barebox/common/memtest.c
Sascha Hauer c85ef6a776 Revert "memtest: move error handling to end of function"
While this simplifies the code as is I got the request to continue on
errors in memtest, which can be better implemented when the messages are
printed inline and not at the end of the function.

This reverts commit 4ff9e28abc.
2015-12-04 08:01:59 +01:00

447 lines
11 KiB
C

/*
* memtest.c
*
* Copyright (C) 2013 Alexander Aring <aar@pengutronix.de>, Pengutronix
*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <progress.h>
#include <common.h>
#include <memory.h>
#include <types.h>
#include <linux/sizes.h>
#include <errno.h>
#include <memtest.h>
#include <malloc.h>
#include <mmu.h>
static int alloc_memtest_region(struct list_head *list,
resource_size_t start, resource_size_t size)
{
struct resource *r_new;
struct mem_test_resource *r;
r = xzalloc(sizeof(struct mem_test_resource));
r_new = request_sdram_region("memtest", start, size);
if (!r_new)
return -EINVAL;
r->r = r_new;
list_add_tail(&r->list, list);
return 0;
}
int mem_test_request_regions(struct list_head *list)
{
int ret;
struct memory_bank *bank;
struct resource *r, *r_prev = NULL;
resource_size_t start, end, size;
for_each_memory_bank(bank) {
/*
* If we don't have any allocated region on bank,
* we use the whole bank boundary
*/
if (list_empty(&bank->res->children)) {
start = PAGE_ALIGN(bank->res->start);
size = PAGE_ALIGN_DOWN(bank->res->end - start + 1);
if (size) {
ret = alloc_memtest_region(list, start, size);
if (ret < 0)
return ret;
}
continue;
}
r = list_first_entry(&bank->res->children,
struct resource, sibling);
start = PAGE_ALIGN(bank->res->start);
end = PAGE_ALIGN_DOWN(r->start);
r_prev = r;
if (start != end) {
size = end - start;
ret = alloc_memtest_region(list, start, size);
if (ret < 0)
return ret;
}
/*
* We assume that the regions are sorted in this list
* So the first element has start boundary on bank->res->start
* and the last element hast end boundary on bank->res->end.
*
* Between used regions. Start from second entry.
*/
list_for_each_entry_from(r, &bank->res->children, sibling) {
start = PAGE_ALIGN(r_prev->end + 1);
end = r->start - 1;
r_prev = r;
if (start >= end)
continue;
size = PAGE_ALIGN_DOWN(end - start + 1);
if (size == 0)
continue;
ret = alloc_memtest_region(list, start, size);
if (ret < 0)
return ret;
}
/*
* Do on head element for bank boundary.
*/
r = list_last_entry(&bank->res->children,
struct resource, sibling);
start = PAGE_ALIGN(r->end);
end = bank->res->end;
size = PAGE_ALIGN_DOWN(end - start + 1);
if (size && start < end && start > r->end) {
ret = alloc_memtest_region(list, start, size);
if (ret < 0)
return ret;
}
}
return 0;
}
void mem_test_release_regions(struct list_head *list)
{
struct mem_test_resource *r, *r_tmp;
list_for_each_entry_safe(r, r_tmp, list, list) {
/*
* Ensure to leave with a cached on non used sdram regions.
*/
remap_range((void *)r->r->start, r->r->end -
r->r->start + 1, MAP_DEFAULT);
release_sdram_region(r->r);
free(r);
}
}
struct mem_test_resource *mem_test_biggest_region(struct list_head *list)
{
struct mem_test_resource *r, *best = NULL;
resource_size_t size = 0;
list_for_each_entry(r, list, list) {
resource_size_t now = resource_size(r->r);
if (now > size) {
size = now;
best = r;
}
}
return best;
}
static void mem_test_report_failure(const char *failure_description,
resource_size_t expected_value,
resource_size_t actual_value,
volatile resource_size_t *address)
{
printf("FAILURE (%s): "
"expected 0x%08x, actual 0x%08x at address 0x%08x.\n",
failure_description, expected_value, actual_value,
(resource_size_t)address);
}
int mem_test_bus_integrity(resource_size_t _start,
resource_size_t _end)
{
static const resource_size_t bitpattern[] = {
0x00000001, /* single bit */
0x00000003, /* two adjacent bits */
0x00000007, /* three adjacent bits */
0x0000000F, /* four adjacent bits */
0x00000005, /* two non-adjacent bits */
0x00000015, /* three non-adjacent bits */
0x00000055, /* four non-adjacent bits */
0xAAAAAAAA, /* alternating 1/0 */
};
volatile resource_size_t *start, *dummy, num_words, val, readback, offset,
offset2, pattern, temp, anti_pattern;
int i;
_start = ALIGN(_start, sizeof(resource_size_t));
_end = ALIGN_DOWN(_end, sizeof(resource_size_t)) - 1;
if (_end <= _start)
return -EINVAL;
start = (resource_size_t *)_start;
/*
* Point the dummy to start[1]
*/
dummy = start + 1;
num_words = (_end - _start + 1)/sizeof(resource_size_t);
printf("Starting data line test.\n");
/*
* Data line test: write a pattern to the first
* location, write the 1's complement to a 'parking'
* address (changes the state of the data bus so a
* floating bus doen't give a false OK), and then
* read the value back. Note that we read it back
* into a variable because the next time we read it,
* it might be right (been there, tough to explain to
* the quality guys why it prints a failure when the
* "is" and "should be" are obviously the same in the
* error message).
*
* Rather than exhaustively testing, we test some
* patterns by shifting '1' bits through a field of
* '0's and '0' bits through a field of '1's (i.e.
* pattern and ~pattern).
*/
for (i = 0; i < ARRAY_SIZE(bitpattern); i++) {
val = bitpattern[i];
for (; val != 0; val <<= 1) {
*start = val;
/* clear the test data off of the bus */
*dummy = ~val;
readback = *start;
if (readback != val) {
mem_test_report_failure("data line",
val, readback, start);
return -EIO;
}
*start = ~val;
*dummy = val;
readback = *start;
if (readback != ~val) {
mem_test_report_failure("data line",
~val, readback, start);
return -EIO;
}
}
}
/*
* Based on code whose Original Author and Copyright
* information follows: Copyright (c) 1998 by Michael
* Barr. This software is placed into the public
* domain and may be used for any purpose. However,
* this notice must not be changed or removed and no
* warranty is either expressed or implied by its
* publication or distribution.
*/
/*
* Address line test
*
* Description: Test the address bus wiring in a
* memory region by performing a walking
* 1's test on the relevant bits of the
* address and checking for aliasing.
* This test will find single-bit
* address failures such as stuck -high,
* stuck-low, and shorted pins. The base
* address and size of the region are
* selected by the caller.
*
* Notes: For best results, the selected base
* address should have enough LSB 0's to
* guarantee single address bit changes.
* For example, to test a 64-Kbyte
* region, select a base address on a
* 64-Kbyte boundary. Also, select the
* region size as a power-of-two if at
* all possible.
*
* ## NOTE ## Be sure to specify start and end
* addresses such that num_words has
* lots of bits set. For example an
* address range of 01000000 02000000 is
* bad while a range of 01000000
* 01ffffff is perfect.
*/
pattern = 0xAAAAAAAA;
anti_pattern = 0x55555555;
/*
* Write the default pattern at each of the
* power-of-two offsets.
*/
for (offset = 1; offset <= num_words; offset <<= 1)
start[offset] = pattern;
/*
* Now write anti-pattern at offset 0. If during the previous
* step one of the address lines got stuck high this
* operation would result in a memory cell at power-of-two
* offset being set to anti-pattern which hopefully would be
* detected byt the loop that follows.
*/
start[0] = anti_pattern;
printf("Check for address bits stuck high.\n");
/*
* Check for address bits stuck high.
*/
for (offset = 1; offset <= num_words; offset <<= 1) {
temp = start[offset];
if (temp != pattern) {
mem_test_report_failure("address bit stuck high",
pattern, temp, &start[offset]);
return -EIO;
}
}
/*
Restore original value
*/
start[0] = pattern;
printf("Check for address bits stuck "
"low or shorted.\n");
/*
* Check for address bits stuck low or shorted.
*/
for (offset2 = 1; offset2 <= num_words; offset2 <<= 1) {
start[offset2] = anti_pattern;
for (offset = 0; offset <= num_words;
offset = (offset) ? offset << 1 : 1) {
temp = start[offset];
if ((temp != pattern) &&
(offset != offset2)) {
mem_test_report_failure(
"address bit stuck low or shorted",
pattern, temp, &start[offset]);
return -EIO;
}
}
start[offset2] = pattern;
}
return 0;
}
static int update_progress(resource_size_t offset)
{
/* Only check every 4k to reduce overhead */
if (offset & (SZ_4K - 1))
return 0;
if (ctrlc())
return -EINTR;
show_progress(offset);
return 0;
}
int mem_test_moving_inversions(resource_size_t _start, resource_size_t _end)
{
volatile resource_size_t *start, num_words, offset, temp, anti_pattern;
int ret;
_start = ALIGN(_start, sizeof(resource_size_t));
_end = ALIGN_DOWN(_end, sizeof(resource_size_t)) - 1;
if (_end <= _start)
return -EINVAL;
start = (resource_size_t *)_start;
num_words = (_end - _start + 1)/sizeof(resource_size_t);
printf("Starting moving inversions test of RAM:\n"
"Fill with address, compare, fill with inverted address, compare again\n");
/*
* Description: Test the integrity of a physical
* memory device by performing an
* increment/decrement test over the
* entire region. In the process every
* storage bit in the device is tested
* as a zero and a one. The base address
* and the size of the region are
* selected by the caller.
*/
init_progression_bar(3 * num_words);
/* Fill memory with a known pattern */
for (offset = 0; offset < num_words; offset++) {
ret = update_progress(offset);
if (ret)
return ret;
start[offset] = offset + 1;
}
/* Check each location and invert it for the second pass */
for (offset = 0; offset < num_words; offset++) {
ret = update_progress(num_words + offset);
if (ret)
return ret;
temp = start[offset];
if (temp != (offset + 1)) {
printf("\n");
mem_test_report_failure("read/write",
(offset + 1),
temp, &start[offset]);
return -EIO;
}
anti_pattern = ~(offset + 1);
start[offset] = anti_pattern;
}
/* Check each location for the inverted pattern and zero it */
for (offset = 0; offset < num_words; offset++) {
ret = update_progress(2 * num_words + offset);
if (ret)
return ret;
anti_pattern = ~(offset + 1);
temp = start[offset];
if (temp != anti_pattern) {
printf("\n");
mem_test_report_failure("read/write",
anti_pattern,
temp, &start[offset]);
return -EIO;
}
start[offset] = 0;
}
show_progress(3 * num_words);
/* end of progressbar */
printf("\n");
return 0;
}