9
0
Fork 0
barebox/drivers/of/base.c

1965 lines
48 KiB
C

/*
* base.c - basic devicetree functions
*
* Copyright (c) 2012 Sascha Hauer <s.hauer@pengutronix.de>, Pengutronix
*
* based on Linux devicetree support
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <common.h>
#include <of.h>
#include <of_address.h>
#include <errno.h>
#include <malloc.h>
#include <init.h>
#include <memory.h>
#include <sizes.h>
#include <linux/ctype.h>
#include <linux/amba/bus.h>
#include <linux/err.h>
/*
* Iterate over all nodes of a tree. As a devicetree does not
* have a dedicated list head, the start node (usually the root
* node) will not be iterated over.
*/
#define of_tree_for_each_node(node, root) \
list_for_each_entry(node, &root->list, list)
/**
* struct alias_prop - Alias property in 'aliases' node
* @link: List node to link the structure in aliases_lookup list
* @alias: Alias property name
* @np: Pointer to device_node that the alias stands for
* @id: Index value from end of alias name
* @stem: Alias string without the index
*
* The structure represents one alias property of 'aliases' node as
* an entry in aliases_lookup list.
*/
struct alias_prop {
struct list_head link;
const char *alias;
struct device_node *np;
int id;
char stem[0];
};
static LIST_HEAD(aliases_lookup);
static LIST_HEAD(phandle_list);
struct device_node *root_node;
struct device_node *of_aliases;
int of_n_addr_cells(struct device_node *np)
{
const __be32 *ip;
do {
if (np->parent)
np = np->parent;
ip = of_get_property(np, "#address-cells", NULL);
if (ip)
return be32_to_cpup(ip);
} while (np->parent);
/* No #address-cells property for the root node */
return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_addr_cells);
int of_n_size_cells(struct device_node *np)
{
const __be32 *ip;
do {
if (np->parent)
np = np->parent;
ip = of_get_property(np, "#size-cells", NULL);
if (ip)
return be32_to_cpup(ip);
} while (np->parent);
/* No #size-cells property for the root node */
return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_size_cells);
static void of_bus_default_count_cells(struct device_node *dev,
int *addrc, int *sizec)
{
if (addrc)
*addrc = of_n_addr_cells(dev);
if (sizec)
*sizec = of_n_size_cells(dev);
}
static void of_bus_count_cells(struct device_node *dev,
int *addrc, int *sizec)
{
of_bus_default_count_cells(dev, addrc, sizec);
}
struct property *of_find_property(const struct device_node *np,
const char *name, int *lenp)
{
struct property *pp;
if (!np)
return NULL;
list_for_each_entry(pp, &np->properties, list)
if (of_prop_cmp(pp->name, name) == 0) {
if (lenp)
*lenp = pp->length;
return pp;
}
return NULL;
}
EXPORT_SYMBOL(of_find_property);
static void of_alias_add(struct alias_prop *ap, struct device_node *np,
int id, const char *stem, int stem_len)
{
ap->np = np;
ap->id = id;
strncpy(ap->stem, stem, stem_len);
ap->stem[stem_len] = 0;
list_add_tail(&ap->link, &aliases_lookup);
pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
ap->alias, ap->stem, ap->id, np->full_name);
}
/**
* of_alias_scan - Scan all properties of 'aliases' node
*
* The function scans all the properties of 'aliases' node and populates
* the global lookup table with the properties. It returns the
* number of alias_prop found, or error code in error case.
*/
void of_alias_scan(void)
{
struct property *pp;
struct alias_prop *app, *tmp;
list_for_each_entry_safe(app, tmp, &aliases_lookup, link)
free(app);
INIT_LIST_HEAD(&aliases_lookup);
if (!root_node)
return;
of_aliases = of_find_node_by_path("/aliases");
if (!of_aliases)
return;
list_for_each_entry(pp, &of_aliases->properties, list) {
const char *start = pp->name;
const char *end = start + strlen(start);
struct device_node *np;
struct alias_prop *ap;
int id, len;
/* Skip those we do not want to proceed */
if (!of_prop_cmp(pp->name, "name") ||
!of_prop_cmp(pp->name, "phandle") ||
!of_prop_cmp(pp->name, "linux,phandle"))
continue;
np = of_find_node_by_path(pp->value);
if (!np)
continue;
/* walk the alias backwards to extract the id and work out
* the 'stem' string */
while (isdigit(*(end-1)) && end > start)
end--;
len = end - start;
id = simple_strtol(end, 0, 10);
if (id < 0)
continue;
/* Allocate an alias_prop with enough space for the stem */
ap = xzalloc(sizeof(*ap) + len + 1);
if (!ap)
continue;
ap->alias = start;
of_alias_add(ap, np, id, start, len);
}
}
EXPORT_SYMBOL(of_alias_scan);
/**
* of_alias_get_id - Get alias id for the given device_node
* @np: Pointer to the given device_node
* @stem: Alias stem of the given device_node
*
* The function travels the lookup table to get alias id for the given
* device_node and alias stem. It returns the alias id if find it.
*/
int of_alias_get_id(struct device_node *np, const char *stem)
{
struct alias_prop *app;
int id = -ENODEV;
list_for_each_entry(app, &aliases_lookup, link) {
if (of_node_cmp(app->stem, stem) != 0)
continue;
if (np == app->np) {
id = app->id;
break;
}
}
return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_id);
const char *of_alias_get(struct device_node *np)
{
struct property *pp;
list_for_each_entry(pp, &of_aliases->properties, list) {
if (!of_node_cmp(np->full_name, pp->value))
return pp->name;
}
return NULL;
}
EXPORT_SYMBOL_GPL(of_alias_get);
/*
* of_find_node_by_phandle - Find a node given a phandle
* @handle: phandle of the node to find
*/
struct device_node *of_find_node_by_phandle(phandle phandle)
{
struct device_node *node;
list_for_each_entry(node, &phandle_list, phandles)
if (node->phandle == phandle)
return node;
return NULL;
}
EXPORT_SYMBOL(of_find_node_by_phandle);
/*
* Find a property with a given name for a given node
* and return the value.
*/
const void *of_get_property(const struct device_node *np, const char *name,
int *lenp)
{
struct property *pp = of_find_property(np, name, lenp);
return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(of_get_property);
/** Checks if the given "compat" string matches one of the strings in
* the device's "compatible" property
*/
int of_device_is_compatible(const struct device_node *device,
const char *compat)
{
const char *cp;
int cplen, l;
cp = of_get_property(device, "compatible", &cplen);
if (cp == NULL)
return 0;
while (cplen > 0) {
if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
return 1;
l = strlen(cp) + 1;
cp += l;
cplen -= l;
}
return 0;
}
EXPORT_SYMBOL(of_device_is_compatible);
/**
* of_find_node_by_name - Find a node by its "name" property
* @from: The node to start searching from or NULL, the node
* you pass will not be searched, only the next one
* will; typically, you pass what the previous call
* returned.
* @name: The name string to match against
*
* Returns a pointer to the node found or NULL.
*/
struct device_node *of_find_node_by_name(struct device_node *from,
const char *name)
{
struct device_node *np;
if (!from)
from = root_node;
of_tree_for_each_node(np, from)
if (np->name && !of_node_cmp(np->name, name))
return np;
return NULL;
}
EXPORT_SYMBOL(of_find_node_by_name);
/**
* of_find_compatible_node - Find a node based on type and one of the
* tokens in its "compatible" property
* @from: The node to start searching from or NULL, the node
* you pass will not be searched, only the next one
* will; typically, you pass what the previous call
* returned.
* @type: The type string to match "device_type" or NULL to ignore
* (currently always ignored in barebox)
* @compatible: The string to match to one of the tokens in the device
* "compatible" list.
*
* Returns a pointer to the node found or NULL.
*/
struct device_node *of_find_compatible_node(struct device_node *from,
const char *type, const char *compatible)
{
struct device_node *np;
if (!from)
from = root_node;
of_tree_for_each_node(np, from)
if (of_device_is_compatible(np, compatible))
return np;
return NULL;
}
EXPORT_SYMBOL(of_find_compatible_node);
/**
* of_find_node_with_property - Find a node which has a property with
* the given name.
* @from: The node to start searching from or NULL, the node
* you pass will not be searched, only the next one
* will; typically, you pass what the previous call
* returned.
* @prop_name: The name of the property to look for.
*
* Returns a pointer to the node found or NULL.
*/
struct device_node *of_find_node_with_property(struct device_node *from,
const char *prop_name)
{
struct device_node *np;
of_tree_for_each_node(np, from) {
struct property *pp = of_find_property(np, prop_name, NULL);
if (pp)
return np;
}
return NULL;
}
EXPORT_SYMBOL(of_find_node_with_property);
/**
* of_match_node - Tell if an device_node has a matching of_match structure
* @matches: array of of device match structures to search in
* @node: the of device structure to match against
*
* Low level utility function used by device matching.
*/
const struct of_device_id *of_match_node(const struct of_device_id *matches,
const struct device_node *node)
{
if (!matches || !node)
return NULL;
while (matches->compatible) {
if (of_device_is_compatible(node, matches->compatible) == 1)
return matches;
matches++;
}
return NULL;
}
/**
* of_find_matching_node_and_match - Find a node based on an of_device_id
* match table.
* @from: The node to start searching from or NULL, the node
* you pass will not be searched, only the next one
* will; typically, you pass what the previous call
* returned.
* @matches: array of of device match structures to search in
* @match Updated to point at the matches entry which matched
*
* Returns a pointer to the node found or NULL.
*/
struct device_node *of_find_matching_node_and_match(struct device_node *from,
const struct of_device_id *matches,
const struct of_device_id **match)
{
struct device_node *np;
if (match)
*match = NULL;
if (!from)
from = root_node;
of_tree_for_each_node(np, from) {
const struct of_device_id *m = of_match_node(matches, np);
if (m) {
if (match)
*match = m;
return np;
}
}
return NULL;
}
EXPORT_SYMBOL(of_find_matching_node_and_match);
int of_match(struct device_d *dev, struct driver_d *drv)
{
const struct of_device_id *id;
id = of_match_node(drv->of_compatible, dev->device_node);
if (!id)
return 1;
dev->of_id_entry = id;
return 0;
}
EXPORT_SYMBOL(of_match);
/**
* of_find_property_value_of_size
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @len: requested length of property value
*
* Search for a property in a device node and valid the requested size.
* Returns the property value on success, -EINVAL if the property does not
* exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*
*/
static void *of_find_property_value_of_size(const struct device_node *np,
const char *propname, u32 len)
{
struct property *prop = of_find_property(np, propname, NULL);
if (!prop)
return ERR_PTR(-EINVAL);
if (!prop->value)
return ERR_PTR(-ENODATA);
if (len > prop->length)
return ERR_PTR(-EOVERFLOW);
return prop->value;
}
/**
* of_property_read_u32_index - Find and read a u32 from a multi-value property.
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @index: index of the u32 in the list of values
* @out_value: pointer to return value, modified only if no error.
*
* Search for a property in a device node and read nth 32-bit value from
* it. Returns 0 on success, -EINVAL if the property does not exist,
* -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*
* The out_value is modified only if a valid u32 value can be decoded.
*/
int of_property_read_u32_index(const struct device_node *np,
const char *propname,
u32 index, u32 *out_value)
{
const u32 *val = of_find_property_value_of_size(np, propname,
((index + 1) * sizeof(*out_value)));
if (IS_ERR(val))
return PTR_ERR(val);
*out_value = be32_to_cpup(((__be32 *)val) + index);
return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u32_index);
/**
* of_property_read_u8_array - Find and read an array of u8 from a property.
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @out_value: pointer to return value, modified only if return value is 0.
* @sz: number of array elements to read
*
* Search for a property in a device node and read 8-bit value(s) from
* it. Returns 0 on success, -EINVAL if the property does not exist,
* -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*
* dts entry of array should be like:
* property = /bits/ 8 <0x50 0x60 0x70>;
*
* The out_value is modified only if a valid u8 value can be decoded.
*/
int of_property_read_u8_array(const struct device_node *np,
const char *propname, u8 *out_values, size_t sz)
{
const u8 *val = of_find_property_value_of_size(np, propname,
(sz * sizeof(*out_values)));
if (IS_ERR(val))
return PTR_ERR(val);
while (sz--)
*out_values++ = *val++;
return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u8_array);
/**
* of_property_read_u16_array - Find and read an array of u16 from a property.
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @out_value: pointer to return value, modified only if return value is 0.
* @sz: number of array elements to read
*
* Search for a property in a device node and read 16-bit value(s) from
* it. Returns 0 on success, -EINVAL if the property does not exist,
* -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*
* dts entry of array should be like:
* property = /bits/ 16 <0x5000 0x6000 0x7000>;
*
* The out_value is modified only if a valid u16 value can be decoded.
*/
int of_property_read_u16_array(const struct device_node *np,
const char *propname, u16 *out_values, size_t sz)
{
const __be16 *val = of_find_property_value_of_size(np, propname,
(sz * sizeof(*out_values)));
if (IS_ERR(val))
return PTR_ERR(val);
while (sz--)
*out_values++ = be16_to_cpup(val++);
return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u16_array);
/**
* of_property_read_u32_array - Find and read an array of 32 bit integers
* from a property.
*
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @out_value: pointer to return value, modified only if return value is 0.
* @sz: number of array elements to read
*
* Search for a property in a device node and read 32-bit value(s) from
* it. Returns 0 on success, -EINVAL if the property does not exist,
* -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*
* The out_value is modified only if a valid u32 value can be decoded.
*/
int of_property_read_u32_array(const struct device_node *np,
const char *propname, u32 *out_values,
size_t sz)
{
const __be32 *val = of_find_property_value_of_size(np, propname,
(sz * sizeof(*out_values)));
if (IS_ERR(val))
return PTR_ERR(val);
while (sz--)
*out_values++ = be32_to_cpup(val++);
return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u32_array);
/**
* of_property_read_u64 - Find and read a 64 bit integer from a property
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @out_value: pointer to return value, modified only if return value is 0.
*
* Search for a property in a device node and read a 64-bit value from
* it. Returns 0 on success, -EINVAL if the property does not exist,
* -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*
* The out_value is modified only if a valid u64 value can be decoded.
*/
int of_property_read_u64(const struct device_node *np, const char *propname,
u64 *out_value)
{
const __be32 *val = of_find_property_value_of_size(np, propname,
sizeof(*out_value));
if (IS_ERR(val))
return PTR_ERR(val);
*out_value = of_read_number(val, 2);
return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u64);
/**
* of_property_read_string - Find and read a string from a property
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @out_string: pointer to null terminated return string, modified only if
* return value is 0.
*
* Search for a property in a device tree node and retrieve a null
* terminated string value (pointer to data, not a copy). Returns 0 on
* success, -EINVAL if the property does not exist, -ENODATA if property
* does not have a value, and -EILSEQ if the string is not null-terminated
* within the length of the property data.
*
* The out_string pointer is modified only if a valid string can be decoded.
*/
int of_property_read_string(struct device_node *np, const char *propname,
const char **out_string)
{
struct property *prop = of_find_property(np, propname, NULL);
if (!prop)
return -EINVAL;
if (!prop->value)
return -ENODATA;
if (strnlen(prop->value, prop->length) >= prop->length)
return -EILSEQ;
*out_string = prop->value;
return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_string);
/**
* of_property_read_string_index - Find and read a string from a multiple
* strings property.
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
* @index: index of the string in the list of strings
* @out_string: pointer to null terminated return string, modified only if
* return value is 0.
*
* Search for a property in a device tree node and retrieve a null
* terminated string value (pointer to data, not a copy) in the list of strings
* contained in that property.
* Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
* property does not have a value, and -EILSEQ if the string is not
* null-terminated within the length of the property data.
*
* The out_string pointer is modified only if a valid string can be decoded.
*/
int of_property_read_string_index(struct device_node *np, const char *propname,
int index, const char **output)
{
struct property *prop = of_find_property(np, propname, NULL);
int i = 0;
size_t l = 0, total = 0;
const char *p;
if (!prop)
return -EINVAL;
if (!prop->value)
return -ENODATA;
if (strnlen(prop->value, prop->length) >= prop->length)
return -EILSEQ;
p = prop->value;
for (i = 0; total < prop->length; total += l, p += l) {
l = strlen(p) + 1;
if (i++ == index) {
*output = p;
return 0;
}
}
return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_read_string_index);
/**
* of_property_match_string() - Find string in a list and return index
* @np: pointer to node containing string list property
* @propname: string list property name
* @string: pointer to string to search for in string list
*
* This function searches a string list property and returns the index
* of a specific string value.
*/
int of_property_match_string(struct device_node *np, const char *propname,
const char *string)
{
struct property *prop = of_find_property(np, propname, NULL);
size_t l;
int i;
const char *p, *end;
if (!prop)
return -EINVAL;
if (!prop->value)
return -ENODATA;
p = prop->value;
end = p + prop->length;
for (i = 0; p < end; i++, p += l) {
l = strlen(p) + 1;
if (p + l > end)
return -EILSEQ;
pr_debug("comparing %s with %s\n", string, p);
if (strcmp(string, p) == 0)
return i; /* Found it; return index */
}
return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_match_string);
/**
* of_property_count_strings - Find and return the number of strings from a
* multiple strings property.
* @np: device node from which the property value is to be read.
* @propname: name of the property to be searched.
*
* Search for a property in a device tree node and retrieve the number of null
* terminated string contain in it. Returns the number of strings on
* success, -EINVAL if the property does not exist, -ENODATA if property
* does not have a value, and -EILSEQ if the string is not null-terminated
* within the length of the property data.
*/
int of_property_count_strings(struct device_node *np, const char *propname)
{
struct property *prop = of_find_property(np, propname, NULL);
int i = 0;
size_t l = 0, total = 0;
const char *p;
if (!prop)
return -EINVAL;
if (!prop->value)
return -ENODATA;
if (strnlen(prop->value, prop->length) >= prop->length)
return -EILSEQ;
p = prop->value;
for (i = 0; total < prop->length; total += l, p += l, i++)
l = strlen(p) + 1;
return i;
}
EXPORT_SYMBOL_GPL(of_property_count_strings);
const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
u32 *pu)
{
const void *curv = cur;
if (!prop)
return NULL;
if (!cur) {
curv = prop->value;
goto out_val;
}
curv += sizeof(*cur);
if (curv >= prop->value + prop->length)
return NULL;
out_val:
*pu = be32_to_cpup(curv);
return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_u32);
const char *of_prop_next_string(struct property *prop, const char *cur)
{
const void *curv = cur;
if (!prop)
return NULL;
if (!cur)
return prop->value;
curv += strlen(cur) + 1;
if (curv >= prop->value + prop->length)
return NULL;
return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_string);
/**
* of_property_write_bool - Create/Delete empty (bool) property.
*
* @np: device node from which the property is to be set.
* @propname: name of the property to be set.
*
* Search for a property in a device node and create or delete the property.
* If the property already exists and write value is false, the property is
* deleted. If write value is true and the property does not exist, it is
* created. Returns 0 on success, -ENOMEM if the property or array
* of elements cannot be created.
*/
int of_property_write_bool(struct device_node *np, const char *propname,
const bool value)
{
struct property *prop = of_find_property(np, propname, NULL);
if (!value) {
if (prop)
of_delete_property(prop);
return 0;
}
if (!prop)
prop = of_new_property(np, propname, NULL, 0);
if (!prop)
return -ENOMEM;
return 0;
}
/**
* of_property_write_u8_array - Write an array of u8 to a property. If
* the property does not exist, it will be created and appended to the given
* device node.
*
* @np: device node to which the property value is to be written.
* @propname: name of the property to be written.
* @values: pointer to array elements to write.
* @sz: number of array elements to write.
*
* Search for a property in a device node and write 8-bit value(s) to
* it. If the property does not exist, it will be created and appended to
* the device node. Returns 0 on success, -ENOMEM if the property or array
* of elements cannot be created.
*/
int of_property_write_u8_array(struct device_node *np,
const char *propname, const u8 *values,
size_t sz)
{
struct property *prop = of_find_property(np, propname, NULL);
u8 *val;
if (prop)
of_delete_property(prop);
prop = of_new_property(np, propname, NULL, sizeof(*val) * sz);
if (!prop)
return -ENOMEM;
val = prop->value;
while (sz--)
*val++ = *values++;
return 0;
}
/**
* of_property_write_u16_array - Write an array of u16 to a property. If
* the property does not exist, it will be created and appended to the given
* device node.
*
* @np: device node to which the property value is to be written.
* @propname: name of the property to be written.
* @values: pointer to array elements to write.
* @sz: number of array elements to write.
*
* Search for a property in a device node and write 16-bit value(s) to
* it. If the property does not exist, it will be created and appended to
* the device node. Returns 0 on success, -ENOMEM if the property or array
* of elements cannot be created.
*/
int of_property_write_u16_array(struct device_node *np,
const char *propname, const u16 *values,
size_t sz)
{
struct property *prop = of_find_property(np, propname, NULL);
__be16 *val;
if (prop)
of_delete_property(prop);
prop = of_new_property(np, propname, NULL, sizeof(*val) * sz);
if (!prop)
return -ENOMEM;
val = prop->value;
while (sz--)
*val++ = cpu_to_be16(*values++);
return 0;
}
/**
* of_property_write_u32_array - Write an array of u32 to a property. If
* the property does not exist, it will be created and appended to the given
* device node.
*
* @np: device node to which the property value is to be written.
* @propname: name of the property to be written.
* @values: pointer to array elements to write.
* @sz: number of array elements to write.
*
* Search for a property in a device node and write 32-bit value(s) to
* it. If the property does not exist, it will be created and appended to
* the device node. Returns 0 on success, -ENOMEM if the property or array
* of elements cannot be created.
*/
int of_property_write_u32_array(struct device_node *np,
const char *propname, const u32 *values,
size_t sz)
{
struct property *prop = of_find_property(np, propname, NULL);
__be32 *val;
if (prop)
of_delete_property(prop);
prop = of_new_property(np, propname, NULL, sizeof(*val) * sz);
if (!prop)
return -ENOMEM;
val = prop->value;
while (sz--)
*val++ = cpu_to_be32(*values++);
return 0;
}
/**
* of_property_write_u64_array - Write an array of u64 to a property. If
* the property does not exist, it will be created and appended to the given
* device node.
*
* @np: device node to which the property value is to be written.
* @propname: name of the property to be written.
* @values: pointer to array elements to write.
* @sz: number of array elements to write.
*
* Search for a property in a device node and write 64-bit value(s) to
* it. If the property does not exist, it will be created and appended to
* the device node. Returns 0 on success, -ENOMEM if the property or array
* of elements cannot be created.
*/
int of_property_write_u64_array(struct device_node *np,
const char *propname, const u64 *values,
size_t sz)
{
struct property *prop = of_find_property(np, propname, NULL);
__be32 *val;
if (prop)
of_delete_property(prop);
prop = of_new_property(np, propname, NULL, 2 * sizeof(*val) * sz);
if (!prop)
return -ENOMEM;
val = prop->value;
while (sz--) {
of_write_number(val, *values++, 2);
val += 2;
}
return 0;
}
/**
* of_parse_phandle - Resolve a phandle property to a device_node pointer
* @np: Pointer to device node holding phandle property
* @phandle_name: Name of property holding a phandle value
* @index: For properties holding a table of phandles, this is the index into
* the table
*
* Returns the device_node pointer found or NULL.
*/
struct device_node *of_parse_phandle(const struct device_node *np,
const char *phandle_name, int index)
{
const __be32 *phandle;
int size;
phandle = of_get_property(np, phandle_name, &size);
if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
return NULL;
return of_find_node_by_phandle(be32_to_cpup(phandle + index));
}
EXPORT_SYMBOL(of_parse_phandle);
/**
* of_parse_phandle_with_args() - Find a node pointed by phandle in a list
* @np: pointer to a device tree node containing a list
* @list_name: property name that contains a list
* @cells_name: property name that specifies phandles' arguments count
* @index: index of a phandle to parse out
* @out_args: optional pointer to output arguments structure (will be filled)
*
* This function is useful to parse lists of phandles and their arguments.
* Returns 0 on success and fills out_args, on error returns appropriate
* errno value.
*
* Example:
*
* phandle1: node1 {
* #list-cells = <2>;
* }
*
* phandle2: node2 {
* #list-cells = <1>;
* }
*
* node3 {
* list = <&phandle1 1 2 &phandle2 3>;
* }
*
* To get a device_node of the `node2' node you may call this:
* of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
*/
static int __of_parse_phandle_with_args(const struct device_node *np,
const char *list_name,
const char *cells_name, int index,
struct of_phandle_args *out_args)
{
const __be32 *list, *list_end;
int rc = 0, size, cur_index = 0;
uint32_t count = 0;
struct device_node *node = NULL;
phandle phandle;
/* Retrieve the phandle list property */
list = of_get_property(np, list_name, &size);
if (!list)
return -ENOENT;
list_end = list + size / sizeof(*list);
/* Loop over the phandles until all the requested entry is found */
while (list < list_end) {
rc = -EINVAL;
count = 0;
/*
* If phandle is 0, then it is an empty entry with no
* arguments. Skip forward to the next entry.
*/
phandle = be32_to_cpup(list++);
if (phandle) {
/*
* Find the provider node and parse the #*-cells
* property to determine the argument length
*/
node = of_find_node_by_phandle(phandle);
if (!node) {
pr_err("%s: could not find phandle\n",
np->full_name);
goto err;
}
if (of_property_read_u32(node, cells_name, &count)) {
pr_err("%s: could not get %s for %s\n",
np->full_name, cells_name,
node->full_name);
goto err;
}
/*
* Make sure that the arguments actually fit in the
* remaining property data length
*/
if (list + count > list_end) {
pr_err("%s: arguments longer than property\n",
np->full_name);
goto err;
}
}
/*
* All of the error cases above bail out of the loop, so at
* this point, the parsing is successful. If the requested
* index matches, then fill the out_args structure and return,
* or return -ENOENT for an empty entry.
*/
rc = -ENOENT;
if (cur_index == index) {
if (!phandle)
goto err;
if (out_args) {
int i;
if (WARN_ON(count > MAX_PHANDLE_ARGS))
count = MAX_PHANDLE_ARGS;
out_args->np = node;
out_args->args_count = count;
for (i = 0; i < count; i++)
out_args->args[i] =
be32_to_cpup(list++);
}
/* Found it! return success */
return 0;
}
node = NULL;
list += count;
cur_index++;
}
/*
* Unlock node before returning result; will be one of:
* -ENOENT : index is for empty phandle
* -EINVAL : parsing error on data
* [1..n] : Number of phandle (count mode; when index = -1)
*/
rc = index < 0 ? cur_index : -ENOENT;
err:
return rc;
}
int of_parse_phandle_with_args(const struct device_node *np,
const char *list_name, const char *cells_name, int index,
struct of_phandle_args *out_args)
{
if (index < 0)
return -EINVAL;
return __of_parse_phandle_with_args(np, list_name, cells_name,
index, out_args);
}
EXPORT_SYMBOL(of_parse_phandle_with_args);
/**
* of_count_phandle_with_args() - Find the number of phandles references in a property
* @np: pointer to a device tree node containing a list
* @list_name: property name that contains a list
* @cells_name: property name that specifies phandles' arguments count
*
* Returns the number of phandle + argument tuples within a property. It
* is a typical pattern to encode a list of phandle and variable
* arguments into a single property. The number of arguments is encoded
* by a property in the phandle-target node. For example, a gpios
* property would contain a list of GPIO specifies consisting of a
* phandle and 1 or more arguments. The number of arguments are
* determined by the #gpio-cells property in the node pointed to by the
* phandle.
*/
int of_count_phandle_with_args(const struct device_node *np,
const char *list_name, const char *cells_name)
{
return __of_parse_phandle_with_args(np, list_name, cells_name,
-1, NULL);
}
EXPORT_SYMBOL(of_count_phandle_with_args);
/**
* of_machine_is_compatible - Test root of device tree for a given compatible value
* @compat: compatible string to look for in root node's compatible property.
*
* Returns true if the root node has the given value in its
* compatible property.
*/
int of_machine_is_compatible(const char *compat)
{
if (!root_node)
return 0;
return of_device_is_compatible(root_node, compat);
}
EXPORT_SYMBOL(of_machine_is_compatible);
/**
* of_find_node_by_path_from - Find a node matching a full OF path
* relative to a given root node.
* @path: The full path to match
*
* Returns a pointer to the node found or NULL.
*/
struct device_node *of_find_node_by_path_from(struct device_node *from,
const char *path)
{
char *slash, *p, *freep;
if (!from || !path || *path != '/')
return NULL;
path++;
freep = p = xstrdup(path);
while (1) {
if (!*p)
goto out;
slash = strchr(p, '/');
if (slash)
*slash = 0;
from = of_get_child_by_name(from, p);
if (!from)
goto out;
if (!slash)
goto out;
p = slash + 1;
}
out:
free(freep);
return from;
}
EXPORT_SYMBOL(of_find_node_by_path_from);
/**
* of_find_node_by_path - Find a node matching a full OF path
* @path: The full path to match
*
* Returns a pointer to the node found or NULL.
*/
struct device_node *of_find_node_by_path(const char *path)
{
return of_find_node_by_path_from(root_node, path);
}
EXPORT_SYMBOL(of_find_node_by_path);
/**
* of_modalias_node - Lookup appropriate modalias for a device node
* @node: pointer to a device tree node
* @modalias: Pointer to buffer that modalias value will be copied into
* @len: Length of modalias value
*
* Based on the value of the compatible property, this routine will attempt
* to choose an appropriate modalias value for a particular device tree node.
* It does this by stripping the manufacturer prefix (as delimited by a ',')
* from the first entry in the compatible list property.
*
* This routine returns 0 on success, <0 on failure.
*/
int of_modalias_node(struct device_node *node, char *modalias, int len)
{
const char *compatible, *p;
int cplen;
compatible = of_get_property(node, "compatible", &cplen);
if (!compatible || strlen(compatible) > cplen)
return -ENODEV;
p = strchr(compatible, ',');
strlcpy(modalias, p ? p + 1 : compatible, len);
return 0;
}
EXPORT_SYMBOL_GPL(of_modalias_node);
struct device_node *of_get_root_node(void)
{
return root_node;
}
int of_set_root_node(struct device_node *node)
{
if (node && root_node)
return -EBUSY;
root_node = node;
of_alias_scan();
return 0;
}
/**
* of_device_is_available - check if a device is available for use
*
* @device: Node to check for availability
*
* Returns 1 if the status property is absent or set to "okay" or "ok",
* 0 otherwise
*/
int of_device_is_available(const struct device_node *device)
{
const char *status;
int statlen;
status = of_get_property(device, "status", &statlen);
if (status == NULL)
return 1;
if (statlen > 0) {
if (!strcmp(status, "okay") || !strcmp(status, "ok"))
return 1;
}
return 0;
}
EXPORT_SYMBOL(of_device_is_available);
/**
* of_get_parent - Get a node's parent if any
* @node: Node to get parent
*
* Returns a pointer to the parent node or NULL if already at root.
*/
struct device_node *of_get_parent(const struct device_node *node)
{
return (!node) ? NULL : node->parent;
}
EXPORT_SYMBOL(of_get_parent);
/**
* of_get_next_available_child - Find the next available child node
* @node: parent node
* @prev: previous child of the parent node, or NULL to get first
*
* This function is like of_get_next_child(), except that it
* automatically skips any disabled nodes (i.e. status = "disabled").
*/
struct device_node *of_get_next_available_child(const struct device_node *node,
struct device_node *prev)
{
for_each_child_of_node(node, prev)
if (of_device_is_available(prev))
return prev;
return NULL;
}
EXPORT_SYMBOL(of_get_next_available_child);
/**
* of_get_child_count - Count child nodes of given parent node
* @parent: parent node
*
* Returns the number of child nodes or -EINVAL on NULL parent node.
*/
int of_get_child_count(const struct device_node *parent)
{
struct device_node *child;
int num = 0;
if (!parent)
return -EINVAL;
for_each_child_of_node(parent, child)
num++;
return num;
}
EXPORT_SYMBOL(of_get_child_count);
/**
* of_get_available_child_count - Count available child nodes of given
* parent node
* @parent: parent node
*
* Returns the number of available child nodes or -EINVAL on NULL parent
* node.
*/
int of_get_available_child_count(const struct device_node *parent)
{
struct device_node *child;
int num = 0;
if (!parent)
return -EINVAL;
for_each_child_of_node(parent, child)
if (of_device_is_available(child))
num++;
return num;
}
EXPORT_SYMBOL(of_get_available_child_count);
/**
* of_get_child_by_name - Find the child node by name for a given parent
* @node: parent node
* @name: child name to look for.
*
* This function looks for child node for given matching name
*
* Returns a node pointer if found or NULL.
*/
struct device_node *of_get_child_by_name(const struct device_node *node,
const char *name)
{
struct device_node *child;
for_each_child_of_node(node, child)
if (child->name && (of_node_cmp(child->name, name) == 0))
return child;
return NULL;
}
EXPORT_SYMBOL(of_get_child_by_name);
void of_print_nodes(struct device_node *node, int indent)
{
struct device_node *n;
struct property *p;
int i;
if (!node)
return;
for (i = 0; i < indent; i++)
printf("\t");
printf("%s%s\n", node->name, node->name ? " {" : "{");
list_for_each_entry(p, &node->properties, list) {
for (i = 0; i < indent + 1; i++)
printf("\t");
printf("%s: ", p->name);
of_print_property(p->value, p->length);
printf("\n");
}
list_for_each_entry(n, &node->children, parent_list) {
of_print_nodes(n, indent + 1);
}
for (i = 0; i < indent; i++)
printf("\t");
printf("};\n");
}
struct device_node *of_new_node(struct device_node *parent, const char *name)
{
struct device_node *node;
node = xzalloc(sizeof(*node));
node->parent = parent;
if (parent)
list_add_tail(&node->parent_list, &parent->children);
INIT_LIST_HEAD(&node->children);
INIT_LIST_HEAD(&node->properties);
if (parent) {
node->name = xstrdup(name);
node->full_name = asprintf("%s/%s", node->parent->full_name, name);
list_add(&node->list, &parent->list);
} else {
node->name = xstrdup("");
node->full_name = xstrdup("");
INIT_LIST_HEAD(&node->list);
}
return node;
}
struct property *of_new_property(struct device_node *node, const char *name,
const void *data, int len)
{
struct property *prop;
prop = xzalloc(sizeof(*prop));
prop->name = strdup(name);
if (!prop->name) {
free(prop);
return NULL;
}
prop->length = len;
prop->value = xzalloc(len);
if (data)
memcpy(prop->value, data, len);
list_add_tail(&prop->list, &node->properties);
return prop;
}
void of_delete_property(struct property *pp)
{
if (!pp)
return;
list_del(&pp->list);
free(pp->name);
free(pp->value);
free(pp);
}
/**
* of_set_property - create a property for a given node
* @node - the node
* @name - the name of the property
* @val - the value for the property
* @len - the length of the properties value
* @create - if true, the property is created if not existing already
*/
int of_set_property(struct device_node *np, const char *name, const void *val, int len,
int create)
{
struct property *pp = of_find_property(np, name, NULL);
if (!np)
return -ENOENT;
if (!pp && !create)
return -ENOENT;
of_delete_property(pp);
pp = of_new_property(np, name, val, len);
if (!pp)
return -ENOMEM;
return 0;
}
static struct device_d *add_of_amba_device(struct device_node *node)
{
struct amba_device *dev;
char *name, *at;
dev = xzalloc(sizeof(*dev));
name = xstrdup(node->name);
at = strchr(name, '@');
if (at) {
*at = 0;
snprintf(dev->dev.name, MAX_DRIVER_NAME, "%s.%s", at + 1, name);
} else {
strncpy(dev->dev.name, node->name, MAX_DRIVER_NAME);
}
dev->dev.id = DEVICE_ID_SINGLE;
memcpy(&dev->res, &node->resource[0], sizeof(struct resource));
dev->dev.resource = node->resource;
dev->dev.num_resources = 1;
dev->dev.device_node = node;
node->device = &dev->dev;
of_property_read_u32(node, "arm,primecell-periphid", &dev->periphid);
debug("register device 0x%08x\n", node->resource[0].start);
amba_device_add(dev);
free(name);
return &dev->dev;
}
static struct device_d *add_of_platform_device(struct device_node *node,
struct device_d *parent)
{
struct device_d *dev;
char *name, *at;
dev = xzalloc(sizeof(*dev));
dev->parent = parent;
name = xstrdup(node->name);
at = strchr(name, '@');
if (at) {
*at = 0;
snprintf(dev->name, MAX_DRIVER_NAME, "%s.%s", at + 1, name);
} else {
strncpy(dev->name, node->name, MAX_DRIVER_NAME);
}
dev->id = DEVICE_ID_SINGLE;
dev->resource = node->resource;
dev->num_resources = node->num_resource;
dev->device_node = node;
node->device = dev;
debug("register device 0x%08x\n", node->resource[0].start);
platform_device_register(dev);
free(name);
return dev;
}
static struct device_d *add_of_device(struct device_node *node,
struct device_d *parent)
{
const struct property *cp;
if (!of_device_is_available(node))
return NULL;
cp = of_get_property(node, "compatible", NULL);
if (!cp)
return NULL;
if (IS_ENABLED(CONFIG_ARM_AMBA) &&
of_device_is_compatible(node, "arm,primecell") == 1)
return add_of_amba_device(node);
else
return add_of_platform_device(node, parent);
}
EXPORT_SYMBOL(add_of_device);
static u64 dt_mem_next_cell(int s, const __be32 **cellp)
{
const __be32 *p = *cellp;
*cellp = p + s;
return of_read_number(p, s);
}
int of_add_memory(struct device_node *node, bool dump)
{
int na, nc;
const __be32 *reg, *endp;
int len, r = 0, ret;
const char *device_type;
ret = of_property_read_string(node, "device_type", &device_type);
if (ret)
return -ENXIO;
if (of_node_cmp(device_type, "memory"))
return -ENXIO;
of_bus_count_cells(node, &na, &nc);
reg = of_get_property(node, "reg", &len);
if (!reg)
return -EINVAL;
endp = reg + (len / sizeof(__be32));
while ((endp - reg) >= (na + nc)) {
u64 base, size;
base = dt_mem_next_cell(na, &reg);
size = dt_mem_next_cell(nc, &reg);
if (size == 0)
continue;
of_add_memory_bank(node, dump, r, base, size);
r++;
}
return 0;
}
static struct device_d *add_of_device_resource(struct device_node *node,
struct device_d *parent)
{
u64 address = 0, size;
struct resource *res, *resp;
struct device_d *dev;
const __be32 *endp, *reg;
const char *resname;
int na, nc, n_resources;
int ret, len, index;
reg = of_get_property(node, "reg", &len);
if (!reg)
return add_of_device(node, parent);
of_bus_count_cells(node, &na, &nc);
n_resources = (len / sizeof(__be32)) / (na + nc);
res = resp = xzalloc(sizeof(*res) * n_resources);
endp = reg + (len / sizeof(__be32));
index = 0;
while ((endp - reg) >= (na + nc)) {
address = of_translate_address(node, reg);
if (address == OF_BAD_ADDR) {
ret = -EINVAL;
goto err_free;
}
reg += na;
size = dt_mem_next_cell(nc, &reg);
resp->start = address;
resp->end = address + size - 1;
resname = NULL;
of_property_read_string_index(node, "reg-names", index, &resname);
if (resname)
resp->name = xstrdup(resname);
resp->flags = IORESOURCE_MEM;
resp++;
index++;
}
/*
* A device may already be registered as platform_device.
* Instead of registering the same device again, just
* add this node to the existing device.
*/
for_each_device(dev) {
if (!dev->resource)
continue;
if (dev->resource->start == res->start &&
dev->resource->end == res->end) {
debug("connecting %s to %s\n", node->name, dev_name(dev));
node->device = dev;
dev->device_node = node;
node->resource = dev->resource;
ret = 0;
goto err_free;
}
}
node->resource = res;
node->num_resource = n_resources;
return add_of_device(node, parent);
err_free:
free(res);
return NULL;
}
void of_free(struct device_node *node)
{
struct device_node *n, *nt;
struct property *p, *pt;
if (!node)
return;
list_for_each_entry_safe(p, pt, &node->properties, list)
of_delete_property(p);
list_for_each_entry_safe(n, nt, &node->children, parent_list) {
of_free(n);
}
if (node->parent) {
list_del(&node->parent_list);
list_del(&node->list);
}
if (node->device)
node->device->device_node = NULL;
else
free(node->resource);
free(node->name);
free(node->full_name);
free(node);
if (node == root_node)
of_set_root_node(NULL);
}
static void __of_probe(struct device_node *node,
const struct of_device_id *matches,
struct device_d *parent)
{
struct device_node *n;
struct device_d *dev;
if (node->device)
return;
dev = add_of_device_resource(node, parent);
if (!of_match_node(matches, node))
return;
list_for_each_entry(n, &node->children, parent_list)
__of_probe(n, matches, dev);
}
static void __of_parse_phandles(struct device_node *node)
{
struct device_node *n;
phandle phandle;
int ret;
ret = of_property_read_u32(node, "phandle", &phandle);
if (!ret) {
node->phandle = phandle;
list_add_tail(&node->phandles, &phandle_list);
}
list_for_each_entry(n, &node->children, parent_list)
__of_parse_phandles(n);
}
struct device_node *of_chosen;
const char *of_model;
const char *of_get_model(void)
{
return of_model;
}
const struct of_device_id of_default_bus_match_table[] = {
{
.compatible = "simple-bus",
}, {
/* sentinel */
}
};
int of_probe(void)
{
struct device_node *memory, *n;
if(!root_node)
return -ENODEV;
of_chosen = of_find_node_by_path("/chosen");
of_property_read_string(root_node, "model", &of_model);
__of_parse_phandles(root_node);
memory = of_find_node_by_path("/memory");
if (memory)
of_add_memory(memory, false);
list_for_each_entry(n, &root_node->children, parent_list)
__of_probe(n, of_default_bus_match_table, NULL);
return 0;
}
/**
* of_create_node - create a new node including its parents
* @path - the nodepath to create
*/
struct device_node *of_create_node(struct device_node *root, const char *path)
{
char *slash, *p, *freep;
struct device_node *tmp, *dn = root;
if (*path != '/')
return NULL;
path++;
p = freep = xstrdup(path);
while (1) {
if (!*p)
goto out;
slash = strchr(p, '/');
if (slash)
*slash = 0;
tmp = of_get_child_by_name(dn, p);
if (tmp)
dn = tmp;
else
dn = of_new_node(dn, p);
if (!dn)
goto out;
if (!slash)
goto out;
p = slash + 1;
}
out:
free(freep);
return dn;
}
int of_device_is_stdout_path(struct device_d *dev)
{
struct device_node *dn;
const char *name;
name = of_get_property(of_chosen, "linux,stdout-path", NULL);
if (name == NULL)
return 0;
dn = of_find_node_by_path(name);
if (!dn)
return 0;
if (dn == dev->device_node)
return 1;
return 0;
}
/**
* of_add_initrd - add initrd properties to the devicetree
* @root - the root node of the tree
* @start - physical start address of the initrd image
* @end - physical end address of the initrd image
*
* Add initrd properties to the devicetree, or, if end is 0,
* delete them.
*
* Note that Linux interprets end differently than barebox. For Linux end points
* to the first address after the memory occupied by the image while barebox
* lets end pointing to the last occupied byte.
*/
int of_add_initrd(struct device_node *root, resource_size_t start,
resource_size_t end)
{
struct device_node *chosen;
__be32 buf[2];
chosen = of_find_node_by_path("/chosen");
if (!chosen)
return -EINVAL;
if (end) {
of_write_number(buf, start, 2);
of_set_property(chosen, "linux,initrd-start", buf, 8, 1);
of_write_number(buf, end + 1, 2);
of_set_property(chosen, "linux,initrd-end", buf, 8, 1);
} else {
struct property *pp;
pp = of_find_property(chosen, "linux,initrd-start", NULL);
if (pp)
of_delete_property(pp);
pp = of_find_property(chosen, "linux,initrd-end", NULL);
if (pp)
of_delete_property(pp);
}
return 0;
}