9
0
Fork 0
barebox/arch/arm/mach-imx/imx6-mmdc.c

831 lines
22 KiB
C

/*
* i.MX6 DDR controller calibration functions
* Based on Freescale code
*
* Copyright (C) 2013 Sascha Hauer <s.hauer@pengutronix.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <common.h>
#include <io.h>
#include <mach/imx6-mmdc.h>
int mmdc_do_write_level_calibration(void)
{
u32 esdmisc_val, zq_val;
int errorcount = 0;
u32 val;
u32 ddr_mr1 = 0x4;
/* disable DDR logic power down timer */
val = readl((P0_IPS + MDPDC));
val &= 0xffff00ff;
writel(val, (P0_IPS + MDPDC)),
/* disable Adopt power down timer */
val = readl((P0_IPS + MAPSR));
val |= 0x1;
writel(val, (P0_IPS + MAPSR));
pr_debug("Start write leveling calibration \n");
/*
* disable auto refresh and ZQ calibration
* before proceeding with Write Leveling calibration
*/
esdmisc_val = readl(P0_IPS + MDREF);
writel(0x0000C000, (P0_IPS + MDREF));
zq_val = readl(P0_IPS + MPZQHWCTRL);
writel(zq_val & ~(0x3), (P0_IPS + MPZQHWCTRL));
/*
* Configure the external DDR device to enter write leveling mode
* through Load Mode Register command
* Register setting:
* Bits[31:16] MR1 value (0x0080 write leveling enable)
* Bit[9] set WL_EN to enable MMDC DQS output
* Bits[6:4] set CMD bits for Load Mode Register programming
* Bits[2:0] set CMD_BA to 0x1 for DDR MR1 programming
*/
writel(0x00808231, P0_IPS + MDSCR);
/* Activate automatic calibration by setting MPWLGCR[HW_WL_EN] */
writel(0x00000001, P0_IPS + MPWLGCR);
/* Upon completion of this process the MMDC de-asserts the MPWLGCR[HW_WL_EN] */
while (readl(P0_IPS + MPWLGCR) & 0x00000001);
/* check for any errors: check both PHYs for x64 configuration, if x32, check only PHY0 */
if ((readl(P0_IPS + MPWLGCR) & 0x00000F00) ||
(readl(P1_IPS + MPWLGCR) & 0x00000F00)) {
errorcount++;
}
pr_debug("Write leveling calibration completed\n");
/*
* User should issue MRS command to exit write leveling mode
* through Load Mode Register command
* Register setting:
* Bits[31:16] MR1 value "ddr_mr1" value from initialization
* Bit[9] clear WL_EN to disable MMDC DQS output
* Bits[6:4] set CMD bits for Load Mode Register programming
* Bits[2:0] set CMD_BA to 0x1 for DDR MR1 programming
*/
writel(((ddr_mr1 << 16)+0x8031), P0_IPS + MDSCR);
/* re-enable to auto refresh and zq cal */
writel(esdmisc_val, (P0_IPS + MDREF));
writel(zq_val, (P0_IPS + MPZQHWCTRL));
pr_debug("MMDC_MPWLDECTRL0 after write level cal: 0x%08X\n",
readl(P0_IPS + MPWLDECTRL0));
pr_debug("MMDC_MPWLDECTRL1 after write level cal: 0x%08X\n",
readl(P0_IPS + MPWLDECTRL1));
pr_debug("MMDC_MPWLDECTRL0 after write level cal: 0x%08X\n",
readl(P1_IPS + MPWLDECTRL0));
pr_debug("MMDC_MPWLDECTRL1 after write level cal: 0x%08X\n",
readl(P1_IPS + MPWLDECTRL1));
/* enable DDR logic power down timer */
val = readl((P0_IPS + MDPDC));
val |= 0x00005500;
writel(val, (P0_IPS + MDPDC));
/* enable Adopt power down timer: */
val = readl(P0_IPS + MAPSR);
val &= 0xfffffff7;
writel(val, (P0_IPS + MAPSR));
/* clear CON_REQ */
writel(0, (P0_IPS + MDSCR));
return 0;
}
static void modify_dg_result(void __iomem *reg_st0, void __iomem *reg_st1,
void __iomem *reg_ctrl)
{
u32 dg_tmp_val, dg_dl_abs_offset, dg_hc_del, val_ctrl;
/*
* DQS gating absolute offset should be modified from reflecting (HW_DG_LOWx + HW_DG_UPx)/2
* to reflecting (HW_DG_UPx - 0x80)
*/
val_ctrl = readl(reg_ctrl);
val_ctrl &= 0xf0000000;
dg_tmp_val = ((readl(reg_st0) & 0x07ff0000) >> 16) - 0xc0;
dg_dl_abs_offset = dg_tmp_val & 0x7f;
dg_hc_del = (dg_tmp_val & 0x780) << 1;
val_ctrl |= dg_dl_abs_offset + dg_hc_del;
dg_tmp_val = ((readl(reg_st1) & 0x07ff0000) >> 16) - 0xc0;
dg_dl_abs_offset = dg_tmp_val & 0x7f;
dg_hc_del = (dg_tmp_val & 0x780) << 1;
val_ctrl |= (dg_dl_abs_offset + dg_hc_del) << 16;
writel(val_ctrl, reg_ctrl);
}
static void mmdc_precharge_all(int cs0_enable, int cs1_enable)
{
/*
* Issue the Precharge-All command to the DDR device for both chip selects
* Note, CON_REQ bit should also remain set
* If only using one chip select, then precharge only the desired chip select
*/
if (cs0_enable)
writel(0x04008050, P0_IPS + MDSCR);
if (cs1_enable)
writel(0x04008058, P0_IPS + MDSCR);
}
static void mmdc_force_delay_measurement(int data_bus_size)
{
writel(0x800, P0_IPS + MPMUR);
if (data_bus_size == 0x2)
writel(0x800, P1_IPS + MPMUR);
}
static void mmdc_reset_read_data_fifos(void)
{
uint32_t v;
/*
* Reset the read data FIFOs (two resets); only need to issue reset to PHY0 since in x64
* mode, the reset will also go to PHY1
* read data FIFOs reset1
*/
v = readl(P0_IPS + MPDGCTRL0);
v |= 0x80000000;
writel(v, P0_IPS + MPDGCTRL0);
while (readl((P0_IPS + MPDGCTRL0)) & 0x80000000);
/* read data FIFOs reset2 */
v = readl(P0_IPS + MPDGCTRL0);
v |= 0x80000000;
writel(v, P0_IPS + MPDGCTRL0);
while (readl((P0_IPS + MPDGCTRL0)) & 0x80000000);
}
int mmdc_do_dqs_calibration(void)
{
u32 esdmisc_val, v;
int g_error_write_cal;
int temp_ref;
int cs0_enable_initial;
int cs1_enable_initial;
int PDDWord = 0x00ffff00;
int errorcount = 0;
int cs0_enable;
int cs1_enable;
int data_bus_size;
/* check to see which chip selects are enabled */
cs0_enable_initial = (readl(P0_IPS + MDCTL) & 0x80000000) >> 31;
cs1_enable_initial = (readl(P0_IPS + MDCTL) & 0x40000000) >> 30;
/* disable DDR logic power down timer */
v = readl(P0_IPS + MDPDC);
v &= ~0xff00;
writel(v, P0_IPS + MDPDC);
/* disable Adopt power down timer */
v = readl(P0_IPS + MAPSR);
v |= 0x1;
writel(v, P0_IPS + MAPSR);
/* set DQS pull ups */
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS4) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS4);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS5) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS5);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS6) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS6);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS7) | 0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS7);
esdmisc_val = readl(P0_IPS + MDMISC);
/* set RALAT and WALAT to max */
v = readl(P0_IPS + MDMISC);
v |= (1 << 6) | (1 << 7) | (1 << 8) | (1 << 16) | (1 << 17);
writel(v, P0_IPS + MDMISC);
/*
* disable auto refresh
* before proceeding with calibration
*/
temp_ref = readl(P0_IPS + MDREF);
writel(0x0000C000, P0_IPS + MDREF);
/*
* per the ref manual, issue one refresh cycle MDSCR[CMD]= 0x2,
* this also sets the CON_REQ bit.
*/
if (cs0_enable_initial)
writel(0x00008020, P0_IPS + MDSCR);
if (cs1_enable_initial)
writel(0x00008028, P0_IPS + MDSCR);
/* poll to make sure the con_ack bit was asserted */
while (!(readl(P0_IPS + MDSCR) & 0x00004000)) ;
/*
* check MDMISC register CALIB_PER_CS to see which CS calibration is
* targeted to (under normal cases, it should be cleared as this is the
* default value, indicating calibration is directed to CS0). Disable
* the other chip select not being target for calibration to avoid any
* potential issues This will get re-enabled at end of calibration.
*/
v = readl(P0_IPS + MDCTL);
if ((readl(P0_IPS + MDMISC) & 0x00100000) == 0)
v &= ~(1 << 30); /* clear SDE_1 */
else
v &= ~(1 << 31); /* clear SDE_0 */
writel(v, P0_IPS + MDCTL);
/*
* check to see which chip selects are now enabled for the remainder
* of the calibration.
*/
cs0_enable = (readl(P0_IPS + MDCTL) & 0x80000000) >> 31;
cs1_enable = (readl(P0_IPS + MDCTL) & 0x40000000) >> 30;
/* check to see what is the data bus size */
data_bus_size = (readl(P0_IPS + MDCTL) & 0x30000) >> 16;
mmdc_precharge_all(cs0_enable, cs1_enable);
/* Write the pre-defined value into MPPDCMPR1 */
writel(PDDWord, P0_IPS + MPPDCMPR1);
/*
* Issue a write access to the external DDR device by setting the bit SW_DUMMY_WR (bit 0)
* in the MPSWDAR0 and then poll this bit until it clears to indicate completion of the
* write access.
*/
v = readl(P0_IPS + MPSWDAR);
v |= (1 << 0);
writel(v, P0_IPS + MPSWDAR);
while (readl(P0_IPS + MPSWDAR) & 0x00000001);
/*
* Set the RD_DL_ABS# bits to their default values (will be calibrated later in
* the read delay-line calibration)
* Both PHYs for x64 configuration, if x32, do only PHY0
*/
writel(0x40404040, P0_IPS + MPRDDLCTL);
if (data_bus_size == 0x2)
writel(0x40404040, P1_IPS + MPRDDLCTL);
/* Force a measurement, for previous delay setup to take effect */
mmdc_force_delay_measurement(data_bus_size);
/*
* Read DQS Gating calibration
*/
pr_debug("Starting DQS gating calibration...\n");
mmdc_reset_read_data_fifos();
/*
* Start the automatic read DQS gating calibration process by asserting
* MPDGCTRL0[HW_DG_EN] and MPDGCTRL0[DG_CMP_CYC] and then poll
* MPDGCTRL0[HW_DG_EN]] until this bit clears to indicate completion.
* Also, ensure that MPDGCTRL0[HW_DG_ERR] is clear to indicate no errors
* were seen during calibration. Set bit 30: chooses option to wait 32
* cycles instead of 16 before comparing read data
*/
v = readl(P0_IPS + MPDGCTRL0);
v |= (1 << 30);
writel(v, P0_IPS + MPDGCTRL0);
/* Set bit 28 to start automatic read DQS gating calibration */
v |= (1 << 28);
writel(v, P0_IPS + MPDGCTRL0);
/*
* Poll for completion
* MPDGCTRL0[HW_DG_EN] should be 0
*/
while (readl(P0_IPS + MPDGCTRL0) & 0x10000000);
/*
* Check to see if any errors were encountered during calibration
* (check MPDGCTRL0[HW_DG_ERR])
* check both PHYs for x64 configuration, if x32, check only PHY0
*/
if (data_bus_size == 0x2) {
if ((readl(P0_IPS + MPDGCTRL0) & 0x00001000) ||
(readl(P1_IPS + MPDGCTRL0) & 0x00001000))
errorcount++;
} else {
if (readl(P0_IPS + MPDGCTRL0) & 0x00001000)
errorcount++;
}
/*
* DQS gating absolute offset should be modified from reflecting
* (HW_DG_LOWx + HW_DG_UPx)/2 to reflecting (HW_DG_UPx - 0x80)
*/
modify_dg_result(P0_IPS + MPDGHWST0,
P0_IPS + MPDGHWST1,
P0_IPS + MPDGCTRL0);
modify_dg_result(P0_IPS + MPDGHWST2,
P0_IPS + MPDGHWST3,
P0_IPS + MPDGCTRL1);
if (data_bus_size == 0x2) {
modify_dg_result(P1_IPS + MPDGHWST0,
P1_IPS + MPDGHWST1,
P1_IPS + MPDGCTRL0);
modify_dg_result(P1_IPS + MPDGHWST2,
P1_IPS + MPDGHWST3,
P1_IPS + MPDGCTRL1);
}
pr_debug("DQS gating calibration completed.\n");
/*
* Read delay Calibration
*/
pr_debug("Starting read calibration...\n");
mmdc_reset_read_data_fifos();
mmdc_precharge_all(cs0_enable, cs1_enable);
/*
* Read delay-line calibration
* Start the automatic read calibration process by asserting MPRDDLHWCTL[ HW_RD_DL_EN]
*/
writel(0x00000030, P0_IPS + MPRDDLHWCTL);
/*
* poll for completion
* MMDC indicates that the write data calibration had finished by setting
* MPRDDLHWCTL[HW_RD_DL_EN] = 0
* Also, ensure that no error bits were set
*/
while (readl(P0_IPS + MPRDDLHWCTL) & 0x00000010) ;
/* check both PHYs for x64 configuration, if x32, check only PHY0 */
if (data_bus_size == 0x2) {
if ((readl(P0_IPS + MPRDDLHWCTL) & 0x0000000f) ||
(readl(P1_IPS + MPRDDLHWCTL) & 0x0000000f)) {
errorcount++;
}
} else {
if (readl(P0_IPS + MPRDDLHWCTL) & 0x0000000f) {
errorcount++;
}
}
pr_debug("Read calibration completed\n");
/*
* Write delay Calibration
*/
pr_debug("Starting write calibration...\n");
mmdc_reset_read_data_fifos();
mmdc_precharge_all(cs0_enable, cs1_enable);
/*
* Set the WR_DL_ABS# bits to their default values
* Both PHYs for x64 configuration, if x32, do only PHY0
*/
writel(0x40404040, P0_IPS + MPWRDLCTL);
if (data_bus_size == 0x2)
writel(0x40404040, P1_IPS + MPWRDLCTL);
mmdc_force_delay_measurement(data_bus_size);
/* Start the automatic write calibration process by asserting MPWRDLHWCTL0[HW_WR_DL_EN] */
writel(0x00000030, P0_IPS + MPWRDLHWCTL);
/*
* poll for completion
* MMDC indicates that the write data calibration had finished by setting
* MPWRDLHWCTL[HW_WR_DL_EN] = 0
* Also, ensure that no error bits were set
*/
while (readl(P0_IPS + MPWRDLHWCTL) & 0x00000010) ;
/* check both PHYs for x64 configuration, if x32, check only PHY0 */
if (data_bus_size == 0x2) {
if ((readl(P0_IPS + MPWRDLHWCTL) & 0x0000000f) ||
(readl(P1_IPS + MPWRDLHWCTL) & 0x0000000f)) {
errorcount++;
g_error_write_cal = 1; // set the g_error_write_cal
}
} else {
if (readl(P0_IPS + MPWRDLHWCTL) & 0x0000000f) {
errorcount++;
g_error_write_cal = 1; // set the g_error_write_cal
}
}
pr_debug("Write calibration completed\n");
mmdc_reset_read_data_fifos();
pr_debug("\n");
/* enable DDR logic power down timer */
v = readl(P0_IPS + MDPDC) | 0x00005500;
writel(v, P0_IPS + MDPDC);
/* enable Adopt power down timer */
v = readl(P0_IPS + MAPSR) & 0xfffffff7;
writel(v, P0_IPS + MAPSR);
/* restore MDMISC value (RALAT, WALAT) */
writel(esdmisc_val, P1_IPS + MDMISC);
/* clear DQS pull ups */
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS4) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS4);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS5) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS5);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS6) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS6);
v = readl(IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS7) & ~0x7000;
writel(v, IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS7);
v = readl(P0_IPS + MDCTL);
/* re-enable SDE (chip selects) if they were set initially */
if (cs1_enable_initial == 1)
v |= (1 << 30); /* set SDE_1 */
if (cs0_enable_initial == 1)
v |= (1 << 31); /* set SDE_0 */
writel(v, P0_IPS + MDCTL);
/* re-enable to auto refresh */
writel(temp_ref, P0_IPS + MDREF);
/* clear the MDSCR (including the con_req bit) */
writel(0x0, P0_IPS + MDSCR); /* CS0 */
/* poll to make sure the con_ack bit is clear */
while (readl(P0_IPS + MDSCR) & 0x00004000) ;
pr_debug("MMDC registers updated from calibration \n");
pr_debug("\nRead DQS Gating calibration\n");
pr_debug("MPDGCTRL0 PHY0 (0x021b083c) = 0x%08X\n", readl(P0_IPS + MPDGCTRL0));
pr_debug("MPDGCTRL1 PHY0 (0x021b0840) = 0x%08X\n", readl(P0_IPS + MPDGCTRL1));
pr_debug("MPDGCTRL0 PHY1 (0x021b483c) = 0x%08X\n", readl(P1_IPS + MPDGCTRL0));
pr_debug("MPDGCTRL1 PHY1 (0x021b4840) = 0x%08X\n", readl(P1_IPS + MPDGCTRL1));
pr_debug("\nRead calibration\n");
pr_debug("MPRDDLCTL PHY0 (0x021b0848) = 0x%08X\n", readl(P0_IPS + MPRDDLCTL));
pr_debug("MPRDDLCTL PHY1 (0x021b4848) = 0x%08X\n", readl(P1_IPS + MPRDDLCTL));
pr_debug("\nWrite calibration\n");
pr_debug("MPWRDLCTL PHY0 (0x021b0850) = 0x%08X\n", readl(P0_IPS + MPWRDLCTL));
pr_debug("MPWRDLCTL PHY1 (0x021b4850) = 0x%08X\n", readl(P1_IPS + MPWRDLCTL));
pr_debug("\n");
/*
* registers below are for debugging purposes
* these print out the upper and lower boundaries captured during read DQS gating calibration
*/
pr_debug("Status registers, upper and lower bounds, for read DQS gating. \n");
pr_debug("MPDGHWST0 PHY0 (0x021b087c) = 0x%08X\n", readl(P0_IPS + MPDGHWST0));
pr_debug("MPDGHWST1 PHY0 (0x021b0880) = 0x%08X\n", readl(P0_IPS + MPDGHWST1));
pr_debug("MPDGHWST2 PHY0 (0x021b0884) = 0x%08X\n", readl(P0_IPS + MPDGHWST2));
pr_debug("MPDGHWST3 PHY0 (0x021b0888) = 0x%08X\n", readl(P0_IPS + MPDGHWST3));
pr_debug("MPDGHWST0 PHY1 (0x021b487c) = 0x%08X\n", readl(P1_IPS + MPDGHWST0));
pr_debug("MPDGHWST1 PHY1 (0x021b4880) = 0x%08X\n", readl(P1_IPS + MPDGHWST1));
pr_debug("MPDGHWST2 PHY1 (0x021b4884) = 0x%08X\n", readl(P1_IPS + MPDGHWST2));
pr_debug("MPDGHWST3 PHY1 (0x021b4888) = 0x%08X\n", readl(P1_IPS + MPDGHWST3));
return errorcount;
}
#ifdef MMDC_SOFTWARE_CALIBRATION
static void mmdc_set_dqs(u32 value)
{
value |= value << 8 | value << 16 | value << 24;
writel(value, P0_IPS + MPRDDLCTL);
if (data_bus_size == 0x2)
writel(value, P1_IPS + MPRDDLCTL);
}
static void mmdc_set_wr_delay(u32 value)
{
value |= value << 8 | value << 16 | value << 24;
writel(value, P0_IPS + MPWRDLCTL);
if (data_bus_size == 0x2)
writel(value, P1_IPS + MPWRDLCTL);
}
static void mmdc_issue_write_access(void __iomem *base)
{
u32 v;
/*
* Issue a write access to the external DDR device by setting the bit SW_DUMMY_WR (bit 0)
* in the MPSWDAR0 and then poll this bit until it clears to indicate completion of the
* write access.
*/
v = readl(P0_IPS + MPSWDAR);
v |= (1 << 0);
writel(v, P0_IPS + MPSWDAR);
while (readl(P0_IPS + MPSWDAR) & 0x00000001);
}
static void mmdc_issue_read_access(void __iomem *base)
{
/*
* Issue a write access to the external DDR device by setting the bit SW_DUMMY_WR (bit 0)
* in the MPSWDAR0 and then poll this bit until it clears to indicate completion of the
* write access.
*/
v = readl(P0_IPS + MPSWDAR);
v |= (1 << 1);
writel(v, P0_IPS + MPSWDAR);
while (readl(P0_IPS + MPSWDAR) & 0x00000002);
}
static int total_lower[2] = { 0x0, 0x0 };
static int total_upper[2] = { 0xff, 0xff };
static int mmdc_is_valid(void __iomem *base, int delay, int rd)
{
u32 val;
if (rd)
mmdc_set_dqs(delay);
else
mmdc_set_wr_delay(delay);
mmdc_force_delay_measurement();
mdelay(1);
if (!rd)
mmdc_issue_write_access(base);
mmdc_issue_read_access(base);
val = readl(base + MPSWDAR);
if ((val & 0x3c) == 0x3c)
return 1;
else
return 0;
#ifdef MMDC_SOFWARE_CALIB_COMPARE_RESULTS
if ((val & 0x3c) == 0x3c) {
if (lower < 0)
lower = i;
}
if ((val & 0x3c) != 0x3c) {
if (lower > 0 && upper < 0)
upper = i;
}
pr_debug("0x%02x: compare: 0x%08x ", i, readl(P0_IPS + MPSWDAR));
for (j = 0; j < 8; j++) {
pr_debug("0x%08x ", readl(P0_IPS + 0x898 + j * 4));
}
pr_debug("\n");
#endif
}
static void mmdc_sw_read_calib(int ch, u32 wr_value)
{
int rd = 1;
void __iomem *base;
int i;
int lower = 0x0, upper = 0x7f;
if (ch)
base = (void *)P1_IPS;
else
base = (void *)P0_IPS;
/* 1. Precharge */
mmdc_precharge_all(cs0_enable, cs1_enable);
/* 2. Configure pre-defined value */
writel(wr_value, P0_IPS + MPPDCMPR1);
/* 3. Issue write access */
mmdc_issue_write_access(base);
for (i = 0; i < 100; i++) {
if (mmdc_is_valid(base, 0x40, rd)) {
goto middle_passed;
}
}
pr_debug("ch: %d value: 0x%08x middle test failed\n", ch, wr_value);
return;
middle_passed:
for (i = 0x40; i < 0x7f; i++) {
if (!mmdc_is_valid(base, i, rd)) {
upper = i;
break;
}
}
for (i = 0; i < 100; i++) {
if (mmdc_is_valid(base, 0x40, rd)) {
goto go_on;
}
}
pr_debug("ch: %d value: 0x%08x middle test 1 failed\n", ch, wr_value);
return;
go_on:
for (i = 0x40; i >= 0; i--) {
if (!mmdc_is_valid(base, i, rd)) {
lower = i;
break;
}
}
if (lower > total_lower[ch])
total_lower[ch] = lower;
if (upper < total_upper[ch])
total_upper[ch] = upper;
pr_debug("ch: %d value: 0x%08x lower: %-3d upper: %-3d\n", ch, wr_value, lower, upper);
}
static void mmdc_sw_write_calib(int ch, u32 wr_value)
{
int rd = 0;
void __iomem *base;
int i;
int lower = 0x0, upper = 0x7f;
if (ch)
base = (void *)P1_IPS;
else
base = (void *)P0_IPS;
/* 1. Precharge */
mmdc_precharge_all(cs0_enable, cs1_enable);
/* 2. Configure pre-defined value */
writel(wr_value, P0_IPS + MPPDCMPR1);
/* 3. Issue write access */
mmdc_issue_write_access(base);
for (i = 0; i < 100; i++) {
if (mmdc_is_valid(base, 0x40, rd)) {
goto middle_passed;
}
}
pr_debug("ch: %d value: 0x%08x middle test failed\n", ch, wr_value);
return;
middle_passed:
for (i = 0x40; i < 0x7f; i++) {
if (!mmdc_is_valid(base, i, rd)) {
upper = i;
break;
}
}
for (i = 0; i < 100; i++) {
if (mmdc_is_valid(base, 0x40, rd)) {
goto go_on;
}
}
pr_debug("ch: %d value: 0x%08x middle test 1 failed\n", ch, wr_value);
return;
go_on:
for (i = 0x40; i >= 0; i--) {
if (!mmdc_is_valid(base, i, rd)) {
lower = i;
break;
}
}
if (lower > total_lower[ch])
total_lower[ch] = lower;
if (upper < total_upper[ch])
total_upper[ch] = upper;
pr_debug("ch: %d value: 0x%08x lower: %-3d upper: %-3d\n", ch, wr_value, lower, upper);
}
int mmdc_do_software_calibration(void)
{
u32 s;
int ch;
for (ch = 0; ch < 2; ch++) {
mmdc_sw_read_calib(ch, 0x00000055);
mmdc_sw_read_calib(ch, 0x00005500);
mmdc_sw_read_calib(ch, 0x00550000);
mmdc_sw_read_calib(ch, 0x55000000);
mmdc_sw_read_calib(ch, 0x00ffff00);
mmdc_sw_read_calib(ch, 0xff0000ff);
mmdc_sw_read_calib(ch, 0x55aaaa55);
mmdc_sw_read_calib(ch, 0xaa5555aa);
for (s = 1; s; s <<= 1)
mmdc_sw_read_calib(ch, s);
}
printk("ch0 total lower: %d upper: %d avg: 0x%02x\n",
total_lower[0], total_upper[0],
(total_lower[0] + total_upper[0]) / 2);
printk("ch1 total lower: %d upper: %d avg: 0x%02x\n",
total_lower[1], total_upper[1],
(total_lower[1] + total_upper[1]) / 2);
mmdc_set_dqs(0x40);
total_lower[0] = 0;
total_lower[1] = 0;
total_upper[0] = 0xff;
total_upper[1] = 0xff;
for (ch = 0; ch < 2; ch++) {
mmdc_sw_write_calib(ch, 0x00000055);
mmdc_sw_write_calib(ch, 0x00005500);
mmdc_sw_write_calib(ch, 0x00550000);
mmdc_sw_write_calib(ch, 0x55000000);
mmdc_sw_write_calib(ch, 0x00ffff00);
mmdc_sw_write_calib(ch, 0xff0000ff);
mmdc_sw_write_calib(ch, 0x55aaaa55);
mmdc_sw_write_calib(ch, 0xaa5555aa);
for (s = 1; s; s <<= 1)
mmdc_sw_write_calib(ch, s);
}
printk("ch0 total lower: %d upper: %d avg: 0x%02x\n",
total_lower[0], total_upper[0],
(total_lower[0] + total_upper[0]) / 2);
printk("ch1 total lower: %d upper: %d avg: 0x%02x\n",
total_lower[1], total_upper[1],
(total_lower[1] + total_upper[1]) / 2);
return 0;
}
#endif /* MMDC_SOFTWARE_CALIBRATION */