND device.
*
* @param buf_id Specify Internal RAM Buffer number (0-3)
* @param spare_only set true if only the spare area is transferred
*/
static void send_prog_page(struct imx_nand_host *host, u8 buf_id,
int spare_only)
{
MTD_DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
/* NANDFC buffer 0 is used for page read/write */
writew(buf_id, host->regs + NFC_BUF_ADDR);
/* Configure spare or page+spare access */
if (!host->pagesize_2k) {
u16 config1 = readw(host->regs + NFC_CONFIG1);
if (spare_only)
config1 |= NFC_SP_EN;
else
config1 &= ~(NFC_SP_EN);
writew(config1, host->regs + NFC_CONFIG1);
}
writew(NFC_INPUT, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, spare_only);
}
/*
* This function requests the NANDFC to initate the transfer
* of data from the NAND device into in the NANDFC ram buffer.
*
* @param buf_id Specify Internal RAM Buffer number (0-3)
* @param spare_only set true if only the spare area is transferred
*/
static void __nand_boot_init send_read_page(struct imx_nand_host *host,
u8 buf_id, int spare_only)
{
MTD_DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
/* NANDFC buffer 0 is used for page read/write */
writew(buf_id, host->regs + NFC_BUF_ADDR);
/* Configure spare or page+spare access */
if (!host->pagesize_2k) {
u32 config1 = readw(host->regs + NFC_CONFIG1);
if (spare_only)
config1 |= NFC_SP_EN;
else
config1 &= ~NFC_SP_EN;
writew(config1, host->regs + NFC_CONFIG1);
}
writew(NFC_OUTPUT, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, spare_only);
}
/*
* This function requests the NANDFC to perform a read of the
* NAND device ID.
*/
static void send_read_id(struct imx_nand_host *host)
{
struct nand_chip *this = &host->nand;
u16 tmp;
/* NANDFC buffer 0 is used for device ID output */
writew(0x0, host->regs + NFC_BUF_ADDR);
/* Read ID into main buffer */
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_SP_EN;
writew(tmp, host->regs + NFC_CONFIG1);
writew(NFC_ID, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, 0);
if (this->options & NAND_BUSWIDTH_16) {
volatile u16 *mainbuf = host->regs + MAIN_AREA0;
/*
* Pack the every-other-byte result for 16-bit ID reads
* into every-byte as the generic code expects and various
* chips implement.
*/
mainbuf[0] = (mainbuf[0] & 0xff) | ((mainbuf[1] & 0xff) << 8);
mainbuf[1] = (mainbuf[2] & 0xff) | ((mainbuf[3] & 0xff) << 8);
mainbuf[2] = (mainbuf[4] & 0xff) | ((mainbuf[5] & 0xff) << 8);
}
}
/*
* This function requests the NANDFC to perform a read of the
* NAND device status and returns the current status.
*
* @return device status
*/
static u16 get_dev_status(struct imx_nand_host *host)
{
volatile u16 *mainbuf = host->regs + MAIN_AREA1;
u32 store;
u16 ret, tmp;
/* Issue status request to NAND device */
/* store the main area1 first word, later do recovery */
store = *((u32 *) mainbuf);
/*
* NANDFC buffer 1 is used for device status to prevent
* corruption of read/write buffer on status requests.
*/
writew(1, host->regs + NFC_BUF_ADDR);
/* Read status into main buffer */
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_SP_EN;
writew(tmp, host->regs + NFC_CONFIG1);
writew(NFC_STATUS, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, 0);
/* Status is placed in first word of main buffer */
/* get status, then recovery area 1 data */
ret = mainbuf[0];
*((u32 *) mainbuf) = store;
return ret;
}
/*
* This function is used by upper layer to checks if device is ready
*
* @param mtd MTD structure for the NAND Flash
*
* @return 0 if device is busy else 1
*/
static int imx_nand_dev_ready(struct mtd_info *mtd)
{
/*
* NFC handles R/B internally.Therefore,this function
* always returns status as ready.
*/
return 1;
}
static void imx_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
/*
* If HW ECC is enabled, we turn it on during init. There is
* no need to enable again here.
*/
}
static int imx_nand_correct_data(struct mtd_info *mtd, u_char * dat,
u_char * read_ecc, u_char * calc_ecc)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
/*
* 1-Bit errors are automatically corrected in HW. No need for
* additional correction. 2-Bit errors cannot be corrected by
* HW ECC, so we need to return failure
*/
u16 ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
MTD_DEBUG(MTD_DEBUG_LEVEL0,
"MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
return -1;
}
return 0;
}
static int imx_nand_calculate_ecc(struct mtd_info *mtd, const u_char * dat,
u_char * ecc_code)
{
return 0;
}
/*
* This function reads byte from the NAND Flash
*
* @param mtd MTD structure for the NAND Flash
*
* @return data read from the NAND Flash
*/
static u_char imx_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
u_char ret = 0;
u16 col, rdword;
volatile u16 *mainbuf = host->regs + MAIN_AREA0;
volatile u16 *sparebuf = host->regs + SPARE_AREA0;
/* Check for status request */
if (host->status_request)
return get_dev_status(host) & 0xFF;
/* Get column for 16-bit access */
col = host->col_addr >> 1;
/* If we are accessing the spare region */
if (host->spare_only)
rdword = sparebuf[col];
else
rdword = mainbuf[col];
/* Pick upper/lower byte of word from RAM buffer */
if (host->col_addr & 0x1)
ret = (rdword >> 8) & 0xFF;
else
ret = rdword & 0xFF;
/* Update saved column address */
host->col_addr++;
return ret;
}
/*
* This function reads word from the NAND Flash
*
* @param mtd MTD structure for the NAND Flash
*
* @return data read from the NAND Flash
*/
static u16 imx_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
u16 col;
u16 rdword, ret;
volatile u16 *p;
MTD_DEBUG(MTD_DEBUG_LEVEL3,
"imx_nand_read_word(col = %d)\n", host->col_addr);
col = host->col_addr;
/* Adjust saved column address */
if (col < mtd->writesize && host->spare_only)
col += mtd->writesize;
if (col < mtd->writesize)
p = (host->regs + MAIN_AREA0) + (col >> 1);
else
p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1);
if (col & 1) {
rdword = *p;
ret = (rdword >> 8) & 0xff;
rdword = *(p + 1);
ret |= (rdword << 8) & 0xff00;
} else
ret = *p;
/* Update saved column address */
host->col_addr = col + 2;
return ret;
}
static void __nand_boot_init memcpy32(void *trg, const void *src, int size)
{
int i;
unsigned int *t = trg;
unsigned const int *s = src;
for (i = 0; i < (size >> 2); i++)
*t++ = *s++;
}
/*
* This function writes data of length \b len to buffer \b buf. The data to be
* written on NAND Flash is first copied to RAMbuffer. After the Data Input
* Operation by the NFC, the data is written to NAND Flash
*
* @param mtd MTD structure for the NAND Flash
* @param buf data to be written to NAND Flash
* @param len number of bytes to be written
*/
static void imx_nand_write_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
int n;
int col;
int i = 0;
MTD_DEBUG(MTD_DEBUG_LEVEL3,
"imx_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
len);
col = host->col_addr;
/* Adjust saved column address */
if (col < mtd->writesize && host->spare_only)
col += mtd->writesize;
n = mtd->writesize + mtd->oobsize - col;
n = min(len, n);
MTD_DEBUG(MTD_DEBUG_LEVEL3,
"%s:%d: col = %d, n = %d\n", __FUNCTION__, __LINE__, col, n);
while (n) {
volatile u32 *p;
if (col < mtd->writesize)
p = (volatile u32 *)((ulong) (host->regs + MAIN_AREA0)
+ (col & ~3));
else
p = (volatile u32 *)((ulong) (host->regs + SPARE_AREA0)
- mtd->writesize + (col & ~3));
MTD_DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __FUNCTION__,
__LINE__, p);
if (((col | (int)&buf[i]) & 3) || n < 16) {
u32 data = 0;
if (col & 3 || n < 4)
data = *p;
switch (col & 3) {
case 0:
if (n) {
data = (data & 0xffffff00) |
(buf[i++] << 0);
n--;
col++;
}
case 1:
if (n) {
data = (data & 0xffff00ff) |
(buf[i++] << 8);
n--;
col++;
}
case 2:
if (n) {
data = (data & 0xff00ffff) |
(buf[i++] << 16);
n--;
col++;
}
case 3:
if (n) {
data = (data & 0x00ffffff) |
(buf[i++] << 24);
n--;
col++;
}
}
*p = data;
} else {
int m = mtd->writesize - col;
if (col >= mtd->writesize)
m += mtd->oobsize;
m = min(n, m) & ~3;
MTD_DEBUG(MTD_DEBUG_LEVEL3,
"%s:%d: n = %d, m = %d, i = %d, col = %d\n",
__FUNCTION__, __LINE__, n, m, i, col);
#ifdef CONFIG_ARM_OPTIMZED_STRING_FUNCTIONS
memcpy((void *)(p), &buf[i], m);
#else
memcpy32((void *)(p), &buf[i], m);
#endif
col += m;
i += m;
n -= m;
}
}
/* Update saved column address */
host->col_addr = col;
}
/*
* This function is used to read the data buffer from the NAND Flash. To
* read the data from NAND Flash first the data output cycle is initiated by
* the NFC, which copies the data to RAMbuffer. This data of length \b len is
* then copied to buffer \b buf.
*
* @param mtd MTD structure for the NAND Flash
* @param buf data to be read from NAND Flash
* @param len number of bytes to be read
*/
static void imx_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
int n;
int col;
int i = 0;
MTD_DEBUG(MTD_DEBUG_LEVEL3,
"imx_nand_read_buf(col = %d, len = %d)\n", host->col_addr,
len);
col = host->col_addr;
/* Adjust saved column address */
if (col < mtd->writesize && host->spare_only)
col += mtd->writesize;
n = mtd->writesize + mtd->oobsize - col;
n = min(len, n);
while (n) {
volatile u32 *p;
if (col < mtd->writesize)
p = (volatile u32 *)((ulong) (host->regs + MAIN_AREA0)
+ (col & ~3));
else
p = (volatile u32 *)((ulong) (host->regs + SPARE_AREA0)
- mtd->writesize + (col & ~3));
if (((col | (int)&buf[i]) & 3) || n < 16) {
u32 data;
data = *p;
switch (col & 3) {
case 0:
if (n) {
buf[i++] = (u8) (data);
n--;
col++;
}
case 1:
if (n) {
buf[i++] = (u8) (data >> 8);
n--;
col++;
}
case 2:
if (n) {
buf[i++] = (u8) (data >> 16);
n--;
col++;
}
case 3:
if (n) {
buf[i++] = (u8) (data >> 24);
n--;
col++;
}
}
} else {
int m = mtd->writesize - col;
if (col >= mtd->writesize)
m += mtd->oobsize;
m = min(n, m) & ~3;
#ifdef CONFIG_ARM_OPTIMZED_STRING_FUNCTIONS
memcpy(&buf[i], (void *)p, m);
#else
memcpy32(&buf[i], (void *)(p), m);
#endif
col += m;
i += m;
n -= m;
}
}
/* Update saved column address */
host->col_addr = col;
}
/*
* This function is used by the upper layer to verify the data in NAND Flash
* with the data in the \b buf.
*
* @param mtd MTD structure for the NAND Flash
* @param buf data to be verified
* @param len length of the data to be verified
*
* @return -EFAULT if error else 0
*
*/
static int
imx_nand_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
{
return -EFAULT;
}
/*
* This function is used by upper layer for select and deselect of the NAND
* chip
*
* @param mtd MTD structure for the NAND Flash
* @param chip val indicating select or deselect
*/
static void imx_nand_select_chip(struct mtd_info *mtd, int chip)
{
#ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
u16 tmp;
if (chip > 0) {
MTD_DEBUG(MTD_DEBUG_LEVEL0,
"ERROR: Illegal chip select (chip = %d)\n", chip);
return;
}
if (chip == -1) {
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_CE;
writew(tmp, host->regs + NFC_CONFIG1);
return;
}
tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_CE;
writew(tmp, host->regs + NFC_CONFIG1);
#endif
}
/*
* This function is used by the upper layer to write command to NAND Flash for
* different operations to be carried out on NAND Flash
*
* @param mtd MTD structure for the NAND Flash
* @param command command for NAND Flash
* @param column column offset for the page read
* @param page_addr page to be read from NAND Flash
*/
static void imx_nand_command(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
MTD_DEBUG(MTD_DEBUG_LEVEL3,
"imx_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
command, column, page_addr);
/*
* Reset command state information
*/
host->status_request = 0;
/*
* Command pre-processing step
*/
switch (command) {
case NAND_CMD_STATUS:
host->col_addr = 0;
host->status_request = 1;
break;
case NAND_CMD_READ0:
host->col_addr = column;
host->spare_only = 0;
break;
case NAND_CMD_READOOB:
host->col_addr = column;
host->spare_only = 1;
if (host->pagesize_2k)
/* only READ0 is valid */
command = NAND_CMD_READ0;
break;
case NAND_CMD_SEQIN:
if (column >= mtd->writesize) {
if (host->pagesize_2k) {
/**
* FIXME: before send SEQIN command for write
* OOB, we must read one page out. For K9F1GXX
* has no READ1 command to set current HW
* pointer to spare area, we must write the
* whole page including OOB together.
*/
/* call ourself to read a page */
imx_nand_command(mtd, NAND_CMD_READ0, 0,
page_addr);
}
host->col_addr = column - mtd->writesize;
host->spare_only = 1;
/* Set program pointer to spare region */
if (!host->pagesize_2k)
send_cmd(host, NAND_CMD_READOOB);
} else {
host->spare_only = 0;
host->col_addr = column;
/* Set program pointer to page start */
if (!host->pagesize_2k)
send_cmd(host, NAND_CMD_READ0);
}
break;
case NAND_CMD_PAGEPROG:
send_prog_page(host, 0, host->spare_only);
if (host->pagesize_2k) {
/* data in 4 areas datas */
send_prog_page(host, 1, host->spare_only);
send_prog_page(host, 2, host->spare_only);
send_prog_page(host, 3, host->spare_only);
}
break;
case NAND_CMD_ERASE1:
break;
}
/*
* Write out the command to the device.
*/
send_cmd(host, command);
/*
* Write out column address, if necessary
*/
if (column != -1) {
/*
* MXC NANDFC can only perform full page+spare or
* spare-only read/write. When the upper layers
* layers perform a read/write buf operation,
* we will used the saved column adress to index into
* the full page.
*/
send_addr(host, 0);
if (host->pagesize_2k)
/* another col addr cycle for 2k page */
send_addr(host, 0);
}
/*
* Write out page address, if necessary
*/
if (page_addr != -1) {
send_addr(host, (page_addr & 0xff)); /* paddr_0 - p_addr_7 */
if (host->pagesize_2k) {
send_addr(host, (page_addr >> 8) & 0xFF);
if (mtd->size >= 0x10000000) {
send_addr(host, (page_addr >> 16) & 0xff);
}
} else {
/* One more address cycle for higher density devices */
if (mtd->size >= 0x4000000) {
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff);
send_addr(host, (page_addr >> 16) & 0xff);
} else
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff);
}
}
/*
* Command post-processing step
*/
switch (command) {
case NAND_CMD_RESET:
break;
case NAND_CMD_READOOB:
case NAND_CMD_READ0:
if (host->pagesize_2k) {
/* send read confirm command */
send_cmd(host, NAND_CMD_READSTART);
/* read for each AREA */
send_read_page(host, 0, host->spare_only);
send_read_page(host, 1, host->spare_only);
send_read_page(host, 2, host->spare_only);
send_read_page(host, 3, host->spare_only);
} else {
send_read_page(host, 0, host->spare_only);
}
break;
case NAND_CMD_READID:
host->col_addr = 0;
send_read_id(host);
break;
case NAND_CMD_PAGEPROG:
break;
case NAND_CMD_STATUS:
break;
case NAND_CMD_ERASE2:
break;
}
}
#ifdef CONFIG_MXC_NAND_LOW_LEVEL_ERASE
static void imx_low_erase(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
unsigned int page_addr, addr;
u_char status;
MTD_DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : imx_low_erase:Erasing NAND\n");
for (addr = 0; addr < this->chipsize; addr += mtd->erasesize) {
page_addr = addr / mtd->writesize;
imx_nand_command(mtd, NAND_CMD_ERASE1, -1, page_addr);
imx_nand_command(mtd, NAND_CMD_ERASE2, -1, -1);
imx_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
status = imx_nand_read_byte(mtd);
if (status & NAND_STATUS_FAIL) {
printk(KERN_ERR
"ERASE FAILED(block = %d,status = 0x%x)\n",
addr / mtd->erasesize, status);
}
}
}
#endif
/*
* This function is called during the driver binding process.
*
* @param pdev the device structure used to store device specific
* information that is used by the suspend, resume and
* remove functions
*
* @return The function always returns 0.
*/
static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
static struct nand_bbt_descr smallpage_memorybased = {
.options = NAND_BBT_SCAN2NDPAGE,
.offs = 5,
.len = 1,
.pattern = scan_ff_pattern
};
static int __init imxnd_probe(struct device_d *dev)
{
struct nand_chip *this;
struct mtd_info *mtd;
struct imx_nand_platform_data *pdata = dev->platform_data;
struct imx_nand_host *host;
u16 tmp;
int err = 0;
#ifdef CONFIG_ARCH_IMX27
PCCR1 |= PCCR1_NFC_BAUDEN;
#endif
/* Allocate memory for MTD device structure and private data */
host = kzalloc(sizeof(struct imx_nand_host), GFP_KERNEL);
if (!host)
return -ENOMEM;
host->dev = dev;
/* structures must be linked */
this = &host->nand;
mtd = &host->mtd;
mtd->priv = this;
/* 50 us command delay time */
this->chip_delay = 5;
this->priv = host;
this->dev_ready = imx_nand_dev_ready;
this->cmdfunc = imx_nand_command;
this->select_chip = imx_nand_select_chip;
this->read_byte = imx_nand_read_byte;
this->read_word = imx_nand_read_word;
this->write_buf = imx_nand_write_buf;
this->read_buf = imx_nand_read_buf;
this->verify_buf = imx_nand_verify_buf;
#if 0
host->clk = clk_get(&pdev->dev, "nfc_clk");
if (IS_ERR(host->clk))
goto eclk;
clk_enable(host->clk);
#endif
host->regs = (void __iomem *)dev->map_base;
tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_INT_MSK;
writew(tmp, host->regs + NFC_CONFIG1);
if (pdata->hw_ecc) {
this->ecc.calculate = imx_nand_calculate_ecc;
this->ecc.hwctl = imx_nand_enable_hwecc;
this->ecc.correct = imx_nand_correct_data;
this->ecc.mode = NAND_ECC_HW;
this->ecc.size = 512;
this->ecc.bytes = 3;
this->ecc.layout = &nand_hw_eccoob_8;
tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_ECC_EN;
writew(tmp, host->regs + NFC_CONFIG1);
} else {
this->ecc.size = 512;
this->ecc.bytes = 3;
this->ecc.layout = &nand_hw_eccoob_8;
this->ecc.mode = NAND_ECC_SOFT;
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_ECC_EN;
writew(tmp, host->regs + NFC_CONFIG1);
}
/* Reset NAND */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, host->regs + NFC_CONFIG);
/* Blocks to be unlocked */
writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR);
writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR);
/* Unlock Block Command for given address range */
writew(0x4, host->regs + NFC_WRPROT);
/* NAND bus width determines access funtions used by upper layer */
if (pdata->width == 2) {
this->options |= NAND_BUSWIDTH_16;
this->ecc.layout = &nand_hw_eccoob_16;
}
if (pdata->is2k) {
host->pagesize_2k = 1;
NFMS |= (1 << NFMS_BIT);
this->badblock_pattern = &smallpage_memorybased;
} else
host->pagesize_2k = 0;
this->options |= NAND_SKIP_BBTSCAN;
/* Scan to find existence of the device */
if (nand_scan(mtd, 1)) {
MTD_DEBUG(MTD_DEBUG_LEVEL0,
"MXC_ND: Unable to find any NAND device.\n");
err = -ENXIO;
goto escan;
}
add_mtd_device(mtd);
#ifdef CONFIG_MXC_NAND_LOW_LEVEL_ERASE
/* Erase all the blocks of a NAND */
imx_low_erase(mtd);
#endif
dev->priv = host;
return 0;
escan:
kfree(host);
return err;
}
static struct driver_d imx_nand_driver = {
.name = "imx_nand",
.probe = imxnd_probe,
};
#ifdef CONFIG_NAND_IMX_BOOT
static void __nand_boot_init nfc_addr(struct imx_nand_host *host, u32 offs)
{
send_addr(host, offs & 0xff);
send_addr(host, (offs >> 9) & 0xff);
send_addr(host, (offs >> 17) & 0xff);
send_addr(host, (offs >> 25) & 0xff);
}
static int __nand_boot_init block_is_bad(struct imx_nand_host *host, u32 offs)
{
send_cmd(host, NAND_CMD_READOOB);
nfc_addr(host, offs);
send_read_page(host, 0, 1);
return (readw(host->regs + SPARE_AREA0 + 4) & 0xff) == 0xff ? 0 : 1;
}
void __nand_boot_init imx_nand_load_image(void *dest, int size, int pagesize,
int blocksize)
{
struct imx_nand_host host;
u32 tmp, page, block;
host.regs = (void __iomem *)IMX_NFC_BASE;
host.pagesize_2k = (pagesize == 2048);
send_cmd(&host, NAND_CMD_RESET);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, host.regs + NFC_CONFIG);
/* Blocks to be unlocked */
writew(0x0, host.regs + NFC_UNLOCKSTART_BLKADDR);
writew(0x4000, host.regs + NFC_UNLOCKEND_BLKADDR);
/* Unlock Block Command for given address range */
writew(0x4, host.regs + NFC_WRPROT);
tmp = readw(host.regs + NFC_CONFIG1);
tmp |= NFC_ECC_EN;
writew(tmp, host.regs + NFC_CONFIG1);
block = page = 0;
while (1) {
if (!block_is_bad(&host, block * blocksize)) {
page = 0;
while (page * pagesize < blocksize) {
debug("page: %d block: %d dest: %p src "
"0x%08x\n",
page, block, dest,
block * blocksize +
page * pagesize);
send_cmd(&host, NAND_CMD_READ0);
nfc_addr(&host, block * blocksize +
page * pagesize);
send_read_page(&host, 0, 0);
page++;
memcpy32(dest, host.regs, 512);
dest += pagesize;
size -= pagesize;
if (size <= 0)
return;
}
} else
debug("skip bad block at 0x%08x\n", block * blocksize);
block++;
}
}
#define CONFIG_NAND_IMX_BOOT_DEBUG
#ifdef CONFIG_NAND_IMX_BOOT_DEBUG
#include <command.h>
static int do_nand_boot_test(cmd_tbl_t *cmdtp, int argc, char *argv[])
{
void *dest;
int size, pagesize, blocksize;
if (argc < 4)
return COMMAND_ERROR_USAGE;
dest = (void *)strtoul_suffix(argv[1], NULL, 0);
size = strtoul_suffix(argv[2], NULL, 0);
pagesize = strtoul_suffix(argv[3], NULL, 0);
blocksize = strtoul_suffix(argv[4], NULL, 0);
imx_nand_load_image(dest, size, pagesize, blocksize);
return 0;
}
static const __maybe_unused char cmd_nand_boot_test_help[] =
"Usage: nand_boot_test <dest> <size> <pagesize> <blocksize>\n";
U_BOOT_CMD_START(nand_boot_test)
.maxargs = CONFIG_MAXARGS,
.cmd = do_nand_boot_test,
.usage = "list a file or directory",
U_BOOT_CMD_HELP(cmd_nand_boot_test_help)
U_BOOT_CMD_END
#endif
#endif /* CONFIG_NAND_IMX_BOOT */
/*
* Main initialization routine
* @return 0 if successful; non-zero otherwise
*/
static int __init imx_nand_init(void)
{
return register_driver(&imx_nand_driver);
}
device_initcall(imx_nand_init);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("MXC NAND MTD driver");
MODULE_LICENSE("GPL");