9
0
Fork 0
barebox/include/net.h

754 lines
20 KiB
C

/*
* LiMon Monitor (LiMon) - Network.
*
* Copyright 1994 - 2000 Neil Russell.
* (See License)
*
*
* History
* 9/16/00 bor adapted to TQM823L/STK8xxL board, RARP/TFTP boot added
*/
#ifndef __NET_H__
#define __NET_H__
#include <driver.h>
#include <linux/types.h>
#include <param.h>
#include <malloc.h>
#include <asm/byteorder.h> /* for nton* / ntoh* stuff */
/*
* The number of receive packet buffers, and the required packet buffer
* alignment in memory.
*
*/
#ifdef CFG_RX_ETH_BUFFER
# define PKTBUFSRX CFG_RX_ETH_BUFFER
#else
# define PKTBUFSRX 4
#endif
#define PKTALIGN 32
/*
* The current receive packet handler. Called with a pointer to the
* application packet, and a protocol type (PORT_BOOTPC or PORT_TFTP).
* All other packets are dealt with without calling the handler.
*/
typedef void rxhand_f(uchar *, unsigned, unsigned, unsigned);
/*
* A timeout handler. Called after time interval has expired.
*/
typedef void thand_f(void);
#define NAMESIZE 16
enum eth_state_t {
ETH_STATE_INIT,
ETH_STATE_PASSIVE,
ETH_STATE_ACTIVE
};
struct device_d;
struct eth_device {
int iobase;
int state;
int active;
int (*init) (struct eth_device*);
int (*open) (struct eth_device*);
int (*send) (struct eth_device*, void *packet, int length);
int (*recv) (struct eth_device*);
void (*halt) (struct eth_device*);
int (*get_ethaddr) (struct eth_device*, unsigned char *adr);
int (*set_ethaddr) (struct eth_device*, unsigned char *adr);
struct eth_device *next;
void *priv;
struct param_d param_ip;
struct param_d param_netmask;
struct param_d param_gateway;
struct param_d param_serverip;
struct param_d param_ethaddr;
struct device_d dev;
struct list_head list;
};
int eth_register(struct eth_device* dev); /* Register network device */
void eth_unregister(struct eth_device* dev); /* Unregister network device */
int eth_open(void); /* open the device */
int eth_send(void *packet, int length); /* Send a packet */
int eth_rx(void); /* Check for received packets */
void eth_halt(void); /* stop SCC */
char *eth_get_name(void); /* get name of current device */
/**********************************************************************/
/*
* Protocol headers.
*/
/*
* Ethernet header
*/
typedef struct {
uchar et_dest[6]; /* Destination node */
uchar et_src[6]; /* Source node */
ushort et_protlen; /* Protocol or length */
uchar et_dsap; /* 802 DSAP */
uchar et_ssap; /* 802 SSAP */
uchar et_ctl; /* 802 control */
uchar et_snap1; /* SNAP */
uchar et_snap2;
uchar et_snap3;
ushort et_prot; /* 802 protocol */
} Ethernet_t;
#define ETHER_HDR_SIZE 14 /* Ethernet header size */
#define E802_HDR_SIZE 22 /* 802 ethernet header size */
/*
* Ethernet header
*/
typedef struct {
uchar vet_dest[6]; /* Destination node */
uchar vet_src[6]; /* Source node */
ushort vet_vlan_type; /* PROT_VLAN */
ushort vet_tag; /* TAG of VLAN */
ushort vet_type; /* protocol type */
} VLAN_Ethernet_t;
#define VLAN_ETHER_HDR_SIZE 18 /* VLAN Ethernet header size */
#define PROT_IP 0x0800 /* IP protocol */
#define PROT_ARP 0x0806 /* IP ARP protocol */
#define PROT_RARP 0x8035 /* IP ARP protocol */
#define PROT_VLAN 0x8100 /* IEEE 802.1q protocol */
#define IPPROTO_ICMP 1 /* Internet Control Message Protocol */
#define IPPROTO_UDP 17 /* User Datagram Protocol */
/*
* Internet Protocol (IP) header.
*/
typedef struct {
uchar ip_hl_v; /* header length and version */
uchar ip_tos; /* type of service */
ushort ip_len; /* total length */
ushort ip_id; /* identification */
ushort ip_off; /* fragment offset field */
uchar ip_ttl; /* time to live */
uchar ip_p; /* protocol */
ushort ip_sum; /* checksum */
IPaddr_t ip_src; /* Source IP address */
IPaddr_t ip_dst; /* Destination IP address */
ushort udp_src; /* UDP source port */
ushort udp_dst; /* UDP destination port */
ushort udp_len; /* Length of UDP packet */
ushort udp_xsum; /* Checksum */
} IP_t;
#define IP_HDR_SIZE_NO_UDP (sizeof (IP_t) - 8)
#define IP_HDR_SIZE (sizeof (IP_t))
/*
* Address Resolution Protocol (ARP) header.
*/
typedef struct
{
ushort ar_hrd; /* Format of hardware address */
# define ARP_ETHER 1 /* Ethernet hardware address */
ushort ar_pro; /* Format of protocol address */
uchar ar_hln; /* Length of hardware address */
uchar ar_pln; /* Length of protocol address */
ushort ar_op; /* Operation */
# define ARPOP_REQUEST 1 /* Request to resolve address */
# define ARPOP_REPLY 2 /* Response to previous request */
# define RARPOP_REQUEST 3 /* Request to resolve address */
# define RARPOP_REPLY 4 /* Response to previous request */
/*
* The remaining fields are variable in size, according to
* the sizes above, and are defined as appropriate for
* specific hardware/protocol combinations.
*/
uchar ar_data[0];
} ARP_t;
/*
* ICMP stuff (just enough to handle (host) redirect messages)
*/
#define ICMP_ECHO_REPLY 0 /* Echo reply */
#define ICMP_REDIRECT 5 /* Redirect (change route) */
#define ICMP_ECHO_REQUEST 8 /* Echo request */
/* Codes for REDIRECT. */
#define ICMP_REDIR_NET 0 /* Redirect Net */
#define ICMP_REDIR_HOST 1 /* Redirect Host */
typedef struct {
uchar type;
uchar code;
ushort checksum;
union {
struct {
ushort id;
ushort sequence;
} echo;
ulong gateway;
struct {
ushort __unused;
ushort mtu;
} frag;
} un;
} ICMP_t;
/*
* Maximum packet size; used to allocate packet storage.
* TFTP packets can be 524 bytes + IP header + ethernet header.
* Lets be conservative, and go for 38 * 16. (Must also be
* a multiple of 32 bytes).
*/
/*
* AS.HARNOIS : Better to set PKTSIZE to maximum size because
* traffic type is not always controlled
* maximum packet size = 1518
* maximum packet size and multiple of 32 bytes = 1536
*/
#define PKTSIZE 1518
#define PKTSIZE_ALIGN 1536
/*#define PKTSIZE 608*/
/*
* Maximum receive ring size; that is, the number of packets
* we can buffer before overflow happens. Basically, this just
* needs to be enough to prevent a packet being discarded while
* we are processing the previous one.
*/
#define RINGSZ 4
#define RINGSZ_LOG2 2
/**********************************************************************/
/*
* Globals.
*
* Note:
*
* All variables of type IPaddr_t are stored in NETWORK byte order
* (big endian).
*/
/* net.c */
/** BOOTP EXTENTIONS **/
extern IPaddr_t NetOurGatewayIP; /* Our gateway IP addresse */
extern IPaddr_t NetOurSubnetMask; /* Our subnet mask (0 = unknown)*/
extern IPaddr_t NetOurDNSIP; /* Our Domain Name Server (0 = unknown)*/
extern IPaddr_t NetOurDNS2IP; /* Our 2nd Domain Name Server (0 = unknown)*/
extern char NetOurNISDomain[32]; /* Our NIS domain */
extern char NetOurHostName[32]; /* Our hostname */
extern char NetOurRootPath[64]; /* Our root path */
/** END OF BOOTP EXTENTIONS **/
extern ulong NetBootFileXferSize; /* size of bootfile in bytes */
extern uchar NetOurEther[6]; /* Our ethernet address */
extern uchar NetServerEther[6]; /* Boot server enet address */
extern IPaddr_t NetOurIP; /* Our IP addr (0 = unknown) */
extern IPaddr_t NetServerIP; /* Server IP addr (0 = unknown) */
extern uchar * NetTxPacket; /* THE transmit packet */
extern uchar * NetRxPackets[PKTBUFSRX];/* Receive packets */
extern uchar * NetRxPkt; /* Current receive packet */
extern int NetRxPktLen; /* Current rx packet length */
extern unsigned NetIPID; /* IP ID (counting) */
extern uchar NetBcastAddr[6]; /* Ethernet boardcast address */
extern uchar NetEtherNullAddr[6];
#define VLAN_NONE 4095 /* untagged */
#define VLAN_IDMASK 0x0fff /* mask of valid vlan id */
extern ushort NetOurVLAN; /* Our VLAN */
extern ushort NetOurNativeVLAN; /* Our Native VLAN */
extern int NetState; /* Network loop state */
/* ---------- Added by sha ------------ */
extern IPaddr_t NetArpWaitPacketIP;
extern uchar *NetArpWaitPacketMAC;
extern uchar *NetArpWaitTxPacket; /* THE transmit packet */
extern int NetArpWaitTxPacketSize;
extern int NetArpWaitTry;
extern uint64_t NetArpWaitTimerStart;
extern void ArpRequest (void);
/* ------------------------------------ */
#define NETLOOP_CONTINUE 1
#define NETLOOP_SUCCESS 2
#define NETLOOP_FAIL 3
typedef enum { BOOTP, RARP, ARP, TFTP, DHCP, PING, DNS, NFS, CDP, NETCONS, SNTP } proto_t;
/* Initialize the network adapter */
int NetLoopInit(proto_t);
/* Do the work */
int NetLoop(void);
/* Shutdown adapters and cleanup */
void NetStop(void);
/* Load failed. Start again. */
void NetStartAgain(void);
/* Get size of the ethernet header when we send */
int NetEthHdrSize(void);
/* Set ethernet header; returns the size of the header */
int NetSetEther(uchar *, uchar *, uint);
/* Set IP header */
void NetSetIP(uchar *, IPaddr_t, int, int, int);
/* Checksum */
int NetCksumOk(uchar *, int); /* Return true if cksum OK */
uint NetCksum(uchar *, int); /* Calculate the checksum */
/* Set callbacks */
void NetSetHandler(rxhand_f *); /* Set RX packet handler */
void NetSetTimeout(uint64_t, thand_f *);/* Set timeout handler */
/* Transmit "NetTxPacket" */
void NetSendPacket(uchar *, int);
/* Transmit UDP packet, performing ARP request if needed */
int NetSendUDPPacket(uchar *ether, IPaddr_t dest, int dport, int sport, int len);
/* Processes a received packet */
void NetReceive(uchar *, int);
/* Print an IP address on the console */
#ifdef CONFIG_NET
void print_IPaddr (IPaddr_t);
#else
#define print_IPaddr(IPaddr_t);
#endif
void netboot_update_env(void);
/*
* The following functions are a bit ugly, but necessary to deal with
* alignment restrictions on ARM.
*
* We're using inline functions, which had the smallest memory
* footprint in our tests.
*/
/* return IP *in network byteorder* */
static inline IPaddr_t NetReadIP(void *from)
{
IPaddr_t ip;
memcpy((void*)&ip, from, sizeof(ip));
return ip;
}
/* return ulong *in network byteorder* */
static inline ulong NetReadLong(ulong *from)
{
ulong l;
memcpy((void*)&l, (void*)from, sizeof(l));
return l;
}
/* write IP *in network byteorder* */
static inline void NetWriteIP(void *to, IPaddr_t ip)
{
memcpy(to, (void*)&ip, sizeof(ip));
}
/* copy IP */
static inline void NetCopyIP(void *to, void *from)
{
memcpy(to, from, sizeof(IPaddr_t));
}
/* copy ulong */
static inline void NetCopyLong(ulong *to, ulong *from)
{
memcpy((void*)to, (void*)from, sizeof(ulong));
}
/* Convert an IP address to a string */
char * ip_to_string (IPaddr_t x, char *s);
/* Convert a string to ip address */
int string_to_ip(const char *s, IPaddr_t *ip);
/* Convert a VLAN id to a string */
void VLAN_to_string (ushort x, char *s);
/* Convert a string to a vlan id */
ushort string_to_VLAN(const char *s);
/* read an IP address from a environment variable */
IPaddr_t getenv_IPaddr (char *);
/* read a VLAN id from an environment variable */
ushort getenv_VLAN(char *);
int string_to_ethaddr(const char *str, char *enetaddr);
void ethaddr_to_string(const unsigned char *enetaddr, char *str);
/**********************************************************************/
/* Network devices */
/**********************************************************************/
void eth_set_current(struct eth_device *eth);
struct eth_device *eth_get_current(void);
struct eth_device *eth_get_byname(char *name);
/*
* Ethernet header
*/
struct ethernet {
uint8_t et_dest[6]; /* Destination node */
uint8_t et_src[6]; /* Source node */
uint16_t et_protlen; /* Protocol or length */
} __attribute__ ((packed));
#define ETHER_HDR_SIZE 14 /* Ethernet header size */
#define PROT_IP 0x0800 /* IP protocol */
#define PROT_ARP 0x0806 /* IP ARP protocol */
#define PROT_RARP 0x8035 /* IP ARP protocol */
#define PROT_VLAN 0x8100 /* IEEE 802.1q protocol */
#define IPPROTO_ICMP 1 /* Internet Control Message Protocol */
#define IPPROTO_UDP 17 /* User Datagram Protocol */
/*
* Internet Protocol (IP) header.
*/
struct iphdr {
uint8_t hl_v;
uint8_t tos;
uint16_t tot_len;
uint16_t id;
uint16_t frag_off;
uint8_t ttl;
uint8_t protocol;
uint16_t check;
uint32_t saddr;
uint32_t daddr;
/* The options start here. */
} __attribute__ ((packed));
struct udphdr {
uint16_t uh_sport; /* source port */
uint16_t uh_dport; /* destination port */
uint16_t uh_ulen; /* udp length */
uint16_t uh_sum; /* udp checksum */
} __attribute__ ((packed));
/*
* Address Resolution Protocol (ARP) header.
*/
struct arprequest
{
uint16_t ar_hrd; /* Format of hardware address */
#define ARP_ETHER 1 /* Ethernet hardware address */
uint16_t ar_pro; /* Format of protocol address */
uint8_t ar_hln; /* Length of hardware address */
uint8_t ar_pln; /* Length of protocol address */
uint16_t ar_op; /* Operation */
#define ARPOP_REQUEST 1 /* Request to resolve address */
#define ARPOP_REPLY 2 /* Response to previous request */
#define RARPOP_REQUEST 3 /* Request to resolve address */
#define RARPOP_REPLY 4 /* Response to previous request */
/*
* The remaining fields are variable in size, according to
* the sizes above, and are defined as appropriate for
* specific hardware/protocol combinations.
*/
uint8_t ar_data[0];
} __attribute__ ((packed));
#define ARP_HDR_SIZE (8 + 20) /* Size assuming ethernet */
/*
* ICMP stuff (just enough to handle (host) redirect messages)
*/
#define ICMP_ECHO_REPLY 0 /* Echo reply */
#define ICMP_REDIRECT 5 /* Redirect (change route) */
#define ICMP_ECHO_REQUEST 8 /* Echo request */
/* Codes for REDIRECT. */
#define ICMP_REDIR_NET 0 /* Redirect Net */
#define ICMP_REDIR_HOST 1 /* Redirect Host */
struct icmphdr {
uint8_t type;
uint8_t code;
uint16_t checksum;
union {
struct {
uint16_t id;
uint16_t sequence;
} echo;
uint32_t gateway;
struct {
uint16_t __unused;
uint16_t mtu;
} frag;
} un;
} __attribute__ ((packed));
/*
* Maximum packet size; used to allocate packet storage.
* TFTP packets can be 524 bytes + IP header + ethernet header.
* Lets be conservative, and go for 38 * 16. (Must also be
* a multiple of 32 bytes).
*/
#define PKTSIZE 1518
/**********************************************************************/
/*
* Globals.
*
* Note:
*
* All variables of type IPaddr_t are stored in NETWORK byte order
* (big endian).
*/
extern unsigned char *NetRxPackets[PKTBUFSRX];/* Receive packets */
void net_set_ip(IPaddr_t ip);
void net_set_serverip(IPaddr_t ip);
void net_set_netmask(IPaddr_t ip);
void net_set_gateway(IPaddr_t ip);
IPaddr_t net_get_ip(void);
IPaddr_t net_get_serverip(void);
/* Do the work */
void net_poll(void);
static inline struct iphdr *net_eth_to_iphdr(char *pkt)
{
return (struct iphdr *)(pkt + ETHER_HDR_SIZE);
}
static inline struct udphdr *net_eth_to_udphdr(char *pkt)
{
return (struct udphdr *)(net_eth_to_iphdr(pkt) + 1);
}
static inline struct icmphdr *net_eth_to_icmphdr(char *pkt)
{
return (struct icmphdr *)(net_eth_to_iphdr(pkt) + 1);
}
static inline char *net_eth_to_icmp_payload(char *pkt)
{
return (char *)(net_eth_to_icmphdr(pkt) + 1);
}
static inline char *net_eth_to_udp_payload(char *pkt)
{
return (char *)(net_eth_to_udphdr(pkt) + 1);
}
static inline int net_eth_to_udplen(char *pkt)
{
struct udphdr *udp = net_eth_to_udphdr(pkt);
return ntohs(udp->uh_ulen) - 8;
}
int net_checksum_ok(unsigned char *, int); /* Return true if cksum OK */
uint16_t net_checksum(unsigned char *, int); /* Calculate the checksum */
void NetReceive(unsigned char *, int);
/* Print an IP address on the console */
void print_IPaddr (IPaddr_t);
/*
* The following functions are a bit ugly, but necessary to deal with
* alignment restrictions on ARM.
*
* We're using inline functions, which had the smallest memory
* footprint in our tests.
*/
/* return IP *in network byteorder* */
static inline IPaddr_t net_read_ip(void *from)
{
IPaddr_t ip;
memcpy((void*)&ip, from, sizeof(ip));
return ip;
}
/* return uint32 *in network byteorder* */
static inline uint32_t net_read_uint32(uint32_t *from)
{
ulong l;
memcpy((void*)&l, (void*)from, sizeof(l));
return l;
}
/* write IP *in network byteorder* */
static inline void net_write_ip(void *to, IPaddr_t ip)
{
memcpy(to, (void*)&ip, sizeof(ip));
}
/* copy IP */
static inline void net_copy_ip(void *to, void *from)
{
memcpy(to, from, sizeof(IPaddr_t));
}
/* copy ulong */
static inline void net_copy_uint32(uint32_t *to, uint32_t *from)
{
memcpy(to, from, sizeof(uint32_t));
}
/* Convert an IP address to a string */
char *ip_to_string (IPaddr_t x, char *s);
/* Convert a string to ip address */
int string_to_ip(const char *s, IPaddr_t *ip);
IPaddr_t getenv_ip(const char *name);
int setenv_ip(const char *name, IPaddr_t ip);
int string_to_ethaddr(const char *str, char *enetaddr);
void ethaddr_to_string(const unsigned char *enetaddr, char *str);
/**
* is_zero_ether_addr - Determine if give Ethernet address is all zeros.
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Return true if the address is all zeroes.
*/
static inline int is_zero_ether_addr(const u8 *addr)
{
return !(addr[0] | addr[1] | addr[2] | addr[3] | addr[4] | addr[5]);
}
/**
* is_multicast_ether_addr - Determine if the Ethernet address is a multicast.
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Return true if the address is a multicast address.
* By definition the broadcast address is also a multicast address.
*/
static inline int is_multicast_ether_addr(const u8 *addr)
{
return (0x01 & addr[0]);
}
/**
* is_local_ether_addr - Determine if the Ethernet address is locally-assigned one (IEEE 802).
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Return true if the address is a local address.
*/
static inline int is_local_ether_addr(const u8 *addr)
{
return (0x02 & addr[0]);
}
/**
* is_broadcast_ether_addr - Determine if the Ethernet address is broadcast
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Return true if the address is the broadcast address.
*/
static inline int is_broadcast_ether_addr(const u8 *addr)
{
return (addr[0] & addr[1] & addr[2] & addr[3] & addr[4] & addr[5]) == 0xff;
}
/**
* is_valid_ether_addr - Determine if the given Ethernet address is valid
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Check that the Ethernet address (MAC) is not 00:00:00:00:00:00, is not
* a multicast address, and is not FF:FF:FF:FF:FF:FF.
*
* Return true if the address is valid.
*/
static inline int is_valid_ether_addr(const u8 *addr)
{
/* FF:FF:FF:FF:FF:FF is a multicast address so we don't need to
* explicitly check for it here. */
return !is_multicast_ether_addr(addr) && !is_zero_ether_addr(addr);
}
typedef void rx_handler_f(char *packet, unsigned int len);
void eth_set_current(struct eth_device *eth);
struct eth_device *eth_get_current(void);
struct eth_device *eth_get_byname(char *name);
void net_update_env(void);
/**
* net_receive - Pass a received packet from an ethernet driver to the protocol stack
* @pkt: Pointer to the packet
* @len: length of the packet
*
* Return 0 if the packet is successfully handled. Can be ignored
*/
int net_receive(unsigned char *pkt, int len);
struct net_connection {
struct ethernet *et;
struct iphdr *ip;
struct udphdr *udp;
struct icmphdr *icmp;
unsigned char *packet;
struct list_head list;
rx_handler_f *handler;
int proto;
};
static inline char *net_alloc_packet(void)
{
return memalign(32, PKTSIZE);
}
struct net_connection *net_udp_new(IPaddr_t dest, uint16_t dport,
rx_handler_f *handler);
struct net_connection *net_icmp_new(IPaddr_t dest, rx_handler_f *handler);
void net_unregister(struct net_connection *con);
static inline int net_udp_bind(struct net_connection *con, int sport)
{
con->udp->uh_sport = ntohs(sport);
return 0;
}
static inline unsigned char *net_udp_get_payload(struct net_connection *con)
{
return con->packet + sizeof(struct ethernet) + sizeof(struct iphdr) +
sizeof(struct udphdr);
}
int net_udp_send(struct net_connection *con, int len);
int net_icmp_send(struct net_connection *con, int len);
#endif /* __NET_H__ */