9
0
Fork 0
barebox/drivers/nand/nand_imx.c

1174 lines
28 KiB
C

/*
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
/*
* MX21 Hardware contains a bug which causes HW ECC to fail for two
* consecutive read pages containing 1bit Errors (See MX21 Chip Erata,
* Erratum 16). Use software ECC for this chip.
*/
#include <common.h>
#include <driver.h>
#include <malloc.h>
#include <init.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <mach/generic.h>
#include <mach/imx-nand.h>
#include <mach/imx-regs.h>
#include <asm/io.h>
#include <errno.h>
#define DVR_VER "2.0"
#define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35() || cpu_is_mx21())
#define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27())
/*
* Addresses for NFC registers
*/
#define NFC_BUF_SIZE 0xE00
#define NFC_BUF_ADDR 0xE04
#define NFC_FLASH_ADDR 0xE06
#define NFC_FLASH_CMD 0xE08
#define NFC_CONFIG 0xE0A
#define NFC_ECC_STATUS_RESULT 0xE0C
#define NFC_RSLTMAIN_AREA 0xE0E
#define NFC_RSLTSPARE_AREA 0xE10
#define NFC_SPAS 0xe10
#define NFC_WRPROT 0xE12
#define NFC_V1_UNLOCKSTART_BLKADDR 0xe14
#define NFC_V1_UNLOCKEND_BLKADDR 0xe16
#define NFC_V21_UNLOCKSTART_BLKADDR 0xe20
#define NFC_V21_UNLOCKEND_BLKADDR 0xe22
#define NFC_NF_WRPRST 0xE18
#define NFC_CONFIG1 0xE1A
#define NFC_CONFIG2 0xE1C
/*
* Addresses for NFC RAM BUFFER Main area 0
*/
#define MAIN_AREA0 0x000
#define MAIN_AREA1 0x200
#define MAIN_AREA2 0x400
#define MAIN_AREA3 0x600
/*
* Addresses for NFC SPARE BUFFER Spare area 0
*/
#define SPARE_AREA0 0x800
#define SPARE_AREA1 0x810
#define SPARE_AREA2 0x820
#define SPARE_AREA3 0x830
/*
* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register for Command
* operation
*/
#define NFC_CMD 0x1
/*
* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register for Address
* operation
*/
#define NFC_ADDR 0x2
/*
* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register for Input
* operation
*/
#define NFC_INPUT 0x4
/*
* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register for Data Output
* operation
*/
#define NFC_OUTPUT 0x8
/*
* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register for Read ID
* operation
*/
#define NFC_ID 0x10
/*
* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register for Read Status
* operation
*/
#define NFC_STATUS 0x20
/*
* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read Status
* operation
*/
#define NFC_INT 0x8000
#define NFC_ECC_MODE (1 << 0)
#define NFC_SP_EN (1 << 2)
#define NFC_ECC_EN (1 << 3)
#define NFC_INT_MSK (1 << 4)
#define NFC_BIG (1 << 5)
#define NFC_RST (1 << 6)
#define NFC_CE (1 << 7)
#define NFC_ONE_CYCLE (1 << 8)
#define NFC_SPAS_16 8
#define NFC_SPAS_64 32
#define NFC_SPAS_128 64
#define NFC_SPAS_218 109
#ifdef CONFIG_NAND_IMX_BOOT
#define __nand_boot_init __bare_init
#else
#define __nand_boot_init
#endif
struct imx_nand_host {
struct mtd_info mtd;
struct nand_chip nand;
struct mtd_partition *parts;
struct device_d *dev;
void *spare0;
void *main_area0;
void *main_area1;
void __iomem *base;
void __iomem *regs;
int status_request;
struct clk *clk;
int pagesize_2k;
uint8_t *data_buf;
unsigned int buf_start;
int spare_len;
};
/*
* OOB placement block for use with hardware ecc generation
*/
static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
.eccbytes = 5,
.eccpos = {6, 7, 8, 9, 10},
.oobfree = {{0, 5}, {12, 4}}
};
static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
.eccbytes = 20,
.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
};
/* OOB description for 512 byte pages with 16 byte OOB */
static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
.eccbytes = 1 * 9,
.eccpos = {
7, 8, 9, 10, 11, 12, 13, 14, 15
},
.oobfree = {
{.offset = 0, .length = 5}
}
};
/* OOB description for 2048 byte pages with 64 byte OOB */
static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
.eccbytes = 4 * 9,
.eccpos = {
7, 8, 9, 10, 11, 12, 13, 14, 15,
23, 24, 25, 26, 27, 28, 29, 30, 31,
39, 40, 41, 42, 43, 44, 45, 46, 47,
55, 56, 57, 58, 59, 60, 61, 62, 63
},
.oobfree = {
{.offset = 2, .length = 4},
{.offset = 16, .length = 7},
{.offset = 32, .length = 7},
{.offset = 48, .length = 7}
}
};
static void __nand_boot_init memcpy32(void *trg, const void *src, int size)
{
int i;
unsigned int *t = trg;
unsigned const int *s = src;
for (i = 0; i < (size >> 2); i++)
*t++ = *s++;
}
/*
* This function polls the NANDFC to wait for the basic operation to complete by
* checking the INT bit of config2 register.
*
* @param max_retries number of retry attempts (separated by 1 us)
* @param param parameter for debug
*/
static void __nand_boot_init wait_op_done(struct imx_nand_host *host)
{
u32 tmp;
int i;
/* This is a timeout of roughly 15ms on my system. We
* need about 2us, but be generous. Don't use udelay
* here as we might be here from nand booting.
*/
for (i = 0; i < 100000; i++) {
if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
tmp = readw(host->regs + NFC_CONFIG2);
tmp &= ~NFC_INT;
writew(tmp, host->regs + NFC_CONFIG2);
return;
}
}
}
/*
* This function issues the specified command to the NAND device and
* waits for completion.
*
* @param cmd command for NAND Flash
*/
static void __nand_boot_init send_cmd(struct imx_nand_host *host, u16 cmd)
{
MTD_DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);
writew(cmd, host->regs + NFC_FLASH_CMD);
writew(NFC_CMD, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host);
}
/*
* This function sends an address (or partial address) to the
* NAND device. The address is used to select the source/destination for
* a NAND command.
*
* @param addr address to be written to NFC.
* @param islast True if this is the last address cycle for command
*/
static void __nand_boot_init noinline send_addr(struct imx_nand_host *host, u16 addr)
{
MTD_DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
writew(addr, host->regs + NFC_FLASH_ADDR);
writew(NFC_ADDR, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host);
}
/*
* This function requests the NANDFC to initate the transfer
* of data currently in the NANDFC RAM buffer to the NAND device.
*
* @param buf_id Specify Internal RAM Buffer number (0-3)
* @param spare_only set true if only the spare area is transferred
*/
static void __nand_boot_init send_page(struct imx_nand_host *host,
unsigned int ops)
{
int bufs, i;
if (nfc_is_v1() && host->pagesize_2k)
bufs = 4;
else
bufs = 1;
for (i = 0; i < bufs; i++) {
/* NANDFC buffer 0 is used for page read/write */
writew(i, host->regs + NFC_BUF_ADDR);
writew(ops, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host);
}
}
/*
* This function requests the NANDFC to perform a read of the
* NAND device ID.
*/
static void send_read_id(struct imx_nand_host *host)
{
struct nand_chip *this = &host->nand;
u16 tmp;
/* NANDFC buffer 0 is used for device ID output */
writew(0x0, host->regs + NFC_BUF_ADDR);
/* Read ID into main buffer */
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_SP_EN;
writew(tmp, host->regs + NFC_CONFIG1);
writew(NFC_ID, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host);
if (this->options & NAND_BUSWIDTH_16) {
volatile u16 *mainbuf = host->main_area0;
/*
* Pack the every-other-byte result for 16-bit ID reads
* into every-byte as the generic code expects and various
* chips implement.
*/
mainbuf[0] = (mainbuf[0] & 0xff) | ((mainbuf[1] & 0xff) << 8);
mainbuf[1] = (mainbuf[2] & 0xff) | ((mainbuf[3] & 0xff) << 8);
mainbuf[2] = (mainbuf[4] & 0xff) | ((mainbuf[5] & 0xff) << 8);
}
memcpy32(host->data_buf, host->main_area0, 16);
}
/*
* This function requests the NANDFC to perform a read of the
* NAND device status and returns the current status.
*
* @return device status
*/
static u16 get_dev_status(struct imx_nand_host *host)
{
volatile u16 *mainbuf = host->main_area1;
u32 store;
u16 ret, tmp;
/* Issue status request to NAND device */
/* store the main area1 first word, later do recovery */
store = *((u32 *) mainbuf);
/*
* NANDFC buffer 1 is used for device status to prevent
* corruption of read/write buffer on status requests.
*/
writew(1, host->regs + NFC_BUF_ADDR);
/* Read status into main buffer */
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_SP_EN;
writew(tmp, host->regs + NFC_CONFIG1);
writew(NFC_STATUS, host->regs + NFC_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host);
/* Status is placed in first word of main buffer */
/* get status, then recovery area 1 data */
ret = mainbuf[0];
*((u32 *) mainbuf) = store;
return ret;
}
/*
* This function is used by upper layer to checks if device is ready
*
* @param mtd MTD structure for the NAND Flash
*
* @return 0 if device is busy else 1
*/
static int imx_nand_dev_ready(struct mtd_info *mtd)
{
/*
* NFC handles R/B internally.Therefore,this function
* always returns status as ready.
*/
return 1;
}
static void imx_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
/*
* If HW ECC is enabled, we turn it on during init. There is
* no need to enable again here.
*/
}
static int imx_nand_correct_data(struct mtd_info *mtd, u_char * dat,
u_char * read_ecc, u_char * calc_ecc)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
/*
* 1-Bit errors are automatically corrected in HW. No need for
* additional correction. 2-Bit errors cannot be corrected by
* HW ECC, so we need to return failure
*/
u16 ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
MTD_DEBUG(MTD_DEBUG_LEVEL0,
"MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
return -1;
}
return 0;
}
static int imx_nand_calculate_ecc(struct mtd_info *mtd, const u_char * dat,
u_char * ecc_code)
{
return 0;
}
/*
* This function reads byte from the NAND Flash
*
* @param mtd MTD structure for the NAND Flash
*
* @return data read from the NAND Flash
*/
static u_char imx_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
u_char ret;
/* Check for status request */
if (host->status_request)
return get_dev_status(host) & 0xFF;
ret = *(uint8_t *)(host->data_buf + host->buf_start);
host->buf_start++;
return ret;
}
/*
* This function reads word from the NAND Flash
*
* @param mtd MTD structure for the NAND Flash
*
* @return data read from the NAND Flash
*/
static u16 imx_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
uint16_t ret;
ret = *(uint16_t *)(host->data_buf + host->buf_start);
host->buf_start += 2;
return ret;
}
/*
* This function writes data of length \b len to buffer \b buf. The data to be
* written on NAND Flash is first copied to RAMbuffer. After the Data Input
* Operation by the NFC, the data is written to NAND Flash
*
* @param mtd MTD structure for the NAND Flash
* @param buf data to be written to NAND Flash
* @param len number of bytes to be written
*/
static void imx_nand_write_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
n = min(n, len);
memcpy32(host->data_buf + col, buf, n);
host->buf_start += n;
}
/*
* This function is used to read the data buffer from the NAND Flash. To
* read the data from NAND Flash first the data output cycle is initiated by
* the NFC, which copies the data to RAMbuffer. This data of length \b len is
* then copied to buffer \b buf.
*
* @param mtd MTD structure for the NAND Flash
* @param buf data to be read from NAND Flash
* @param len number of bytes to be read
*/
static void imx_nand_read_buf(struct mtd_info *mtd, u_char * buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
n = min(n, len);
memcpy32(buf, host->data_buf + col, len);
host->buf_start += len;
}
/*
* Function to transfer data to/from spare area.
*/
static void copy_spare(struct mtd_info *mtd, int bfrom)
{
struct nand_chip *this = mtd->priv;
struct imx_nand_host *host = this->priv;
u16 i, j;
u16 n = mtd->writesize >> 9;
u8 *d = host->data_buf + mtd->writesize;
u8 *s = host->spare0;
u16 t = host->spare_len;
j = (mtd->oobsize / n >> 1) << 1;
if (bfrom) {
for (i = 0; i < n - 1; i++)
memcpy32(d + i * j, s + i * t, j);
/* the last section */
memcpy32(d + i * j, s + i * t, mtd->oobsize - i * j);
} else {
for (i = 0; i < n - 1; i++)
memcpy32(&s[i * t], &d[i * j], j);
/* the last section */
memcpy32(&s[i * t], &d[i * j], mtd->oobsize - i * j);
}
}
/*
* This function is used by the upper layer to verify the data in NAND Flash
* with the data in the \b buf.
*
* @param mtd MTD structure for the NAND Flash
* @param buf data to be verified
* @param len length of the data to be verified
*
* @return -EFAULT if error else 0
*
*/
static int
imx_nand_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
{
return -EFAULT;
}
/*
* This function is used by upper layer for select and deselect of the NAND
* chip
*
* @param mtd MTD structure for the NAND Flash
* @param chip val indicating select or deselect
*/
static void imx_nand_select_chip(struct mtd_info *mtd, int chip)
{
#ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
u16 tmp;
if (chip > 0) {
MTD_DEBUG(MTD_DEBUG_LEVEL0,
"ERROR: Illegal chip select (chip = %d)\n", chip);
return;
}
if (chip == -1) {
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_CE;
writew(tmp, host->regs + NFC_CONFIG1);
return;
}
tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_CE;
writew(tmp, host->regs + NFC_CONFIG1);
#endif
}
static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
/*
* Write out column address, if necessary
*/
if (column != -1) {
/*
* MXC NANDFC can only perform full page+spare or
* spare-only read/write. When the upper layers
* layers perform a read/write buf operation,
* we will used the saved column adress to index into
* the full page.
*/
send_addr(host, 0);
if (host->pagesize_2k)
/* another col addr cycle for 2k page */
send_addr(host, 0);
}
/*
* Write out page address, if necessary
*/
if (page_addr != -1) {
send_addr(host, (page_addr & 0xff)); /* paddr_0 - p_addr_7 */
if (host->pagesize_2k) {
send_addr(host, (page_addr >> 8) & 0xFF);
if (mtd->size >= 0x10000000) {
send_addr(host, (page_addr >> 16) & 0xff);
}
} else {
/* One more address cycle for higher density devices */
if (mtd->size >= 0x4000000) {
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff);
send_addr(host, (page_addr >> 16) & 0xff);
} else
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff);
}
}
}
/*
* This function is used by the upper layer to write command to NAND Flash for
* different operations to be carried out on NAND Flash
*
* @param mtd MTD structure for the NAND Flash
* @param command command for NAND Flash
* @param column column offset for the page read
* @param page_addr page to be read from NAND Flash
*/
static void imx_nand_command(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
struct imx_nand_host *host = nand_chip->priv;
MTD_DEBUG(MTD_DEBUG_LEVEL3,
"imx_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
command, column, page_addr);
/*
* Reset command state information
*/
host->status_request = 0;
/*
* Command pre-processing step
*/
switch (command) {
case NAND_CMD_STATUS:
host->buf_start = 0;
host->status_request = 1;
send_cmd(host, command);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_READ0:
case NAND_CMD_READOOB:
if (command == NAND_CMD_READ0)
host->buf_start = column;
else
host->buf_start = column + mtd->writesize;
command = NAND_CMD_READ0;
send_cmd(host, command);
mxc_do_addr_cycle(mtd, column, page_addr);
if (host->pagesize_2k)
/* send read confirm command */
send_cmd(host, NAND_CMD_READSTART);
send_page(host, NFC_OUTPUT);
memcpy32(host->data_buf, host->main_area0, mtd->writesize);
copy_spare(mtd, 1);
break;
case NAND_CMD_SEQIN:
if (column >= mtd->writesize) {
if (host->pagesize_2k) {
/**
* FIXME: before send SEQIN command for write
* OOB, we must read one page out. For K9F1GXX
* has no READ1 command to set current HW
* pointer to spare area, we must write the
* whole page including OOB together.
*/
/* call ourself to read a page */
imx_nand_command(mtd, NAND_CMD_READ0, 0,
page_addr);
}
host->buf_start = column;
/* Set program pointer to spare region */
if (!host->pagesize_2k)
send_cmd(host, NAND_CMD_READOOB);
} else {
host->buf_start = column;
/* Set program pointer to page start */
if (!host->pagesize_2k)
send_cmd(host, NAND_CMD_READ0);
}
send_cmd(host, command);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_PAGEPROG:
memcpy32(host->main_area0, host->data_buf, mtd->writesize);
copy_spare(mtd, 0);
send_page(host, NFC_INPUT);
send_cmd(host, command);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_READID:
send_cmd(host, command);
mxc_do_addr_cycle(mtd, column, page_addr);
host->buf_start = 0;
send_read_id(host);
break;
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_RESET:
send_cmd(host, command);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
}
}
#ifdef CONFIG_MXC_NAND_LOW_LEVEL_ERASE
static void imx_low_erase(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
unsigned int page_addr, addr;
u_char status;
MTD_DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : imx_low_erase:Erasing NAND\n");
for (addr = 0; addr < this->chipsize; addr += mtd->erasesize) {
page_addr = addr / mtd->writesize;
imx_nand_command(mtd, NAND_CMD_ERASE1, -1, page_addr);
imx_nand_command(mtd, NAND_CMD_ERASE2, -1, -1);
imx_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
status = imx_nand_read_byte(mtd);
if (status & NAND_STATUS_FAIL) {
printk(KERN_ERR
"ERASE FAILED(block = %d,status = 0x%x)\n",
addr / mtd->erasesize, status);
}
}
}
#endif
/*
* The generic flash bbt decriptors overlap with our ecc
* hardware, so define some i.MX specific ones.
*/
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = mirror_pattern,
};
/*
* This function is called during the driver binding process.
*
* @param pdev the device structure used to store device specific
* information that is used by the suspend, resume and
* remove functions
*
* @return The function always returns 0.
*/
static int __init imxnd_probe(struct device_d *dev)
{
struct nand_chip *this;
struct mtd_info *mtd;
struct imx_nand_platform_data *pdata = dev->platform_data;
struct imx_nand_host *host;
struct nand_ecclayout *oob_smallpage, *oob_largepage;
u16 tmp;
int err = 0;
#ifdef CONFIG_ARCH_IMX27
PCCR1 |= PCCR1_NFC_BAUDEN;
#endif
/* Allocate memory for MTD device structure and private data */
host = kzalloc(sizeof(struct imx_nand_host) + NAND_MAX_PAGESIZE +
NAND_MAX_OOBSIZE, GFP_KERNEL);
if (!host)
return -ENOMEM;
host->data_buf = (uint8_t *)(host + 1);
host->base = (void __iomem *)dev->map_base;
host->main_area0 = host->base;
host->main_area1 = host->base + 0x200;
if (nfc_is_v21()) {
host->regs = host->base + 0x1000;
host->spare0 = host->base + 0x1000;
host->spare_len = 64;
oob_smallpage = &nandv2_hw_eccoob_smallpage;
oob_largepage = &nandv2_hw_eccoob_largepage;
} else if (nfc_is_v1()) {
host->regs = host->base;
host->spare0 = host->base + 0x800;
host->spare_len = 16;
oob_smallpage = &nandv1_hw_eccoob_smallpage;
oob_largepage = &nandv1_hw_eccoob_largepage;
}
host->dev = dev;
/* structures must be linked */
this = &host->nand;
mtd = &host->mtd;
mtd->priv = this;
/* 50 us command delay time */
this->chip_delay = 5;
this->priv = host;
this->dev_ready = imx_nand_dev_ready;
this->cmdfunc = imx_nand_command;
this->select_chip = imx_nand_select_chip;
this->read_byte = imx_nand_read_byte;
this->read_word = imx_nand_read_word;
this->write_buf = imx_nand_write_buf;
this->read_buf = imx_nand_read_buf;
this->verify_buf = imx_nand_verify_buf;
#if 0
host->clk = clk_get(&pdev->dev, "nfc_clk");
if (IS_ERR(host->clk))
goto eclk;
clk_enable(host->clk);
#endif
tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_INT_MSK;
tmp &= ~NFC_SP_EN;
if (nfc_is_v21())
/* currently no support for 218 byte OOB with stronger ECC */
tmp |= NFC_ECC_MODE;
writew(tmp, host->regs + NFC_CONFIG1);
if (pdata->hw_ecc) {
this->ecc.calculate = imx_nand_calculate_ecc;
this->ecc.hwctl = imx_nand_enable_hwecc;
this->ecc.correct = imx_nand_correct_data;
this->ecc.mode = NAND_ECC_HW;
this->ecc.size = 512;
tmp = readw(host->regs + NFC_CONFIG1);
tmp |= NFC_ECC_EN;
writew(tmp, host->regs + NFC_CONFIG1);
} else {
this->ecc.size = 512;
this->ecc.mode = NAND_ECC_SOFT;
tmp = readw(host->regs + NFC_CONFIG1);
tmp &= ~NFC_ECC_EN;
writew(tmp, host->regs + NFC_CONFIG1);
}
/* Reset NAND */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, host->regs + NFC_CONFIG);
/* Blocks to be unlocked */
if (nfc_is_v21()) {
writew(0x0, host->regs + NFC_V21_UNLOCKSTART_BLKADDR);
writew(0xffff, host->regs + NFC_V21_UNLOCKEND_BLKADDR);
this->ecc.bytes = 9;
} else if (nfc_is_v1()) {
writew(0x0, host->regs + NFC_V1_UNLOCKSTART_BLKADDR);
writew(0x4000, host->regs + NFC_V1_UNLOCKEND_BLKADDR);
this->ecc.bytes = 3;
}
/* Unlock Block Command for given address range */
writew(0x4, host->regs + NFC_WRPROT);
this->ecc.layout = oob_smallpage;
/* NAND bus width determines access funtions used by upper layer */
if (pdata->width == 2) {
this->options |= NAND_BUSWIDTH_16;
this->ecc.layout = &nandv1_hw_eccoob_smallpage;
imx_nand_set_layout(0, 16);
}
if (pdata->flash_bbt) {
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
/* update flash based bbt */
this->options |= NAND_USE_FLASH_BBT;
}
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, 1)) {
err = -ENXIO;
goto escan;
}
imx_nand_set_layout(mtd->writesize, pdata->width == 2 ? 16 : 8);
if (mtd->writesize == 2048) {
this->ecc.layout = oob_largepage;
host->pagesize_2k = 1;
if (nfc_is_v21()) {
tmp = readw(host->regs + NFC_SPAS);
tmp &= 0xff00;
tmp |= NFC_SPAS_64;
writew(tmp, host->regs + NFC_SPAS);
}
} else {
if (nfc_is_v21()) {
tmp = readw(host->regs + NFC_SPAS);
tmp &= 0xff00;
tmp |= NFC_SPAS_16;
writew(tmp, host->regs + NFC_SPAS);
}
}
/* second phase scan */
if (nand_scan_tail(mtd)) {
err = -ENXIO;
goto escan;
}
add_mtd_device(mtd);
dev->priv = host;
return 0;
escan:
kfree(host);
return err;
}
static struct driver_d imx_nand_driver = {
.name = "imx_nand",
.probe = imxnd_probe,
};
#ifdef CONFIG_NAND_IMX_BOOT
static void __nand_boot_init nfc_addr(struct imx_nand_host *host, u32 offs)
{
if (host->pagesize_2k) {
send_addr(host, offs & 0xff);
send_addr(host, offs & 0xff);
send_addr(host, (offs >> 11) & 0xff);
send_addr(host, (offs >> 19) & 0xff);
send_addr(host, (offs >> 27) & 0xff);
} else {
send_addr(host, offs & 0xff);
send_addr(host, (offs >> 9) & 0xff);
send_addr(host, (offs >> 17) & 0xff);
send_addr(host, (offs >> 25) & 0xff);
}
}
void __nand_boot_init imx_nand_load_image(void *dest, int size)
{
struct imx_nand_host host;
u32 tmp, page, block, blocksize, pagesize;
#ifdef CONFIG_ARCH_IMX27
tmp = readl(IMX_SYSTEM_CTL_BASE + 0x14);
if (tmp & (1 << 5))
host.pagesize_2k = 1;
else
host.pagesize_2k = 0;
#endif
#ifdef CONFIG_ARCH_IMX31
tmp = readl(IMX_CCM_BASE + CCM_RCSR);
if (tmp & RCSR_NFMS)
host.pagesize_2k = 1;
else
host.pagesize_2k = 0;
#endif
#ifdef CONFIG_ARCH_IMX35
if (readl(IMX_CCM_BASE + CCM_RCSR) & (1 << 8))
host.pagesize_2k = 1;
else
host.pagesize_2k = 0;
#endif
if (host.pagesize_2k) {
pagesize = 2048;
blocksize = 128 * 1024;
} else {
pagesize = 512;
blocksize = 16 * 1024;
}
host.base = (void __iomem *)IMX_NFC_BASE;
if (nfc_is_v21()) {
host.regs = host.base + 0x1000;
host.spare0 = host.base + 0x1000;
host.spare_len = 64;
} else if (nfc_is_v1()) {
host.regs = host.base;
host.spare0 = host.base + 0x800;
host.spare_len = 16;
}
send_cmd(&host, NAND_CMD_RESET);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, host.regs + NFC_CONFIG);
/* Unlock Block Command for given address range */
writew(0x4, host.regs + NFC_WRPROT);
tmp = readw(host.regs + NFC_CONFIG1);
tmp |= NFC_ECC_EN | NFC_INT_MSK;
if (nfc_is_v21())
/* currently no support for 218 byte OOB with stronger ECC */
tmp |= NFC_ECC_MODE;
tmp &= ~NFC_SP_EN;
writew(tmp, host.regs + NFC_CONFIG1);
if (nfc_is_v21()) {
if (host.pagesize_2k) {
tmp = readw(host.regs + NFC_SPAS);
tmp &= 0xff00;
tmp |= NFC_SPAS_64;
writew(tmp, host.regs + NFC_SPAS);
} else {
tmp = readw(host.regs + NFC_SPAS);
tmp &= 0xff00;
tmp |= NFC_SPAS_16;
writew(tmp, host.regs + NFC_SPAS);
}
}
block = page = 0;
while (1) {
page = 0;
while (page * pagesize < blocksize) {
debug("page: %d block: %d dest: %p src "
"0x%08x\n",
page, block, dest,
block * blocksize +
page * pagesize);
send_cmd(&host, NAND_CMD_READ0);
nfc_addr(&host, block * blocksize +
page * pagesize);
if (host.pagesize_2k)
send_cmd(&host, NAND_CMD_READSTART);
send_page(&host, NFC_OUTPUT);
page++;
if (host.pagesize_2k) {
if ((readw(host.spare0) & 0xff)
!= 0xff)
continue;
} else {
if ((readw(host.spare0 + 4) & 0xff00)
!= 0xff00)
continue;
}
memcpy32(dest, host.base, pagesize);
dest += pagesize;
size -= pagesize;
if (size <= 0)
return;
}
block++;
}
}
#define CONFIG_NAND_IMX_BOOT_DEBUG
#ifdef CONFIG_NAND_IMX_BOOT_DEBUG
#include <command.h>
static int do_nand_boot_test(struct command *cmdtp, int argc, char *argv[])
{
void *dest;
int size;
if (argc < 3)
return COMMAND_ERROR_USAGE;
dest = (void *)strtoul_suffix(argv[1], NULL, 0);
size = strtoul_suffix(argv[2], NULL, 0);
imx_nand_load_image(dest, size);
return 0;
}
static const __maybe_unused char cmd_nand_boot_test_help[] =
"Usage: nand_boot_test <dest> <size>\n";
BAREBOX_CMD_START(nand_boot_test)
.cmd = do_nand_boot_test,
.usage = "list a file or directory",
BAREBOX_CMD_HELP(cmd_nand_boot_test_help)
BAREBOX_CMD_END
#endif
#endif /* CONFIG_NAND_IMX_BOOT */
/*
* Main initialization routine
* @return 0 if successful; non-zero otherwise
*/
static int __init imx_nand_init(void)
{
return register_driver(&imx_nand_driver);
}
device_initcall(imx_nand_init);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("MXC NAND MTD driver");
MODULE_LICENSE("GPL");