9
0
Fork 0
barebox/drivers/nand/nand_imx_v2.c

1135 lines
28 KiB
C

/*
* Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
#include <common.h>
#include <driver.h>
#include <malloc.h>
#include <init.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <asm/arch/imx-nand.h>
#include <asm/arch/imx-regs.h>
#include <asm/io.h>
#include <errno.h>
/*
* Addresses for NFC registers
*/
#define MAIN_AREA0 (host->regs + 0x000)
#define MAIN_AREA1 (host->regs + 0x200)
#define SPARE_AREA0 (host->regs + 0x1000)
#define NFC_BUF_SIZE (host->regs + 0x1E00)
#define NFC_BUF_ADDR (host->regs + 0x1E04)
#define NFC_FLASH_ADDR (host->regs + 0x1E06)
#define NFC_FLASH_CMD (host->regs + 0x1E08)
#define NFC_CONFIG (host->regs + 0x1E0A)
#define NFC_ECC_STATUS_RESULT (host->regs + 0x1E0C)
#define NFC_ECC_STATUS_RESULT_1 (host->regs + 0x1E0C)
#define NFC_ECC_STATUS_RESULT_2 (host->regs + 0x1E0E)
#define NFC_SPAS (host->regs + 0x1E10)
#define NFC_WRPROT (host->regs + 0x1E12)
#define NFC_UNLOCKSTART_BLKADDR (host->regs + 0x1E20)
#define NFC_UNLOCKEND_BLKADDR (host->regs + 0x1E22)
#define NFC_UNLOCKSTART_BLKADDR1 (host->regs + 0x1E24)
#define NFC_UNLOCKEND_BLKADDR1 (host->regs + 0x1E26)
#define NFC_UNLOCKSTART_BLKADDR2 (host->regs + 0x1E28)
#define NFC_UNLOCKEND_BLKADDR2 (host->regs + 0x1E2A)
#define NFC_UNLOCKSTART_BLKADDR3 (host->regs + 0x1E2C)
#define NFC_UNLOCKEND_BLKADDR3 (host->regs + 0x1E2E)
#define NFC_NF_WRPRST (host->regs + 0x1E18)
#define NFC_CONFIG1 (host->regs + 0x1E1A)
#define NFC_CONFIG2 (host->regs + 0x1E1C)
/*
* Set INT to 0, Set 1 to specific operation bit, rest to 0 in LAUNCH_NFC Register for
* Specific operation
*/
#define NFC_CMD 0x1
#define NFC_ADDR 0x2
#define NFC_INPUT 0x4
#define NFC_OUTPUT 0x8
#define NFC_ID 0x10
#define NFC_STATUS 0x20
/* Bit Definitions */
#define NFC_OPS_STAT (1 << 15)
#define NFC_SP_EN (1 << 2)
#define NFC_ECC_EN (1 << 3)
#define NFC_INT_MSK (1 << 4)
#define NFC_BIG (1 << 5)
#define NFC_RST (1 << 6)
#define NFC_CE (1 << 7)
#define NFC_ONE_CYCLE (1 << 8)
#define NFC_BLS_LOCKED 0
#define NFC_BLS_LOCKED_DEFAULT 1
#define NFC_BLS_UNLCOKED 2
#define NFC_WPC_LOCK_TIGHT 1
#define NFC_WPC_LOCK (1 << 1)
#define NFC_WPC_UNLOCK (1 << 2)
#define NFC_FLASH_ADDR_SHIFT 0
#define NFC_UNLOCK_END_ADDR_SHIFT 0
#define NFC_ECC_MODE_4 (1<<0)
#define NFC_ECC_MODE_8 ~(1<<0)
#define NFC_SPAS_16 8
#define NFC_SPAS_64 32
#define NFC_SPAS_128 64
#define NFC_SPAS_218 109
static inline void raw_write(unsigned long val, void *reg)
{
writew(val, reg);
debug("wr: 0x%08x = 0x%08x\n", reg, val);
}
static inline unsigned long raw_read(void *reg)
{
unsigned long val = readw(reg);
debug("rd: 0x%08x = 0x%08x\n", reg, val);
return val;
}
struct imx_nand_host {
struct mtd_info mtd;
struct nand_chip nand;
struct device_d *dev;
void __iomem *regs;
int status_request;
u16 col_addr;
};
/*
* Define delays in microsec for NAND device operations
*/
#define TROP_US_DELAY 2000
static u8 *data_buf;
static u8 *oob_buf;
/*
* OOB placement block for use with hardware ecc generation
*/
static struct nand_ecclayout nand_hw_eccoob_512 = {
.eccbytes = 9,
.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
.oobavail = 4,
.oobfree = {{0, 4}}
};
static struct nand_ecclayout nand_hw_eccoob_2k = {
.eccbytes = 9,
.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
.oobavail = 4,
.oobfree = {{2, 4}}
};
static struct nand_ecclayout nand_hw_eccoob_4k = {
.eccbytes = 9,
.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
.oobavail = 4,
.oobfree = {{2, 4}}
};
/*
* @defgroup NAND_MTD NAND Flash MTD Driver for MXC processors
*/
/*
* @file mxc_nd2.c
*
* @brief This file contains the hardware specific layer for NAND Flash on
* MXC processor
*
* @ingroup NAND_MTD
*/
static void memcpy32(void *trg, const void *src, int size)
{
int i;
unsigned int *t = trg;
unsigned const int *s = src;
if ((ulong)trg & 0x3 || (ulong)src & 0x3 || size & 0x3)
while(1);
for (i = 0; i < (size >> 2); i++)
*t++ = *s++;
}
/*
* Functions to transfer data to/from spare erea.
*/
static void
copy_spare(struct mtd_info *mtd, void *pbuf, void *pspare, int len, int bfrom)
{
u16 i, j;
u16 m = mtd->oobsize;
u16 n = mtd->writesize >> 9;
u8 *d = (u8 *) pbuf;
u8 *s = (u8 *) pspare;
j = (m / n >> 1) << 1;
if (bfrom) {
for (i = 0; i < n - 1; i++)
memcpy32(&d[i * j], &s[i * 64], j);
/* the last section */
memcpy32(&d[i * j], &s[i * 64], len - i * j);
} else {
for (i = 0; i < n - 1; i++)
memcpy32(&s[i * 64], &d[i * j], j);
/* the last section */
memcpy32(&s[i * 64], &d[i * j], len - i * j);
}
}
/*
* This function polls the NFC to wait for the basic operation to complete by
* checking the INT bit of config2 register.
*
* @param maxRetries number of retry attempts (separated by 1 us)
* @param useirq True if IRQ should be used rather than polling
*/
static void wait_op_done(struct imx_nand_host *host, int maxRetries)
{
while (maxRetries > 0) {
maxRetries--;
if (raw_read(NFC_CONFIG2) & NFC_OPS_STAT) {
raw_write((raw_read(NFC_CONFIG2) & ~NFC_OPS_STAT), NFC_CONFIG2);
break;
}
udelay(1);
}
if (maxRetries <= 0)
printf("%s timeout\n", __func__);
}
/*
* This function issues the specified command to the NAND device and
* waits for completion.
*
* @param cmd command for NAND Flash
* @param useirq True if IRQ should be used rather than polling
*/
static void send_cmd(struct mtd_info *mtd, u16 cmd, int useirq)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
/* fill command */
raw_write(cmd, NFC_FLASH_CMD);
/* send out command */
raw_write(NFC_CMD, NFC_CONFIG2);
wait_op_done(host, TROP_US_DELAY);
}
/*
* This function sends an address (or partial address) to the
* NAND device. The address is used to select the source/destination for
* a NAND command.
*
* @param addr address to be written to NFC.
* @param useirq True if IRQ should be used rather than polling
*/
static void send_addr(struct imx_nand_host *host, u16 addr, int useirq)
{
debug("%s: 0x%04x\n", __func__, addr);
/* fill address */
raw_write((addr << NFC_FLASH_ADDR_SHIFT), NFC_FLASH_ADDR);
/* send out address */
raw_write(NFC_ADDR, NFC_CONFIG2);
wait_op_done(host, TROP_US_DELAY);
}
/*
* This function requests the NFC to perform a read of the
* NAND device status and returns the current status.
*
* @return device status
*/
static u16 get_dev_status(struct imx_nand_host *host)
{
raw_write(1, NFC_BUF_ADDR);
/* Read status into main buffer */
raw_write(NFC_STATUS, NFC_CONFIG2);
wait_op_done(host, TROP_US_DELAY);
/* Status is placed in first word of main buffer */
/* get status, then recovery area 1 data */
return raw_read(MAIN_AREA1);
}
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
raw_write((raw_read(NFC_CONFIG1) | NFC_ECC_EN), NFC_CONFIG1);
return;
}
/*
* Function to record the ECC corrected/uncorrected errors resulted
* after a page read. This NFC detects and corrects upto to 4 symbols
* of 9-bits each.
*/
static int mxc_check_ecc_status(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
u32 ecc_stat, err;
int no_subpages = 1;
int ret = 0;
u8 ecc_bit_mask, err_limit;
ecc_bit_mask = (raw_read(NFC_CONFIG1) & NFC_ECC_MODE_4) ? 0x7 : 0xf;
err_limit = raw_read(NFC_CONFIG1) & NFC_ECC_MODE_4 ? 0x4 : 0x8;
no_subpages = mtd->writesize >> 9;
ecc_stat = raw_read(NFC_ECC_STATUS_RESULT);
do {
err = ecc_stat & ecc_bit_mask;
if (err > err_limit) {
mtd->ecc_stats.failed++;
printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
return -1;
} else {
ret += err;
}
ecc_stat >>= 4;
} while (--no_subpages);
mtd->ecc_stats.corrected += ret;
pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
return ret;
}
/*
* Function to correct the detected errors. This NFC corrects all the errors
* detected. So this function just return 0.
*/
static int mxc_nand_correct_data(struct mtd_info *mtd, u_char * dat,
u_char * read_ecc, u_char * calc_ecc)
{
return 0;
}
/*
* Function to calculate the ECC for the data to be stored in the Nand device.
* This NFC has a hardware RS(511,503) ECC engine together with the RS ECC
* CONTROL blocks are responsible for detection and correction of up to
* 8 symbols of 9 bits each in 528 byte page.
* So this function is just return 0.
*/
static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
return 0;
}
/*
* This function id is used to read the data buffer from the NAND Flash. To
* read the data from NAND Flash first the data output cycle is initiated by
* the NFC, which copies the data to RAMbuffer. This data of length \b len is
* then copied to buffer \b buf.
*
* @param mtd MTD structure for the NAND Flash
* @param buf data to be read from NAND Flash
* @param len number of bytes to be read
*/
static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
u16 col = host->col_addr;
debug("%s: 0x%08x %d\n", __func__, buf, len);
if (mtd->writesize) {
int j = mtd->writesize - col;
int n = mtd->oobsize + j;
n = min(n, len);
if (j > 0) {
if (n > j) {
memcpy(buf, &data_buf[col], j);
memcpy(buf + j, &oob_buf[0], n - j);
} else {
memcpy(buf, &data_buf[col], n);
}
} else {
col -= mtd->writesize;
memcpy(buf, &oob_buf[col], len);
}
/* update */
host->col_addr += n;
} else {
/* At flash identify phase,
* mtd->writesize has not been
* set correctly, it should
* be zero.And len will less 2
*/
memcpy(buf, &data_buf[col], len);
/* update */
host->col_addr += len;
}
}
/*
* This function reads byte from the NAND Flash
*
* @param mtd MTD structure for the NAND Flash
*
* @return data read from the NAND Flash
*/
static uint8_t mxc_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
uint8_t ret;
/* Check for status request */
if (host->status_request)
return get_dev_status(host) & 0xFF;
mxc_nand_read_buf(mtd, &ret, 1);
return ret;
}
/*
* This function reads word from the NAND Flash
*
* @param mtd MTD structure for the NAND Flash
*
* @return data read from the NAND Flash
*/
static u16 mxc_nand_read_word(struct mtd_info *mtd)
{
u16 ret;
mxc_nand_read_buf(mtd, (uint8_t *)&ret, sizeof(u16));
return ret;
}
/*
* This function reads byte from the NAND Flash
*
* @param mtd MTD structure for the NAND Flash
*
* @return data read from the NAND Flash
*/
static u_char mxc_nand_read_byte16(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
/* Check for status request */
if (host->status_request)
return get_dev_status(host) & 0xFF;
return mxc_nand_read_word(mtd) & 0xFF;
}
/*
* This function writes data of length \b len from buffer \b buf to the NAND
* internal RAM buffer's MAIN area 0.
*
* @param mtd MTD structure for the NAND Flash
* @param buf data to be written to NAND Flash
* @param len number of bytes to be written
*/
static void mxc_nand_write_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
u16 col = host->col_addr;
int j = mtd->writesize - col;
int n = mtd->oobsize + j;
n = min(n, len);
if (j > 0) {
if (n > j) {
memcpy(&data_buf[col], buf, j);
memcpy(&oob_buf[0], buf + j, n - j);
} else {
memcpy(&data_buf[col], buf, n);
}
} else {
col -= mtd->writesize;
memcpy(&oob_buf[col], buf, len);
}
/* update */
host->col_addr += n;
}
/*
* This function is used by the upper layer to verify the data in NAND Flash
* with the data in the \b buf.
*
* @param mtd MTD structure for the NAND Flash
* @param buf data to be verified
* @param len length of the data to be verified
*
* @return -EFAULT if error else 0
*
*/
static int mxc_nand_verify_buf(struct mtd_info *mtd, const u_char *buf,
int len)
{
u_char *s = data_buf;
const u_char *p = buf;
for (; len > 0; len--) {
if (*p++ != *s++)
return -EFAULT;
}
return 0;
}
/*
* This function is used by upper layer for select and deselect of the NAND
* chip
*
* @param mtd MTD structure for the NAND Flash
* @param chip val indicating select or deselect
*/
static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
{
}
/*
* Function to perform the address cycles.
*/
static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
u32 page_mask = nand_chip->pagemask;
debug("%s: %d %d\n", __func__, column, page_addr);
if (column != -1) {
send_addr(host, column & 0xFF, 0);
if (mtd->writesize == 2048) {
/* another col addr cycle for 2k page */
send_addr(host, (column >> 8) & 0xF, 0);
} else if (mtd->writesize == 4096) {
/* another col addr cycle for 4k page */
send_addr(host, (column >> 8) & 0x1F, 0);
}
}
if (page_addr != -1) {
do {
send_addr(host, (page_addr & 0xff), 0);
page_mask >>= 8;
page_addr >>= 8;
} while (page_mask != 0);
}
}
/*
* This function is used by the upper layer to write command to NAND Flash for
* different operations to be carried out on NAND Flash
*
* @param mtd MTD structure for the NAND Flash
* @param command command for NAND Flash
* @param column column offset for the page read
* @param page_addr page to be read from NAND Flash
*/
static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
command, column, page_addr);
/*
* Reset command state information
*/
host->status_request = 0;
/*
* Command pre-processing step
*/
switch (command) {
case NAND_CMD_STATUS:
host->col_addr = 0;
host->status_request = 1;
break;
case NAND_CMD_READ0:
host->col_addr = column;
break;
case NAND_CMD_READOOB:
host->col_addr = column;
command = NAND_CMD_READ0;
break;
case NAND_CMD_SEQIN:
if (column) {
/* FIXME: before send SEQIN command for
* partial write,We need read one page out.
* FSL NFC does not support partial write
* It alway send out 512+ecc+512+ecc ...
* for large page nand flash. But for small
* page nand flash, it did support SPARE
* ONLY operation. But to make driver
* simple. We take the same as large page,read
* whole page out and update. As for MLC nand
* NOP(num of operation) = 1. Partial written
* on one programed page is not allowed! We
* can't limit it on the driver, it need the
* upper layer applicaiton take care it
*/
mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
}
host->col_addr = column;
break;
case NAND_CMD_PAGEPROG:
/* FIXME:the NFC interal buffer
* access has some limitation, it
* does not allow byte access. To
* make the code simple and ease use
* not every time check the address
* alignment.Use the temp buffer
* to accomadate the data.since We
* know data_buf will be at leat 4
* byte alignment, so we can use
* memcpy safely
*/
memcpy32(MAIN_AREA0, data_buf, mtd->writesize);
copy_spare(mtd, oob_buf, SPARE_AREA0, mtd->oobsize, 0);
/* set ram buffer id */
raw_write(0, NFC_BUF_ADDR);
/* transfer data from NFC ram to nand */
raw_write(NFC_INPUT, NFC_CONFIG2);
wait_op_done(host, TROP_US_DELAY);
break;
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
break;
}
send_cmd(mtd, command, 0);
mxc_do_addr_cycle(mtd, column, page_addr);
/*
* Command post-processing step
*/
switch (command) {
case NAND_CMD_READOOB:
case NAND_CMD_READ0:
if (mtd->writesize > 512) {
/* send read confirm command */
send_cmd(mtd, NAND_CMD_READSTART, 1);
}
raw_write(0, NFC_BUF_ADDR);
/* transfer data from nand to NFC ram */
raw_write(NFC_OUTPUT, NFC_CONFIG2);
wait_op_done(host, TROP_US_DELAY);
/* FIXME, the NFC interal buffer
* access has some limitation, it
* does not allow byte access. To
* make the code simple and ease use
* not every time check the address
* alignment.Use the temp buffer
* to accomadate the data.since We
* know data_buf will be at leat 4
* byte alignment, so we can use
* memcpy safely
*/
memcpy32(data_buf, MAIN_AREA0, mtd->writesize);
copy_spare(mtd, oob_buf, SPARE_AREA0, mtd->oobsize, 1);
break;
case NAND_CMD_READID:
raw_write(0, NFC_BUF_ADDR);
/* Read ID into main buffer */
raw_write(NFC_ID, NFC_CONFIG2);
wait_op_done(host, TROP_US_DELAY);
host->col_addr = column;
memcpy32(data_buf, MAIN_AREA0, 2048);
break;
}
}
static int mxc_nand_read_oob(struct mtd_info *mtd,
struct nand_chip *chip, int page, int sndcmd)
{
if (sndcmd) {
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
sndcmd = 0;
}
memcpy32(chip->oob_poi, oob_buf, mtd->oobsize);
return sndcmd;
}
static int mxc_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf)
{
debug("%s: 0x%08x\n", __func__, buf);
mxc_check_ecc_status(mtd);
memcpy32(buf, data_buf, mtd->writesize);
memcpy32(chip->oob_poi, oob_buf, mtd->oobsize);
return 0;
}
static void mxc_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf)
{
memcpy32(data_buf, buf, mtd->writesize);
memcpy32(oob_buf, chip->oob_poi, mtd->oobsize);
}
/*
* We must provide a private bbt decriptor, because the settings from
* the generic one collide with our ECC hardware.
*/
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = bbt_pattern
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = mirror_pattern
};
#ifdef CONFIG_ARCH_IMX25
#define RCSR_NFC_FMS (1 << 8)
#define RCSR_NFC_4K (1 << 9)
#define RCSR_NFC_16BIT_SEL (1 << 14)
static void __bare_init mxc_nand_set_writesize(struct mtd_info *mtd, int writesize)
{
unsigned int rcsr;
rcsr = readl(IMX_CCM_BASE + CCM_RCSR);
rcsr &= ~(RCSR_NFC_FMS | RCSR_NFC_4K);
if (writesize == 2048)
rcsr |= RCSR_NFC_FMS;
if (writesize == 4096)
rcsr |= RCSR_NFC_FMS | RCSR_NFC_4K;
writel(rcsr, IMX_CCM_BASE + CCM_RCSR);
}
static void __bare_init mxc_nand_set_datawidth(struct mtd_info *mtd, int datawidth)
{
unsigned int rcsr;
rcsr = readl(IMX_CCM_BASE + CCM_RCSR);
if (datawidth == 16)
rcsr |= RCSR_NFC_16BIT_SEL;
else
rcsr &= ~RCSR_NFC_16BIT_SEL;
writel(rcsr, IMX_CCM_BASE + CCM_RCSR);
}
#endif
static void mxc_nfc_init(struct imx_nand_host *host)
{
/* Disable interrupt */
raw_write((raw_read(NFC_CONFIG1) | NFC_INT_MSK), NFC_CONFIG1);
/* disable spare enable */
raw_write(raw_read(NFC_CONFIG1) & ~NFC_SP_EN, NFC_CONFIG1);
/* Unlock the internal RAM Buffer */
raw_write(NFC_BLS_UNLCOKED, NFC_CONFIG);
/* Blocks to be unlocked */
raw_write(0x0, NFC_UNLOCKSTART_BLKADDR);
raw_write(0xffff, NFC_UNLOCKEND_BLKADDR);
/* Unlock Block Command for given address range */
raw_write(NFC_WPC_UNLOCK, NFC_WRPROT);
}
static int __init imxnd_probe(struct device_d *dev)
{
struct nand_chip *this;
struct mtd_info *mtd;
struct imx_nand_platform_data *pdata = dev->platform_data;
struct imx_nand_host *host;
u16 tmp;
int err = 0;
/* init data buf */
data_buf = xzalloc(NAND_MAX_PAGESIZE);
oob_buf = xzalloc(NAND_MAX_OOBSIZE);
/* Allocate memory for MTD device structure and private data */
host = kzalloc(sizeof(struct imx_nand_host), GFP_KERNEL);
if (!host) {
printk(KERN_ERR "%s: failed to allocate mtd_info\n",
__FUNCTION__);
err = -ENOMEM;
goto err_out;
}
host->dev = dev;
/* structures must be linked */
this = &host->nand;
mtd = &host->mtd;
mtd->priv = this;
/* NAND bus width determines access funtions used by upper layer */
if (pdata->width == 2) {
this->read_byte = mxc_nand_read_byte16;
this->options |= NAND_BUSWIDTH_16;
mxc_nand_set_datawidth(mtd, 16);
} else
mxc_nand_set_datawidth(mtd, 8);
/* 50 us command delay time */
this->chip_delay = 5;
this->priv = host;
this->cmdfunc = mxc_nand_command;
this->select_chip = mxc_nand_select_chip;
this->read_byte = mxc_nand_read_byte;
this->read_word = mxc_nand_read_word;
this->write_buf = mxc_nand_write_buf;
this->read_buf = mxc_nand_read_buf;
this->verify_buf = mxc_nand_verify_buf;
/* use flash based bbt */
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
/* update flash based bbt */
this->options |= NAND_USE_FLASH_BBT;
host->regs = (void __iomem *)dev->map_base;
mxc_nfc_init(host);
tmp = readw(NFC_CONFIG1);
tmp |= NFC_INT_MSK;
writew(tmp, NFC_CONFIG1);
if (pdata->hw_ecc) {
this->ecc.read_page = mxc_nand_read_page;
this->ecc.write_page = mxc_nand_write_page;
this->ecc.read_oob = mxc_nand_read_oob;
this->ecc.layout = &nand_hw_eccoob_512;
this->ecc.calculate = mxc_nand_calculate_ecc;
this->ecc.hwctl = mxc_nand_enable_hwecc;
this->ecc.correct = mxc_nand_correct_data;
this->ecc.mode = NAND_ECC_HW;
this->ecc.size = 512;
this->ecc.bytes = 9;
raw_write(raw_read(NFC_CONFIG1) | NFC_ECC_EN, NFC_CONFIG1);
} else {
this->ecc.mode = NAND_ECC_SOFT;
raw_write(raw_read(NFC_CONFIG1) & ~NFC_ECC_EN, NFC_CONFIG1);
}
/* Reset NAND */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Scan to find existence of the device */
if (nand_scan_ident(mtd, 1)) {
err = -ENXIO;
dev_err(dev, "Unable to find any NAND device\n");
goto err_out;
}
if (mtd->writesize == 2048) {
mxc_nand_set_writesize(mtd, 2048);
raw_write(((raw_read(NFC_SPAS) & 0xff00) | NFC_SPAS_64), NFC_SPAS);
raw_write((raw_read(NFC_CONFIG1) | NFC_ECC_MODE_4), NFC_CONFIG1);
this->ecc.layout = &nand_hw_eccoob_2k;
} else if (mtd->writesize == 4096) {
mxc_nand_set_writesize(mtd, 4096);
raw_write(((raw_read(NFC_SPAS) & 0xff00) | NFC_SPAS_128), NFC_SPAS);
raw_write((raw_read(NFC_CONFIG1) | NFC_ECC_MODE_4), NFC_CONFIG1);
this->ecc.layout = &nand_hw_eccoob_4k;
} else {
mxc_nand_set_writesize(mtd, 512);
this->ecc.layout = &nand_hw_eccoob_512;
}
if (nand_scan_tail(mtd)) {
dev_err(dev, "Unable to find any NAND device.\n");
err = -ENXIO;
goto err_out;
}
add_mtd_device(mtd);
#ifdef CONFIG_MXC_NAND_LOW_LEVEL_ERASE
/* Erase all the blocks of a NAND */
imx_low_erase(mtd);
#endif
dev->priv = host;
return 0;
err_out:
return err;
}
static struct driver_d imx_nand_driver = {
.name = "imx_nand",
.probe = imxnd_probe,
};
/*
* Main initialization routine
* @return 0 if successful; non-zero otherwise
*/
static int __init imx_nand_init(void)
{
return register_driver(&imx_nand_driver);
}
device_initcall(imx_nand_init);
#ifdef CONFIG_NAND_IMX_BOOT
static void __bare_init noinline boot_send_cmd(struct imx_nand_host *host, u16 cmd)
{
/* fill command */
raw_write(cmd, NFC_FLASH_CMD);
/* send out command */
raw_write(NFC_CMD, NFC_CONFIG2);
wait_op_done(host, TROP_US_DELAY);
}
static void noinline __bare_init boot_send_addr(struct imx_nand_host *host, u16 addr)
{
/* fill address */
raw_write((addr << NFC_FLASH_ADDR_SHIFT), NFC_FLASH_ADDR);
/* send out address */
raw_write(NFC_ADDR, NFC_CONFIG2);
wait_op_done(host, TROP_US_DELAY);
}
static void __bare_init boot_nfc_addr(struct imx_nand_host *host, u32 offs, int pagesize)
{
switch (pagesize) {
case 512:
boot_send_addr(host, offs & 0xff);
boot_send_addr(host, (offs >> 9) & 0xff);
boot_send_addr(host, (offs >> 17) & 0xff);
boot_send_addr(host, (offs >> 25) & 0xff);
break;
case 2048:
boot_send_addr(host, 0);
boot_send_addr(host, 0);
boot_send_addr(host, (offs >> 11) & 0xff);
boot_send_addr(host, (offs >> 19) & 0xff);
boot_send_addr(host, (offs >> 27) & 0xff);
break;
case 4096:
boot_send_addr(host, 0);
boot_send_addr(host, 0);
boot_send_addr(host, (offs >> 12) & 0xff);
boot_send_addr(host, (offs >> 20) & 0xff);
boot_send_addr(host, (offs >> 27) & 0xff);
break;
}
if (pagesize > 512)
boot_send_cmd(host, NAND_CMD_READSTART);
}
static void __bare_init noinline boot_send_read_page(struct imx_nand_host *host, u8 buf_id)
{
DEBUG(MTD_DEBUG_LEVEL3, "%s(%d)\n", __FUNCTION__, buf_id);
raw_write(buf_id, NFC_BUF_ADDR);
/* transfer data from nand to NFC ram */
raw_write(NFC_OUTPUT, NFC_CONFIG2);
wait_op_done(host, TROP_US_DELAY);
}
static int __bare_init block_is_bad(struct imx_nand_host *host, u32 offs, int pagesize)
{
boot_send_cmd(host, NAND_CMD_READ0);
boot_nfc_addr(host, offs, pagesize);
boot_send_read_page(host, 0);
/* FIXME: copied from V1 driver. Is this correct? */
return (raw_read(SPARE_AREA0) & 0xff) == 0xff ? 0 : 1;
}
void __bare_init imx_nand_load_image(void *dest, int size, int pagesize,
int blocksize)
{
struct imx_nand_host _host;
struct imx_nand_host *host = &_host;
int width = 1;
u32 page, block;
host->regs = (void *)IMX_NAND_BASE;
debug("%s\n", __func__);
/* disable spare enable */
raw_write(raw_read(NFC_CONFIG1) & ~NFC_SP_EN, NFC_CONFIG1);
/* Unlock the internal RAM Buffer */
raw_write(NFC_BLS_UNLCOKED, NFC_CONFIG);
/* Blocks to be unlocked */
raw_write(0x0, NFC_UNLOCKSTART_BLKADDR);
raw_write(0xffff, NFC_UNLOCKEND_BLKADDR);
/* Unlock Block Command for given address range */
raw_write(NFC_WPC_UNLOCK, NFC_WRPROT);
if (readl(IMX_CCM_BASE + CCM_RCSR) & (1 << 14))
width = 2;
block = page = 0;
while (1) {
if (!block_is_bad(host, block * blocksize, pagesize)) {
page = 0;
while (page * pagesize < blocksize) {
debug("page: %d block: %d dest: %p src "
"0x%08x\n",
page, block, dest,
block * blocksize +
page * pagesize);
boot_send_cmd(host, NAND_CMD_READ0);
boot_nfc_addr(host, block * blocksize +
page * pagesize, pagesize);
boot_send_read_page(host, 0);
page++;
memcpy32(dest, MAIN_AREA0, pagesize);
dest += pagesize;
size -= pagesize;
if (size <= 0)
return;
}
}
block++;
}
}
#ifdef IMX_NAND_BOOT_DEBUG
#include <command.h>
static int do_nand_boot_test(cmd_tbl_t *cmdtp, int argc, char *argv[])
{
void *dest;
int size, pagesize, blocksize;
if (argc < 4)
return COMMAND_ERROR_USAGE;
dest = (void *)strtoul_suffix(argv[1], NULL, 0);
size = strtoul_suffix(argv[2], NULL, 0);
pagesize = strtoul_suffix(argv[3], NULL, 0);
blocksize = strtoul_suffix(argv[4], NULL, 0);
imx_nand_load_image(dest, size, pagesize, blocksize * 1024);
return 0;
}
static const __maybe_unused char cmd_nand_boot_test_help[] =
"Usage: nand_boot_test <dest> <size> <pagesize> <blocksize in kiB>\n";
U_BOOT_CMD_START(nand_boot_test)
.maxargs = CONFIG_MAXARGS,
.cmd = do_nand_boot_test,
.usage = "load an image from NAND",
U_BOOT_CMD_HELP(cmd_nand_boot_test_help)
U_BOOT_CMD_END
#endif
#endif