9
0
Fork 0
barebox/drivers/net/e1000/main.c

3704 lines
110 KiB
C

/**************************************************************************
Intel Pro 1000 for ppcboot/das-u-boot
Drivers are port from Intel's Linux driver e1000-4.3.15
and from Etherboot pro 1000 driver by mrakes at vivato dot net
tested on both gig copper and gig fiber boards
***************************************************************************/
/*******************************************************************************
Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
* SPDX-License-Identifier: GPL-2.0+
Contact Information:
Linux NICS <linux.nics@intel.com>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/*
* Copyright (C) Archway Digital Solutions.
*
* written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
* 2/9/2002
*
* Copyright (C) Linux Networx.
* Massive upgrade to work with the new intel gigabit NICs.
* <ebiederman at lnxi dot com>
*
* Copyright 2011 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <init.h>
#include <malloc.h>
#include <linux/pci.h>
#include <dma.h>
#include "e1000.h"
static u32 inline virt_to_bus(struct pci_dev *pdev, void *adr)
{
return (u32)adr;
}
#define PCI_VENDOR_ID_INTEL 0x8086
/* Function forward declarations */
static int e1000_setup_link(struct e1000_hw *hw);
static int e1000_setup_fiber_link(struct e1000_hw *hw);
static int e1000_setup_copper_link(struct e1000_hw *hw);
static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
static void e1000_config_collision_dist(struct e1000_hw *hw);
static int e1000_config_mac_to_phy(struct e1000_hw *hw);
static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
static int e1000_wait_autoneg(struct e1000_hw *hw);
static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
uint16_t *duplex);
static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
uint16_t *phy_data);
static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
uint16_t phy_data);
static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
static int e1000_phy_reset(struct e1000_hw *hw);
static int e1000_detect_gig_phy(struct e1000_hw *hw);
static void e1000_set_media_type(struct e1000_hw *hw);
static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
static bool e1000_media_copper(struct e1000_hw *hw)
{
if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER))
return 1;
return hw->media_type == e1000_media_type_copper;
}
static bool e1000_media_fiber(struct e1000_hw *hw)
{
if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER))
return 0;
return hw->media_type == e1000_media_type_fiber;
}
static bool e1000_media_fiber_serdes(struct e1000_hw *hw)
{
if (!IS_ENABLED(CONFIG_DRIVER_NET_E1000_FIBER))
return 0;
return hw->media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes;
}
/*****************************************************************************
* Set PHY to class A mode
* Assumes the following operations will follow to enable the new class mode.
* 1. Do a PHY soft reset
* 2. Restart auto-negotiation or force link.
*
* hw - Struct containing variables accessed by shared code
****************************************************************************/
static int32_t e1000_set_phy_mode(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t eeprom_data;
DEBUGFUNC();
if ((hw->mac_type == e1000_82545_rev_3) && e1000_media_copper(hw)) {
ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
1, &eeprom_data);
if (ret_val)
return ret_val;
if ((eeprom_data != EEPROM_RESERVED_WORD) &&
(eeprom_data & EEPROM_PHY_CLASS_A)) {
ret_val = e1000_write_phy_reg(hw,
M88E1000_PHY_PAGE_SELECT, 0x000B);
if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw,
M88E1000_PHY_GEN_CONTROL, 0x8104);
if (ret_val)
return ret_val;
}
}
return E1000_SUCCESS;
}
/***************************************************************************
*
* Obtaining software semaphore bit (SMBI) before resetting PHY.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_RESET if fail to obtain semaphore.
* E1000_SUCCESS at any other case.
*
***************************************************************************/
static int32_t e1000_get_software_semaphore(struct e1000_hw *hw)
{
int32_t timeout = hw->eeprom.word_size + 1;
uint32_t swsm;
DEBUGFUNC();
swsm = e1000_read_reg(hw, E1000_SWSM);
swsm &= ~E1000_SWSM_SMBI;
e1000_write_reg(hw, E1000_SWSM, swsm);
if (hw->mac_type != e1000_80003es2lan)
return E1000_SUCCESS;
while (timeout) {
swsm = e1000_read_reg(hw, E1000_SWSM);
/* If SMBI bit cleared, it is now set and we hold
* the semaphore */
if (!(swsm & E1000_SWSM_SMBI))
return 0;
mdelay(1);
timeout--;
}
dev_dbg(hw->dev, "Driver can't access device - SMBI bit is set.\n");
return -E1000_ERR_RESET;
}
/***************************************************************************
* This function clears HW semaphore bits.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - None.
*
***************************************************************************/
static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
{
uint32_t swsm;
swsm = e1000_read_reg(hw, E1000_SWSM);
if (hw->mac_type == e1000_80003es2lan)
/* Release both semaphores. */
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
else
swsm &= ~(E1000_SWSM_SWESMBI);
e1000_write_reg(hw, E1000_SWSM, swsm);
}
/***************************************************************************
*
* Using the combination of SMBI and SWESMBI semaphore bits when resetting
* adapter or Eeprom access.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_EEPROM if fail to access EEPROM.
* E1000_SUCCESS at any other case.
*
***************************************************************************/
static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
{
int32_t timeout;
uint32_t swsm;
if (hw->mac_type == e1000_80003es2lan) {
/* Get the SW semaphore. */
if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
}
/* Get the FW semaphore. */
timeout = hw->eeprom.word_size + 1;
while (timeout) {
swsm = e1000_read_reg(hw, E1000_SWSM);
swsm |= E1000_SWSM_SWESMBI;
e1000_write_reg(hw, E1000_SWSM, swsm);
/* if we managed to set the bit we got the semaphore. */
swsm = e1000_read_reg(hw, E1000_SWSM);
if (swsm & E1000_SWSM_SWESMBI)
break;
udelay(50);
timeout--;
}
if (!timeout) {
/* Release semaphores */
e1000_put_hw_eeprom_semaphore(hw);
dev_dbg(hw->dev, "Driver can't access the Eeprom - "
"SWESMBI bit is set.\n");
return -E1000_ERR_EEPROM;
}
return E1000_SUCCESS;
}
int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
{
uint32_t swfw_sync = 0;
uint32_t swmask = mask;
uint32_t fwmask = mask << 16;
int32_t timeout = 200;
DEBUGFUNC();
while (timeout) {
if (e1000_get_hw_eeprom_semaphore(hw))
return -E1000_ERR_SWFW_SYNC;
swfw_sync = e1000_read_reg(hw, E1000_SW_FW_SYNC);
if (!(swfw_sync & (fwmask | swmask)))
break;
/* firmware currently using resource (fwmask) */
/* or other software thread currently using resource (swmask) */
e1000_put_hw_eeprom_semaphore(hw);
mdelay(5);
timeout--;
}
if (!timeout) {
dev_dbg(hw->dev, "Driver can't access resource, SW_FW_SYNC timeout.\n");
return -E1000_ERR_SWFW_SYNC;
}
swfw_sync |= swmask;
e1000_write_reg(hw, E1000_SW_FW_SYNC, swfw_sync);
e1000_put_hw_eeprom_semaphore(hw);
return E1000_SUCCESS;
}
int32_t e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
{
uint32_t swfw_sync;
if (e1000_get_hw_eeprom_semaphore(hw))
return -E1000_ERR_SWFW_SYNC;
swfw_sync = e1000_read_reg(hw, E1000_SW_FW_SYNC);
swfw_sync &= ~mask;
e1000_write_reg(hw, E1000_SW_FW_SYNC, swfw_sync);
e1000_put_hw_eeprom_semaphore(hw);
return E1000_SUCCESS;
}
static bool e1000_is_second_port(struct e1000_hw *hw)
{
switch (hw->mac_type) {
case e1000_80003es2lan:
case e1000_82546:
case e1000_82571:
if (e1000_read_reg(hw, E1000_STATUS) & E1000_STATUS_FUNC_1)
return true;
/* Fallthrough */
default:
return false;
}
}
/******************************************************************************
* Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
* second function of dual function devices
*
* edev - Struct containing variables accessed by shared code
*****************************************************************************/
static int e1000_get_ethaddr(struct eth_device *edev, unsigned char *adr)
{
struct e1000_hw *hw = edev->priv;
uint16_t eeprom_data;
uint32_t reg_data = 0;
int i;
DEBUGFUNC();
if (hw->mac_type == e1000_igb) {
/* i210 preloads MAC address into RAL/RAH registers */
reg_data = e1000_read_reg_array(hw, E1000_RA, 0);
adr[0] = reg_data & 0xff;
adr[1] = (reg_data >> 8) & 0xff;
adr[2] = (reg_data >> 16) & 0xff;
adr[3] = (reg_data >> 24) & 0xff;
reg_data = e1000_read_reg_array(hw, E1000_RA, 1);
adr[4] = reg_data & 0xff;
adr[5] = (reg_data >> 8) & 0xff;
return 0;
}
for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
if (e1000_read_eeprom(hw, i >> 1, 1, &eeprom_data) < 0) {
dev_dbg(hw->dev, "EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
adr[i] = eeprom_data & 0xff;
adr[i + 1] = (eeprom_data >> 8) & 0xff;
}
/* Invert the last bit if this is the second device */
if (e1000_is_second_port(hw))
adr[5] ^= 1;
return 0;
}
static int e1000_set_ethaddr(struct eth_device *edev, const unsigned char *adr)
{
struct e1000_hw *hw = edev->priv;
uint32_t addr_low;
uint32_t addr_high;
DEBUGFUNC();
dev_dbg(hw->dev, "Programming MAC Address into RAR[0]\n");
addr_low = (adr[0] | (adr[1] << 8) | (adr[2] << 16) | (adr[3] << 24));
addr_high = (adr[4] | (adr[5] << 8) | E1000_RAH_AV);
e1000_write_reg_array(hw, E1000_RA, 0, addr_low);
e1000_write_reg_array(hw, E1000_RA, 1, addr_high);
return 0;
}
/******************************************************************************
* Clears the VLAN filter table
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void e1000_clear_vfta(struct e1000_hw *hw)
{
uint32_t offset;
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
e1000_write_reg_array(hw, E1000_VFTA, offset, 0);
}
/******************************************************************************
* Set the mac type member in the hw struct.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static int32_t e1000_set_mac_type(struct e1000_hw *hw)
{
DEBUGFUNC();
switch (hw->device_id) {
case E1000_DEV_ID_82542:
switch (hw->revision_id) {
case E1000_82542_2_0_REV_ID:
hw->mac_type = e1000_82542_rev2_0;
break;
case E1000_82542_2_1_REV_ID:
hw->mac_type = e1000_82542_rev2_1;
break;
default:
/* Invalid 82542 revision ID */
return -E1000_ERR_MAC_TYPE;
}
break;
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
hw->mac_type = e1000_82543;
break;
case E1000_DEV_ID_82544EI_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82544GC_COPPER:
case E1000_DEV_ID_82544GC_LOM:
hw->mac_type = e1000_82544;
break;
case E1000_DEV_ID_82540EM:
case E1000_DEV_ID_82540EM_LOM:
case E1000_DEV_ID_82540EP:
case E1000_DEV_ID_82540EP_LOM:
case E1000_DEV_ID_82540EP_LP:
hw->mac_type = e1000_82540;
break;
case E1000_DEV_ID_82545EM_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
hw->mac_type = e1000_82545;
break;
case E1000_DEV_ID_82545GM_COPPER:
case E1000_DEV_ID_82545GM_FIBER:
case E1000_DEV_ID_82545GM_SERDES:
hw->mac_type = e1000_82545_rev_3;
break;
case E1000_DEV_ID_82546EB_COPPER:
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
hw->mac_type = e1000_82546;
break;
case E1000_DEV_ID_82546GB_COPPER:
case E1000_DEV_ID_82546GB_FIBER:
case E1000_DEV_ID_82546GB_SERDES:
case E1000_DEV_ID_82546GB_PCIE:
case E1000_DEV_ID_82546GB_QUAD_COPPER:
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
hw->mac_type = e1000_82546_rev_3;
break;
case E1000_DEV_ID_82541EI:
case E1000_DEV_ID_82541EI_MOBILE:
case E1000_DEV_ID_82541ER_LOM:
hw->mac_type = e1000_82541;
break;
case E1000_DEV_ID_82541ER:
case E1000_DEV_ID_82541GI:
case E1000_DEV_ID_82541GI_LF:
case E1000_DEV_ID_82541GI_MOBILE:
hw->mac_type = e1000_82541_rev_2;
break;
case E1000_DEV_ID_82547EI:
case E1000_DEV_ID_82547EI_MOBILE:
hw->mac_type = e1000_82547;
break;
case E1000_DEV_ID_82547GI:
hw->mac_type = e1000_82547_rev_2;
break;
case E1000_DEV_ID_82571EB_COPPER:
case E1000_DEV_ID_82571EB_FIBER:
case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82571EB_SERDES_DUAL:
case E1000_DEV_ID_82571EB_SERDES_QUAD:
case E1000_DEV_ID_82571EB_QUAD_COPPER:
case E1000_DEV_ID_82571PT_QUAD_COPPER:
case E1000_DEV_ID_82571EB_QUAD_FIBER:
case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
hw->mac_type = e1000_82571;
break;
case E1000_DEV_ID_82572EI_COPPER:
case E1000_DEV_ID_82572EI_FIBER:
case E1000_DEV_ID_82572EI_SERDES:
case E1000_DEV_ID_82572EI:
hw->mac_type = e1000_82572;
break;
case E1000_DEV_ID_82573E:
case E1000_DEV_ID_82573E_IAMT:
case E1000_DEV_ID_82573L:
hw->mac_type = e1000_82573;
break;
case E1000_DEV_ID_82574L:
hw->mac_type = e1000_82574;
break;
case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
hw->mac_type = e1000_80003es2lan;
break;
case E1000_DEV_ID_ICH8_IGP_M_AMT:
case E1000_DEV_ID_ICH8_IGP_AMT:
case E1000_DEV_ID_ICH8_IGP_C:
case E1000_DEV_ID_ICH8_IFE:
case E1000_DEV_ID_ICH8_IFE_GT:
case E1000_DEV_ID_ICH8_IFE_G:
case E1000_DEV_ID_ICH8_IGP_M:
hw->mac_type = e1000_ich8lan;
break;
case E1000_DEV_ID_I350_COPPER:
case E1000_DEV_ID_I210_UNPROGRAMMED:
case E1000_DEV_ID_I211_UNPROGRAMMED:
case E1000_DEV_ID_I210_COPPER:
case E1000_DEV_ID_I211_COPPER:
case E1000_DEV_ID_I210_COPPER_FLASHLESS:
case E1000_DEV_ID_I210_SERDES:
case E1000_DEV_ID_I210_SERDES_FLASHLESS:
case E1000_DEV_ID_I210_1000BASEKX:
hw->mac_type = e1000_igb;
break;
default:
/* Should never have loaded on this device */
return -E1000_ERR_MAC_TYPE;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Reset the transmit and receive units; mask and clear all interrupts.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void e1000_reset_hw(struct e1000_hw *hw)
{
uint32_t ctrl;
uint32_t reg;
DEBUGFUNC();
/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
if (hw->mac_type == e1000_82542_rev2_0) {
dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n");
pci_write_config_word(hw->pdev, PCI_COMMAND,
hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
}
/* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC with
* the global reset.
*/
e1000_write_reg(hw, E1000_RCTL, 0);
e1000_write_reg(hw, E1000_TCTL, E1000_TCTL_PSP);
e1000_write_flush(hw);
/* Delay to allow any outstanding PCI transactions to complete before
* resetting the device
*/
mdelay(10);
/* Issue a global reset to the MAC. This will reset the chip's
* transmit, receive, DMA, and link units. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
dev_dbg(hw->dev, "Issuing a global reset to MAC\n");
ctrl = e1000_read_reg(hw, E1000_CTRL);
e1000_write_reg(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
/* Force a reload from the EEPROM if necessary */
if (hw->mac_type == e1000_igb) {
mdelay(20);
reg = e1000_read_reg(hw, E1000_STATUS);
if (reg & E1000_STATUS_PF_RST_DONE)
dev_dbg(hw->dev, "PF OK\n");
reg = e1000_read_reg(hw, E1000_EECD);
if (reg & E1000_EECD_AUTO_RD)
dev_dbg(hw->dev, "EEC OK\n");
} else if (hw->mac_type < e1000_82540) {
uint32_t ctrl_ext;
/* Wait for reset to complete */
udelay(10);
ctrl_ext = e1000_read_reg(hw, E1000_CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
e1000_write_reg(hw, E1000_CTRL_EXT, ctrl_ext);
e1000_write_flush(hw);
/* Wait for EEPROM reload */
mdelay(2);
} else {
uint32_t manc;
/* Wait for EEPROM reload (it happens automatically) */
mdelay(4);
/* Dissable HW ARPs on ASF enabled adapters */
manc = e1000_read_reg(hw, E1000_MANC);
manc &= ~(E1000_MANC_ARP_EN);
e1000_write_reg(hw, E1000_MANC, manc);
}
/* Clear interrupt mask to stop board from generating interrupts */
if (hw->mac_type == e1000_igb)
e1000_write_reg(hw, E1000_I210_IAM, 0);
e1000_write_reg(hw, E1000_IMC, 0xffffffff);
/* Clear any pending interrupt events. */
e1000_read_reg(hw, E1000_ICR);
/* If MWI was previously enabled, reenable it. */
if (hw->mac_type == e1000_82542_rev2_0)
pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
if (hw->mac_type != e1000_igb) {
if (hw->mac_type < e1000_82571)
e1000_write_reg(hw, E1000_PBA, 0x00000030);
else
e1000_write_reg(hw, E1000_PBA, 0x000a0026);
}
}
/******************************************************************************
*
* Initialize a number of hardware-dependent bits
*
* hw: Struct containing variables accessed by shared code
*
* This function contains hardware limitation workarounds for PCI-E adapters
*
*****************************************************************************/
static void e1000_initialize_hardware_bits(struct e1000_hw *hw)
{
uint32_t reg_ctrl, reg_ctrl_ext;
uint32_t reg_tarc0, reg_tarc1;
uint32_t reg_txdctl, reg_txdctl1;
if (hw->mac_type < e1000_82571)
return;
/* Settings common to all PCI-express silicon */
/* link autonegotiation/sync workarounds */
reg_tarc0 = e1000_read_reg(hw, E1000_TARC0);
reg_tarc0 &= ~((1 << 30) | (1 << 29) | (1 << 28) | (1 << 27));
/* Enable not-done TX descriptor counting */
reg_txdctl = e1000_read_reg(hw, E1000_TXDCTL);
reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
e1000_write_reg(hw, E1000_TXDCTL, reg_txdctl);
reg_txdctl1 = e1000_read_reg(hw, E1000_TXDCTL1);
reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
e1000_write_reg(hw, E1000_TXDCTL1, reg_txdctl1);
switch (hw->mac_type) {
case e1000_82571:
case e1000_82572:
/* Clear PHY TX compatible mode bits */
reg_tarc1 = e1000_read_reg(hw, E1000_TARC1);
reg_tarc1 &= ~((1 << 30) | (1 << 29));
/* link autonegotiation/sync workarounds */
reg_tarc0 |= (1 << 26) | (1 << 25) | (1 << 24) | (1 << 23);
/* TX ring control fixes */
reg_tarc1 |= (1 << 26) | (1 << 25) | (1 << 24);
/* Multiple read bit is reversed polarity */
if (e1000_read_reg(hw, E1000_TCTL) & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28);
else
reg_tarc1 |= (1 << 28);
e1000_write_reg(hw, E1000_TARC1, reg_tarc1);
break;
case e1000_82573:
case e1000_82574:
reg_ctrl_ext = e1000_read_reg(hw, E1000_CTRL_EXT);
reg_ctrl_ext &= ~(1 << 23);
reg_ctrl_ext |= (1 << 22);
/* TX byte count fix */
reg_ctrl = e1000_read_reg(hw, E1000_CTRL);
reg_ctrl &= ~(1 << 29);
e1000_write_reg(hw, E1000_CTRL_EXT, reg_ctrl_ext);
e1000_write_reg(hw, E1000_CTRL, reg_ctrl);
break;
case e1000_80003es2lan:
/* improve small packet performace for fiber/serdes */
if (e1000_media_fiber_serdes(hw))
reg_tarc0 &= ~(1 << 20);
/* Multiple read bit is reversed polarity */
reg_tarc1 = e1000_read_reg(hw, E1000_TARC1);
if (e1000_read_reg(hw, E1000_TCTL) & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28);
else
reg_tarc1 |= (1 << 28);
e1000_write_reg(hw, E1000_TARC1, reg_tarc1);
break;
case e1000_ich8lan:
/* Reduce concurrent DMA requests to 3 from 4 */
if ((hw->revision_id < 3) ||
((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
reg_tarc0 |= (1 << 29) | (1 << 28);
reg_ctrl_ext = e1000_read_reg(hw, E1000_CTRL_EXT);
reg_ctrl_ext |= (1 << 22);
e1000_write_reg(hw, E1000_CTRL_EXT, reg_ctrl_ext);
/* workaround TX hang with TSO=on */
reg_tarc0 |= (1 << 27) | (1 << 26) | (1 << 24) | (1 << 23);
/* Multiple read bit is reversed polarity */
reg_tarc1 = e1000_read_reg(hw, E1000_TARC1);
if (e1000_read_reg(hw, E1000_TCTL) & E1000_TCTL_MULR)
reg_tarc1 &= ~(1 << 28);
else
reg_tarc1 |= (1 << 28);
/* workaround TX hang with TSO=on */
reg_tarc1 |= (1 << 30) | (1 << 26) | (1 << 24);
e1000_write_reg(hw, E1000_TARC1, reg_tarc1);
break;
case e1000_igb:
return;
default:
break;
}
e1000_write_reg(hw, E1000_TARC0, reg_tarc0);
}
static int e1000_open(struct eth_device *edev)
{
struct e1000_hw *hw = edev->priv;
uint32_t ctrl_ext;
int32_t ret_val;
uint32_t ctrl;
uint32_t reg_data;
/* Call a subroutine to configure the link and setup flow control. */
ret_val = e1000_setup_link(hw);
if (ret_val)
return ret_val;
/* Set the transmit descriptor write-back policy */
if (hw->mac_type > e1000_82544) {
ctrl = e1000_read_reg(hw, E1000_TXDCTL);
ctrl &= ~E1000_TXDCTL_WTHRESH;
ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB;
e1000_write_reg(hw, E1000_TXDCTL, ctrl);
}
/* Set the receive descriptor write back policy */
if (hw->mac_type >= e1000_82571) {
ctrl = e1000_read_reg(hw, E1000_RXDCTL);
ctrl &= ~E1000_RXDCTL_WTHRESH;
ctrl |= E1000_RXDCTL_FULL_RX_DESC_WB;
e1000_write_reg(hw, E1000_RXDCTL, ctrl);
}
switch (hw->mac_type) {
case e1000_80003es2lan:
/* Enable retransmit on late collisions */
reg_data = e1000_read_reg(hw, E1000_TCTL);
reg_data |= E1000_TCTL_RTLC;
e1000_write_reg(hw, E1000_TCTL, reg_data);
/* Configure Gigabit Carry Extend Padding */
reg_data = e1000_read_reg(hw, E1000_TCTL_EXT);
reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
e1000_write_reg(hw, E1000_TCTL_EXT, reg_data);
/* Configure Transmit Inter-Packet Gap */
reg_data = e1000_read_reg(hw, E1000_TIPG);
reg_data &= ~E1000_TIPG_IPGT_MASK;
reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
e1000_write_reg(hw, E1000_TIPG, reg_data);
reg_data = e1000_read_reg_array(hw, E1000_FFLT, 1);
reg_data &= ~0x00100000;
e1000_write_reg_array(hw, E1000_FFLT, 1, reg_data);
/* Fall through */
case e1000_82571:
case e1000_82572:
case e1000_ich8lan:
ctrl = e1000_read_reg(hw, E1000_TXDCTL1);
ctrl &= ~E1000_TXDCTL_WTHRESH;
ctrl |= E1000_TXDCTL_FULL_TX_DESC_WB;
e1000_write_reg(hw, E1000_TXDCTL1, ctrl);
break;
case e1000_82573:
case e1000_82574:
reg_data = e1000_read_reg(hw, E1000_GCR);
reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
e1000_write_reg(hw, E1000_GCR, reg_data);
case e1000_igb:
default:
break;
}
if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
ctrl_ext = e1000_read_reg(hw, E1000_CTRL_EXT);
/* Relaxed ordering must be disabled to avoid a parity
* error crash in a PCI slot. */
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
e1000_write_reg(hw, E1000_CTRL_EXT, ctrl_ext);
}
return 0;
}
/******************************************************************************
* Configures flow control and link settings.
*
* hw - Struct containing variables accessed by shared code
*
* Determines which flow control settings to use. Calls the apropriate media-
* specific link configuration function. Configures the flow control settings.
* Assuming the adapter has a valid link partner, a valid link should be
* established. Assumes the hardware has previously been reset and the
* transmitter and receiver are not enabled.
*****************************************************************************/
static int e1000_setup_link(struct e1000_hw *hw)
{
int32_t ret_val;
uint32_t ctrl_ext;
uint16_t eeprom_data;
DEBUGFUNC();
/* In the case of the phy reset being blocked, we already have a link.
* We do not have to set it up again. */
if (e1000_check_phy_reset_block(hw))
return E1000_SUCCESS;
/* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the
* SW defined pins. If there is no SW over-ride of the flow
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
&eeprom_data) < 0) {
dev_dbg(hw->dev, "EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
switch (hw->mac_type) {
case e1000_ich8lan:
case e1000_82573:
case e1000_82574:
case e1000_igb:
hw->fc = e1000_fc_full;
break;
default:
if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
hw->fc = e1000_fc_none;
else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == EEPROM_WORD0F_ASM_DIR)
hw->fc = e1000_fc_tx_pause;
else
hw->fc = e1000_fc_full;
break;
}
/* We want to save off the original Flow Control configuration just
* in case we get disconnected and then reconnected into a different
* hub or switch with different Flow Control capabilities.
*/
if (hw->mac_type == e1000_82542_rev2_0)
hw->fc &= ~e1000_fc_tx_pause;
hw->original_fc = hw->fc;
dev_dbg(hw->dev, "After fix-ups FlowControl is now = %x\n", hw->fc);
/* Take the 4 bits from EEPROM word 0x0F that determine the initial
* polarity value for the SW controlled pins, and setup the
* Extended Device Control reg with that info.
* This is needed because one of the SW controlled pins is used for
* signal detection. So this should be done before e1000_setup_pcs_link()
* or e1000_phy_setup() is called.
*/
if (hw->mac_type == e1000_82543) {
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
SWDPIO__EXT_SHIFT);
e1000_write_reg(hw, E1000_CTRL_EXT, ctrl_ext);
}
/* Call the necessary subroutine to configure the link. */
if (e1000_media_fiber(hw))
ret_val = e1000_setup_fiber_link(hw);
else
ret_val = e1000_setup_copper_link(hw);
if (ret_val < 0)
return ret_val;
/* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
dev_dbg(hw->dev, "Initializing Flow Control address, type and timer regs\n");
/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
if (hw->mac_type != e1000_ich8lan) {
e1000_write_reg(hw, E1000_FCT, FLOW_CONTROL_TYPE);
e1000_write_reg(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
e1000_write_reg(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
}
e1000_write_reg(hw, E1000_FCTTV, E1000_FC_PAUSE_TIME);
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames in not enabled, then these
* registers will be set to 0.
*/
if (hw->fc & e1000_fc_tx_pause) {
/* We need to set up the Receive Threshold high and low water marks
* as well as (optionally) enabling the transmission of XON frames.
*/
e1000_write_reg(hw, E1000_FCRTL, E1000_FC_LOW_THRESH | E1000_FCRTL_XONE);
e1000_write_reg(hw, E1000_FCRTH, E1000_FC_HIGH_THRESH);
} else {
e1000_write_reg(hw, E1000_FCRTL, 0);
e1000_write_reg(hw, E1000_FCRTH, 0);
}
return ret_val;
}
/******************************************************************************
* Sets up link for a fiber based adapter
*
* hw - Struct containing variables accessed by shared code
*
* Manipulates Physical Coding Sublayer functions in order to configure
* link. Assumes the hardware has been previously reset and the transmitter
* and receiver are not enabled.
*****************************************************************************/
static int e1000_setup_fiber_link(struct e1000_hw *hw)
{
uint32_t ctrl;
uint32_t status;
uint32_t txcw = 0;
uint32_t i;
uint32_t signal;
DEBUGFUNC();
/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal
*/
ctrl = e1000_read_reg(hw, E1000_CTRL);
if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
signal = E1000_CTRL_SWDPIN1;
else
signal = 0;
/* Take the link out of reset */
ctrl &= ~E1000_CTRL_LRST;
e1000_config_collision_dist(hw);
/* Check for a software override of the flow control settings, and setup
* the device accordingly. If auto-negotiation is enabled, then software
* will have to set the "PAUSE" bits to the correct value in the Tranmsit
* Config Word Register (TXCW) and re-start auto-negotiation. However, if
* auto-negotiation is disabled, then software will have to manually
* configure the two flow control enable bits in the CTRL register.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames, but
* not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but we do
* not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
*/
switch (hw->fc) {
case e1000_fc_none:
/* Flow control is completely disabled by a software over-ride. */
txcw = E1000_TXCW_ANE | E1000_TXCW_FD;
break;
case e1000_fc_rx_pause:
/* RX Flow control is enabled and TX Flow control is disabled by a
* software over-ride. Since there really isn't a way to advertise
* that we are capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK;
break;
case e1000_fc_tx_pause:
/* TX Flow control is enabled, and RX Flow control is disabled, by a
* software over-ride.
*/
txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR;
break;
case e1000_fc_full:
/* Flow control (both RX and TX) is enabled by a software over-ride. */
txcw = E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK;
break;
default:
dev_dbg(hw->dev, "Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
break;
}
/* Since auto-negotiation is enabled, take the link out of reset (the link
* will be in reset, because we previously reset the chip). This will
* restart auto-negotiation. If auto-neogtiation is successful then the
* link-up status bit will be set and the flow control enable bits (RFCE
* and TFCE) will be set according to their negotiated value.
*/
dev_dbg(hw->dev, "Auto-negotiation enabled (%#x)\n", txcw);
e1000_write_reg(hw, E1000_TXCW, txcw);
e1000_write_reg(hw, E1000_CTRL, ctrl);
e1000_write_flush(hw);
mdelay(1);
/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
* indication in the Device Status Register. Time-out if a link isn't
* seen in 500 milliseconds seconds (Auto-negotiation should complete in
* less than 500 milliseconds even if the other end is doing it in SW).
*/
if ((e1000_read_reg(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1) == signal) {
dev_dbg(hw->dev, "Looking for Link\n");
for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
mdelay(10);
status = e1000_read_reg(hw, E1000_STATUS);
if (status & E1000_STATUS_LU)
break;
}
if (i == (LINK_UP_TIMEOUT / 10)) {
/* AutoNeg failed to achieve a link, so we'll call
* e1000_check_for_link. This routine will force the link up if we
* detect a signal. This will allow us to communicate with
* non-autonegotiating link partners.
*/
dev_dbg(hw->dev, "Never got a valid link from auto-neg!!!\n");
hw->autoneg_failed = 1;
return -E1000_ERR_NOLINK;
} else {
hw->autoneg_failed = 0;
dev_dbg(hw->dev, "Valid Link Found\n");
}
} else {
dev_dbg(hw->dev, "No Signal Detected\n");
return -E1000_ERR_NOLINK;
}
return 0;
}
/******************************************************************************
* Make sure we have a valid PHY and change PHY mode before link setup.
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t e1000_copper_link_preconfig(struct e1000_hw *hw)
{
uint32_t ctrl;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
ctrl = e1000_read_reg(hw, E1000_CTRL);
/* With 82543, we need to force speed and duplex on the MAC equal to what
* the PHY speed and duplex configuration is. In addition, we need to
* perform a hardware reset on the PHY to take it out of reset.
*/
if (hw->mac_type > e1000_82543) {
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
e1000_write_reg(hw, E1000_CTRL, ctrl);
} else {
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
| E1000_CTRL_SLU);
e1000_write_reg(hw, E1000_CTRL, ctrl);
ret_val = e1000_phy_hw_reset(hw);
if (ret_val)
return ret_val;
}
/* Make sure we have a valid PHY */
ret_val = e1000_detect_gig_phy(hw);
if (ret_val) {
dev_dbg(hw->dev, "Error, did not detect valid phy.\n");
return ret_val;
}
dev_dbg(hw->dev, "Phy ID = %x \n", hw->phy_id);
/* Set PHY to class A mode (if necessary) */
ret_val = e1000_set_phy_mode(hw);
if (ret_val)
return ret_val;
if ((hw->mac_type == e1000_82545_rev_3) ||
(hw->mac_type == e1000_82546_rev_3)) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
phy_data |= 0x00000008;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
}
return E1000_SUCCESS;
}
/*****************************************************************************
*
* This function sets the lplu state according to the active flag. When
* activating lplu this function also disables smart speed and vise versa.
* lplu will not be activated unless the device autonegotiation advertisment
* meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
* hw: Struct containing variables accessed by shared code
* active - true to enable lplu false to disable lplu.
*
* returns: - E1000_ERR_PHY if fail to read/write the PHY
* E1000_SUCCESS at any other case.
*
****************************************************************************/
static int32_t e1000_set_d3_lplu_state_off(struct e1000_hw *hw)
{
uint32_t phy_ctrl = 0;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
/* During driver activity LPLU should not be used or it will attain link
* from the lowest speeds starting from 10Mbps. The capability is used
* for Dx transitions and states */
if (hw->mac_type == e1000_82541_rev_2
|| hw->mac_type == e1000_82547_rev_2) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
&phy_data);
if (ret_val)
return ret_val;
} else if (hw->mac_type == e1000_ich8lan) {
/* MAC writes into PHY register based on the state transition
* and start auto-negotiation. SW driver can overwrite the
* settings in CSR PHY power control E1000_PHY_CTRL register. */
phy_ctrl = e1000_read_reg(hw, E1000_PHY_CTRL);
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
if (ret_val)
return ret_val;
}
if (hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547_rev_2) {
phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
if (ret_val)
return ret_val;
} else {
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
e1000_write_reg(hw, E1000_PHY_CTRL, phy_ctrl);
} else {
phy_data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = e1000_write_phy_reg(hw,
IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
}
}
return E1000_SUCCESS;
}
/*****************************************************************************
*
* This function sets the lplu d0 state according to the active flag. When
* activating lplu this function also disables smart speed and vise versa.
* lplu will not be activated unless the device autonegotiation advertisment
* meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
* hw: Struct containing variables accessed by shared code
* active - true to enable lplu false to disable lplu.
*
* returns: - E1000_ERR_PHY if fail to read/write the PHY
* E1000_SUCCESS at any other case.
*
****************************************************************************/
static int32_t e1000_set_d0_lplu_state_off(struct e1000_hw *hw)
{
uint32_t phy_ctrl = 0;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
if (hw->mac_type <= e1000_82547_rev_2)
return E1000_SUCCESS;
if (hw->mac_type == e1000_ich8lan ||
hw->mac_type == e1000_igb) {
phy_ctrl = e1000_read_reg(hw, E1000_PHY_CTRL);
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
e1000_write_reg(hw, E1000_PHY_CTRL, phy_ctrl);
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = e1000_write_phy_reg(hw,
IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/********************************************************************
* Copper link setup for e1000_phy_igp series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t e1000_copper_link_igp_setup(struct e1000_hw *hw)
{
uint32_t led_ctrl;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
ret_val = e1000_phy_reset(hw);
if (ret_val) {
dev_dbg(hw->dev, "Error Resetting the PHY\n");
return ret_val;
}
/* Wait 15ms for MAC to configure PHY from eeprom settings */
mdelay(15);
if (hw->mac_type != e1000_ich8lan) {
/* Configure activity LED after PHY reset */
led_ctrl = e1000_read_reg(hw, E1000_LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
e1000_write_reg(hw, E1000_LEDCTL, led_ctrl);
}
/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
if (hw->phy_type == e1000_phy_igp) {
/* disable lplu d3 during driver init */
ret_val = e1000_set_d3_lplu_state_off(hw);
if (ret_val) {
dev_dbg(hw->dev, "Error Disabling LPLU D3\n");
return ret_val;
}
}
/* disable lplu d0 during driver init */
ret_val = e1000_set_d0_lplu_state_off(hw);
if (ret_val) {
dev_dbg(hw->dev, "Error Disabling LPLU D0\n");
return ret_val;
}
/* Configure mdi-mdix settings */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
if (ret_val)
return ret_val;
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
/* Force MDI for earlier revs of the IGP PHY */
phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
| IGP01E1000_PSCR_FORCE_MDI_MDIX);
} else {
phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
}
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
if (ret_val)
return ret_val;
/* set auto-master slave resolution settings */
/* when autonegotiation advertisment is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default. */
if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, phy_data);
if (ret_val)
return ret_val;
/* Set auto Master/Slave resolution process */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~CR_1000T_MS_ENABLE;
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
phy_data);
if (ret_val)
return ret_val;
}
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
if (ret_val)
return ret_val;
return E1000_SUCCESS;
}
/*****************************************************************************
* This function checks the mode of the firmware.
*
* returns - true when the mode is IAMT or false.
****************************************************************************/
static bool e1000_check_mng_mode(struct e1000_hw *hw)
{
uint32_t fwsm;
DEBUGFUNC();
fwsm = e1000_read_reg(hw, E1000_FWSM);
if (hw->mac_type == e1000_ich8lan) {
if ((fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
return true;
} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
return true;
return false;
}
static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
{
uint16_t swfw = E1000_SWFW_PHY0_SM;
uint32_t reg_val;
DEBUGFUNC();
if (e1000_is_second_port(hw))
swfw = E1000_SWFW_PHY1_SM;
if (e1000_swfw_sync_acquire(hw, swfw))
return -E1000_ERR_SWFW_SYNC;
reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
& E1000_KUMCTRLSTA_OFFSET) | data;
e1000_write_reg(hw, E1000_KUMCTRLSTA, reg_val);
udelay(2);
if (e1000_swfw_sync_release(hw, swfw) < 0)
dev_warn(hw->dev,
"Timeout while releasing SWFW_SYNC bits (0x%08x)\n",
swfw);
return E1000_SUCCESS;
}
static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
{
uint16_t swfw = E1000_SWFW_PHY0_SM;
uint32_t reg_val;
DEBUGFUNC();
if (e1000_is_second_port(hw))
swfw = E1000_SWFW_PHY1_SM;
if (e1000_swfw_sync_acquire(hw, swfw)) {
debug("%s[%i]\n", __func__, __LINE__);
return -E1000_ERR_SWFW_SYNC;
}
/* Write register address */
reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
e1000_write_reg(hw, E1000_KUMCTRLSTA, reg_val);
udelay(2);
/* Read the data returned */
reg_val = e1000_read_reg(hw, E1000_KUMCTRLSTA);
*data = (uint16_t)reg_val;
if (e1000_swfw_sync_release(hw, swfw) < 0)
dev_warn(hw->dev,
"Timeout while releasing SWFW_SYNC bits (0x%08x)\n",
swfw);
return E1000_SUCCESS;
}
/********************************************************************
* Copper link setup for e1000_phy_gg82563 series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t e1000_copper_link_ggp_setup(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
uint32_t reg_data;
DEBUGFUNC();
/* Enable CRS on TX for half-duplex operation. */
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_MAC_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
/* SW Reset the PHY so all changes take effect */
ret_val = e1000_phy_reset(hw);
if (ret_val) {
dev_dbg(hw->dev, "Error Resetting the PHY\n");
return ret_val;
}
/* Bypass RX and TX FIFO's */
ret_val = e1000_write_kmrn_reg(hw,
E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
if (ret_val)
return ret_val;
reg_data = e1000_read_reg(hw, E1000_CTRL_EXT);
reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
e1000_write_reg(hw, E1000_CTRL_EXT, reg_data);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* Do not init these registers when the HW is in IAMT mode, since the
* firmware will have already initialized them. We only initialize
* them if the HW is not in IAMT mode.
*/
if (e1000_check_mng_mode(hw) == false) {
/* Enable Electrical Idle on the PHY */
phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_PWR_MGMT_CTRL, phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw,
GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1000_write_phy_reg(hw,
GG82563_PHY_KMRN_MODE_CTRL, phy_data);
if (ret_val)
return ret_val;
}
/* Workaround: Disable padding in Kumeran interface in the MAC
* and in the PHY to avoid CRC errors.
*/
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= GG82563_ICR_DIS_PADDING;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, phy_data);
if (ret_val)
return ret_val;
return E1000_SUCCESS;
}
/********************************************************************
* Copper link setup for e1000_phy_m88 series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t e1000_copper_link_mgp_setup(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
/* Enable CRS on TX. This must be set for half-duplex operation. */
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
if (hw->phy_revision < M88E1011_I_REV_4) {
/* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
ret_val = e1000_read_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
if ((hw->phy_revision == E1000_REVISION_2) &&
(hw->phy_id == M88E1111_I_PHY_ID)) {
/* Vidalia Phy, set the downshift counter to 5x */
phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
ret_val = e1000_write_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
} else {
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
ret_val = e1000_write_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
}
}
/* SW Reset the PHY so all changes take effect */
ret_val = e1000_phy_reset(hw);
if (ret_val) {
dev_dbg(hw->dev, "Error Resetting the PHY\n");
return ret_val;
}
return E1000_SUCCESS;
}
/********************************************************************
* Setup auto-negotiation and flow control advertisements,
* and then perform auto-negotiation.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t e1000_copper_link_autoneg(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC();
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
/* IFE phy only supports 10/100 */
if (hw->phy_type == e1000_phy_ife)
hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
dev_dbg(hw->dev, "Reconfiguring auto-neg advertisement params\n");
ret_val = e1000_phy_setup_autoneg(hw);
if (ret_val) {
dev_dbg(hw->dev, "Error Setting up Auto-Negotiation\n");
return ret_val;
}
dev_dbg(hw->dev, "Restarting Auto-Neg\n");
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_wait_autoneg(hw);
if (ret_val) {
dev_dbg(hw->dev, "Error while waiting for autoneg to complete\n");
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Config the MAC and the PHY after link is up.
* 1) Set up the MAC to the current PHY speed/duplex
* if we are on 82543. If we
* are on newer silicon, we only need to configure
* collision distance in the Transmit Control Register.
* 2) Set up flow control on the MAC to that established with
* the link partner.
* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t e1000_copper_link_postconfig(struct e1000_hw *hw)
{
int32_t ret_val;
DEBUGFUNC();
if (hw->mac_type >= e1000_82544) {
e1000_config_collision_dist(hw);
} else {
ret_val = e1000_config_mac_to_phy(hw);
if (ret_val) {
dev_dbg(hw->dev, "Error configuring MAC to PHY settings\n");
return ret_val;
}
}
ret_val = e1000_config_fc_after_link_up(hw);
if (ret_val) {
dev_dbg(hw->dev, "Error Configuring Flow Control\n");
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Detects which PHY is present and setup the speed and duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int e1000_setup_copper_link(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t i;
uint16_t phy_data;
uint16_t reg_data;
DEBUGFUNC();
switch (hw->mac_type) {
case e1000_80003es2lan:
case e1000_ich8lan:
/* Set the mac to wait the maximum time between each
* iteration and increase the max iterations when
* polling the phy; this fixes erroneous timeouts at 10Mbps. */
ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
if (ret_val)
return ret_val;
ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
if (ret_val)
return ret_val;
reg_data |= 0x3F;
ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
if (ret_val)
return ret_val;
default:
break;
}
/* Check if it is a valid PHY and set PHY mode if necessary. */
ret_val = e1000_copper_link_preconfig(hw);
if (ret_val)
return ret_val;
switch (hw->mac_type) {
case e1000_80003es2lan:
/* Kumeran registers are written-only */
reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
reg_data);
if (ret_val)
return ret_val;
break;
default:
break;
}
if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_3 ||
hw->phy_type == e1000_phy_igp_2) {
ret_val = e1000_copper_link_igp_setup(hw);
if (ret_val)
return ret_val;
} else if (hw->phy_type == e1000_phy_m88 || hw->phy_type == e1000_phy_igb) {
ret_val = e1000_copper_link_mgp_setup(hw);
if (ret_val)
return ret_val;
} else if (hw->phy_type == e1000_phy_gg82563) {
ret_val = e1000_copper_link_ggp_setup(hw);
if (ret_val)
return ret_val;
}
ret_val = e1000_copper_link_autoneg(hw);
if (ret_val)
return ret_val;
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
for (i = 0; i < 10; i++) {
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if (ret_val)
return ret_val;
if (phy_data & MII_SR_LINK_STATUS) {
/* Config the MAC and PHY after link is up */
ret_val = e1000_copper_link_postconfig(hw);
if (ret_val)
return ret_val;
dev_dbg(hw->dev, "Valid link established!!!\n");
return E1000_SUCCESS;
}
udelay(10);
}
dev_dbg(hw->dev, "Unable to establish link!!!\n");
return E1000_SUCCESS;
}
/******************************************************************************
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t mii_autoneg_adv_reg;
uint16_t mii_1000t_ctrl_reg;
DEBUGFUNC();
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
if (hw->phy_type != e1000_phy_ife) {
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
&mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
} else
mii_1000t_ctrl_reg = 0;
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
dev_dbg(hw->dev, "autoneg_advertised %x\n", hw->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
dev_dbg(hw->dev, "Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
dev_dbg(hw->dev, "Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
dev_dbg(hw->dev, "Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
dev_dbg(hw->dev, "Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
pr_debug
("Advertise 1000mb Half duplex requested, request denied!\n");
}
/* Do we want to advertise 1000 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
dev_dbg(hw->dev, "Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
/* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
* other: No software override. The flow control configuration
* in the EEPROM is used.
*/
switch (hw->fc) {
case e1000_fc_none: /* 0 */
/* Flow control (RX & TX) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_rx_pause: /* 1 */
/* RX Flow control is enabled, and TX Flow control is
* disabled, by a software over-ride.
*/
/* Since there really isn't a way to advertise that we are
* capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later
* (in e1000_config_fc_after_link_up) we will disable the
*hw's ability to send PAUSE frames.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_tx_pause: /* 2 */
/* TX Flow control is enabled, and RX Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case e1000_fc_full: /* 3 */
/* Flow control (both RX and TX) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
dev_dbg(hw->dev, "Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
dev_dbg(hw->dev, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
if (hw->phy_type != e1000_phy_ife) {
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Sets the collision distance in the Transmit Control register
*
* hw - Struct containing variables accessed by shared code
*
* Link should have been established previously. Reads the speed and duplex
* information from the Device Status register.
******************************************************************************/
static void e1000_config_collision_dist(struct e1000_hw *hw)
{
uint32_t tctl, coll_dist;
DEBUGFUNC();
if (hw->mac_type < e1000_82543)
coll_dist = E1000_COLLISION_DISTANCE_82542;
else
coll_dist = E1000_COLLISION_DISTANCE;
tctl = e1000_read_reg(hw, E1000_TCTL);
tctl &= ~E1000_TCTL_COLD;
tctl |= coll_dist << E1000_COLD_SHIFT;
e1000_write_reg(hw, E1000_TCTL, tctl);
e1000_write_flush(hw);
}
/******************************************************************************
* Sets MAC speed and duplex settings to reflect the those in the PHY
*
* hw - Struct containing variables accessed by shared code
* mii_reg - data to write to the MII control register
*
* The contents of the PHY register containing the needed information need to
* be passed in.
******************************************************************************/
static int e1000_config_mac_to_phy(struct e1000_hw *hw)
{
uint32_t ctrl;
uint16_t phy_data;
DEBUGFUNC();
/* Read the Device Control Register and set the bits to Force Speed
* and Duplex.
*/
ctrl = e1000_read_reg(hw, E1000_CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~(E1000_CTRL_ILOS);
ctrl |= (E1000_CTRL_SPD_SEL);
/* Set up duplex in the Device Control and Transmit Control
* registers depending on negotiated values.
*/
if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
dev_dbg(hw->dev, "PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (phy_data & M88E1000_PSSR_DPLX)
ctrl |= E1000_CTRL_FD;
else
ctrl &= ~E1000_CTRL_FD;
e1000_config_collision_dist(hw);
/* Set up speed in the Device Control register depending on
* negotiated values.
*/
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
ctrl |= E1000_CTRL_SPD_1000;
else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
ctrl |= E1000_CTRL_SPD_100;
/* Write the configured values back to the Device Control Reg. */
e1000_write_reg(hw, E1000_CTRL, ctrl);
return 0;
}
/******************************************************************************
* Forces the MAC's flow control settings.
*
* hw - Struct containing variables accessed by shared code
*
* Sets the TFCE and RFCE bits in the device control register to reflect
* the adapter settings. TFCE and RFCE need to be explicitly set by
* software when a Copper PHY is used because autonegotiation is managed
* by the PHY rather than the MAC. Software must also configure these
* bits when link is forced on a fiber connection.
*****************************************************************************/
static int e1000_force_mac_fc(struct e1000_hw *hw)
{
uint32_t ctrl;
DEBUGFUNC();
/* Get the current configuration of the Device Control Register */
ctrl = e1000_read_reg(hw, E1000_CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames).
* 3: Both Rx and TX flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
switch (hw->fc) {
case e1000_fc_none:
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
break;
case e1000_fc_rx_pause:
ctrl &= (~E1000_CTRL_TFCE);
ctrl |= E1000_CTRL_RFCE;
break;
case e1000_fc_tx_pause:
ctrl &= (~E1000_CTRL_RFCE);
ctrl |= E1000_CTRL_TFCE;
break;
case e1000_fc_full:
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
break;
default:
dev_dbg(hw->dev, "Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
/* Disable TX Flow Control for 82542 (rev 2.0) */
if (hw->mac_type == e1000_82542_rev2_0)
ctrl &= (~E1000_CTRL_TFCE);
e1000_write_reg(hw, E1000_CTRL, ctrl);
return 0;
}
/******************************************************************************
* Configures flow control settings after link is established
*
* hw - Struct containing variables accessed by shared code
*
* Should be called immediately after a valid link has been established.
* Forces MAC flow control settings if link was forced. When in MII/GMII mode
* and autonegotiation is enabled, the MAC flow control settings will be set
* based on the flow control negotiated by the PHY. In TBI mode, the TFCE
* and RFCE bits will be automaticaly set to the negotiated flow control mode.
*****************************************************************************/
static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t mii_status_reg;
uint16_t mii_nway_adv_reg;
uint16_t mii_nway_lp_ability_reg;
uint16_t speed;
uint16_t duplex;
DEBUGFUNC();
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
dev_dbg(hw->dev, "PHY Read Error \n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
dev_dbg(hw->dev, "PHY Read Error \n");
return -E1000_ERR_PHY;
}
if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
dev_dbg(hw->dev, "Copper PHY and Auto Neg has not completed.\n");
return 0;
}
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement Register
* (Address 4) and the Auto_Negotiation Base Page Ability
* Register (Address 5) to determine how flow control was
* negotiated.
*/
if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
dev_dbg(hw->dev, "PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg) < 0) {
dev_dbg(hw->dev, "PHY Read Error\n");
return -E1000_ERR_PHY;
}
/* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | e1000_fc_none
* 0 | 1 | 0 | DC | e1000_fc_none
* 0 | 1 | 1 | 0 | e1000_fc_none
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
* 1 | 0 | 0 | DC | e1000_fc_none
* 1 | DC | 1 | DC | e1000_fc_full
* 1 | 1 | 0 | 0 | e1000_fc_none
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
*/
/* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | e1000_fc_full
*
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected RX ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->original_fc == e1000_fc_full) {
hw->fc = e1000_fc_full;
dev_dbg(hw->dev, "Flow Control = FULL.\r\n");
} else {
hw->fc = e1000_fc_rx_pause;
dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
{
hw->fc = e1000_fc_tx_pause;
dev_dbg(hw->dev, "Flow Control = TX PAUSE frames only.\r\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
{
hw->fc = e1000_fc_rx_pause;
dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n");
}
/* Per the IEEE spec, at this point flow control should be
* disabled. However, we want to consider that we could
* be connected to a legacy switch that doesn't advertise
* desired flow control, but can be forced on the link
* partner. So if we advertised no flow control, that is
* what we will resolve to. If we advertised some kind of
* receive capability (Rx Pause Only or Full Flow Control)
* and the link partner advertised none, we will configure
* ourselves to enable Rx Flow Control only. We can do
* this safely for two reasons: If the link partner really
* didn't want flow control enabled, and we enable Rx, no
* harm done since we won't be receiving any PAUSE frames
* anyway. If the intent on the link partner was to have
* flow control enabled, then by us enabling RX only, we
* can at least receive pause frames and process them.
* This is a good idea because in most cases, since we are
* predominantly a server NIC, more times than not we will
* be asked to delay transmission of packets than asking
* our link partner to pause transmission of frames.
*/
else if (hw->original_fc == e1000_fc_none ||
hw->original_fc == e1000_fc_tx_pause) {
hw->fc = e1000_fc_none;
dev_dbg(hw->dev, "Flow Control = NONE.\r\n");
} else {
hw->fc = e1000_fc_rx_pause;
dev_dbg(hw->dev, "Flow Control = RX PAUSE frames only.\r\n");
}
/* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
e1000_get_speed_and_duplex(hw, &speed, &duplex);
if (duplex == HALF_DUPLEX)
hw->fc = e1000_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = e1000_force_mac_fc(hw);
if (ret_val < 0) {
dev_dbg(hw->dev, "Error forcing flow control settings\n");
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Configure the MAC-to-PHY interface for 10/100Mbps
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
{
int32_t ret_val = E1000_SUCCESS;
uint32_t tipg;
uint16_t reg_data;
DEBUGFUNC();
reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
ret_val = e1000_write_kmrn_reg(hw,
E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
if (ret_val)
return ret_val;
/* Configure Transmit Inter-Packet Gap */
tipg = e1000_read_reg(hw, E1000_TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
e1000_write_reg(hw, E1000_TIPG, tipg);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
if (ret_val)
return ret_val;
if (duplex == HALF_DUPLEX)
reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
else
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
return ret_val;
}
static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
{
int32_t ret_val = E1000_SUCCESS;
uint16_t reg_data;
uint32_t tipg;
DEBUGFUNC();
reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
ret_val = e1000_write_kmrn_reg(hw,
E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
if (ret_val)
return ret_val;
/* Configure Transmit Inter-Packet Gap */
tipg = e1000_read_reg(hw, E1000_TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
e1000_write_reg(hw, E1000_TIPG, tipg);
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
if (ret_val)
return ret_val;
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
return ret_val;
}
/******************************************************************************
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*****************************************************************************/
static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
uint16_t *duplex)
{
uint32_t status;
int32_t ret_val;
DEBUGFUNC();
if (hw->mac_type >= e1000_82543) {
status = e1000_read_reg(hw, E1000_STATUS);
if (status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
dev_dbg(hw->dev, "1000 Mbs, ");
} else if (status & E1000_STATUS_SPEED_100) {
*speed = SPEED_100;
dev_dbg(hw->dev, "100 Mbs, ");
} else {
*speed = SPEED_10;
dev_dbg(hw->dev, "10 Mbs, ");
}
if (status & E1000_STATUS_FD) {
*duplex = FULL_DUPLEX;
dev_dbg(hw->dev, "Full Duplex\r\n");
} else {
*duplex = HALF_DUPLEX;
dev_dbg(hw->dev, " Half Duplex\r\n");
}
} else {
dev_dbg(hw->dev, "1000 Mbs, Full Duplex\r\n");
*speed = SPEED_1000;
*duplex = FULL_DUPLEX;
}
if ((hw->mac_type == e1000_80003es2lan) && e1000_media_copper(hw)) {
if (*speed == SPEED_1000)
ret_val = e1000_configure_kmrn_for_1000(hw);
else
ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Blocks until autoneg completes or times out (~4.5 seconds)
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int e1000_wait_autoneg(struct e1000_hw *hw)
{
uint16_t i;
uint16_t phy_data;
DEBUGFUNC();
dev_dbg(hw->dev, "Waiting for Auto-Neg to complete.\n");
/* We will wait for autoneg to complete or 4.5 seconds to expire. */
for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg
* Complete bit to be set.
*/
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
dev_dbg(hw->dev, "PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
dev_dbg(hw->dev, "PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (phy_data & MII_SR_AUTONEG_COMPLETE) {
dev_dbg(hw->dev, "Auto-Neg complete.\n");
return 0;
}
mdelay(100);
}
dev_dbg(hw->dev, "Auto-Neg timedout.\n");
return -E1000_ERR_TIMEOUT;
}
/******************************************************************************
* Raises the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
{
/* Raise the clock input to the Management Data Clock (by setting the MDC
* bit), and then delay 2 microseconds.
*/
e1000_write_reg(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
e1000_write_flush(hw);
udelay(2);
}
/******************************************************************************
* Lowers the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
{
/* Lower the clock input to the Management Data Clock (by clearing the MDC
* bit), and then delay 2 microseconds.
*/
e1000_write_reg(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
e1000_write_flush(hw);
udelay(2);
}
/******************************************************************************
* Shifts data bits out to the PHY
*
* hw - Struct containing variables accessed by shared code
* data - Data to send out to the PHY
* count - Number of bits to shift out
*
* Bits are shifted out in MSB to LSB order.
******************************************************************************/
static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
uint16_t count)
{
uint32_t ctrl;
uint32_t mask;
/* We need to shift "count" number of bits out to the PHY. So, the value
* in the "data" parameter will be shifted out to the PHY one bit at a
* time. In order to do this, "data" must be broken down into bits.
*/
mask = 0x01;
mask <<= (count - 1);
ctrl = e1000_read_reg(hw, E1000_CTRL);
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
while (mask) {
/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
* then raising and lowering the Management Data Clock. A "0" is
* shifted out to the PHY by setting the MDIO bit to "0" and then
* raising and lowering the clock.
*/
if (data & mask)
ctrl |= E1000_CTRL_MDIO;
else
ctrl &= ~E1000_CTRL_MDIO;
e1000_write_reg(hw, E1000_CTRL, ctrl);
e1000_write_flush(hw);
udelay(2);
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
mask = mask >> 1;
}
}
/******************************************************************************
* Shifts data bits in from the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Bits are shifted in in MSB to LSB order.
******************************************************************************/
static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw)
{
uint32_t ctrl;
uint16_t data = 0;
uint8_t i;
/* In order to read a register from the PHY, we need to shift in a total
* of 18 bits from the PHY. The first two bit (turnaround) times are used
* to avoid contention on the MDIO pin when a read operation is performed.
* These two bits are ignored by us and thrown away. Bits are "shifted in"
* by raising the input to the Management Data Clock (setting the MDC bit),
* and then reading the value of the MDIO bit.
*/
ctrl = e1000_read_reg(hw, E1000_CTRL);
/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
ctrl &= ~E1000_CTRL_MDIO_DIR;
ctrl &= ~E1000_CTRL_MDIO;
e1000_write_reg(hw, E1000_CTRL, ctrl);
e1000_write_flush(hw);
/* Raise and Lower the clock before reading in the data. This accounts for
* the turnaround bits. The first clock occurred when we clocked out the
* last bit of the Register Address.
*/
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
for (data = 0, i = 0; i < 16; i++) {
data = data << 1;
e1000_raise_mdi_clk(hw, &ctrl);
ctrl = e1000_read_reg(hw, E1000_CTRL);
/* Check to see if we shifted in a "1". */
if (ctrl & E1000_CTRL_MDIO)
data |= 1;
e1000_lower_mdi_clk(hw, &ctrl);
}
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
return data;
}
static int e1000_phy_read(struct mii_bus *bus, int phy_addr, int reg_addr)
{
struct e1000_hw *hw = bus->priv;
uint32_t i;
uint32_t mdic = 0;
if (phy_addr != 1)
return -EIO;
if (hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, and register address in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_READ));
e1000_write_reg(hw, E1000_MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < 64; i++) {
udelay(10);
mdic = e1000_read_reg(hw, E1000_MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
dev_dbg(hw->dev, "MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
if (mdic & E1000_MDIC_ERROR) {
dev_dbg(hw->dev, "MDI Error\n");
return -E1000_ERR_PHY;
}
return mdic;
} else {
/* We must first send a preamble through the MDIO pin to signal the
* beginning of an MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the next few fields that are required for a read
* operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine five different times. The format of
* a MII read instruction consists of a shift out of 14 bits and is
* defined as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
* followed by a shift in of 18 bits. This first two bits shifted in
* are TurnAround bits used to avoid contention on the MDIO pin when a
* READ operation is performed. These two bits are thrown away
* followed by a shift in of 16 bits which contains the desired data.
*/
mdic = ((reg_addr) | (phy_addr << 5) |
(PHY_OP_READ << 10) | (PHY_SOF << 12));
e1000_shift_out_mdi_bits(hw, mdic, 14);
/* Now that we've shifted out the read command to the MII, we need to
* "shift in" the 16-bit value (18 total bits) of the requested PHY
* register address.
*/
return e1000_shift_in_mdi_bits(hw);
}
}
/*****************************************************************************
* Reads the value from a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
******************************************************************************/
static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
uint16_t *phy_data)
{
int ret;
ret = e1000_phy_read(&hw->miibus, 1, reg_addr);
if (ret < 0)
return ret;
*phy_data = ret;
return 0;
}
static int e1000_phy_write(struct mii_bus *bus, int phy_addr,
int reg_addr, u16 phy_data)
{
struct e1000_hw *hw = bus->priv;
uint32_t i;
uint32_t mdic = 0;
if (phy_addr != 1)
return -EIO;
if (hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, register address, and data intended
* for the PHY register in the MDI Control register. The MAC will take
* care of interfacing with the PHY to send the desired data.
*/
mdic = (((uint32_t) phy_data) |
(reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_WRITE));
e1000_write_reg(hw, E1000_MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < 64; i++) {
udelay(10);
mdic = e1000_read_reg(hw, E1000_MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
dev_dbg(hw->dev, "MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
} else {
/* We'll need to use the SW defined pins to shift the write command
* out to the PHY. We first send a preamble to the PHY to signal the
* beginning of the MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the remaining required fields that will indicate a
* write operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine for each field in the command. The
* format of a MII write instruction is as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
*/
mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
mdic <<= 16;
mdic |= (uint32_t) phy_data;
e1000_shift_out_mdi_bits(hw, mdic, 32);
}
return 0;
}
/******************************************************************************
* Writes a value to a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
******************************************************************************/
static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
{
return e1000_phy_write(&hw->miibus, 1, reg_addr, phy_data);
}
/******************************************************************************
* Checks if PHY reset is blocked due to SOL/IDER session, for example.
* Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
* the caller to figure out how to deal with it.
*
* hw - Struct containing variables accessed by shared code
*
* returns: - E1000_BLK_PHY_RESET
* E1000_SUCCESS
*
*****************************************************************************/
static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw)
{
if (hw->mac_type == e1000_ich8lan) {
if (e1000_read_reg(hw, E1000_FWSM) & E1000_FWSM_RSPCIPHY)
return E1000_SUCCESS;
else
return E1000_BLK_PHY_RESET;
}
if (hw->mac_type > e1000_82547_rev_2) {
if (e1000_read_reg(hw, E1000_MANC) & E1000_MANC_BLK_PHY_RST_ON_IDE)
return E1000_BLK_PHY_RESET;
else
return E1000_SUCCESS;
}
return E1000_SUCCESS;
}
/***************************************************************************
* Checks if the PHY configuration is done
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_RESET if fail to reset MAC
* E1000_SUCCESS at any other case.
*
***************************************************************************/
static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
int32_t timeout = PHY_CFG_TIMEOUT;
uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
DEBUGFUNC();
switch (hw->mac_type) {
default:
mdelay(10);
break;
case e1000_80003es2lan:
/* Separate *_CFG_DONE_* bit for each port */
if (e1000_is_second_port(hw))
cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
/* Fall Through */
case e1000_82571:
case e1000_82572:
case e1000_igb:
while (timeout) {
if (e1000_read_reg(hw, E1000_EEMNGCTL) & cfg_mask)
break;
mdelay(1);
timeout--;
}
if (!timeout) {
dev_dbg(hw->dev, "MNG configuration cycle has not completed.\n");
return -E1000_ERR_RESET;
}
break;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Returns the PHY to the power-on reset state
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t e1000_phy_hw_reset(struct e1000_hw *hw)
{
uint16_t swfw = E1000_SWFW_PHY0_SM;
uint32_t ctrl, ctrl_ext;
uint32_t led_ctrl;
int32_t ret_val;
DEBUGFUNC();
/* In the case of the phy reset being blocked, it's not an error, we
* simply return success without performing the reset. */
ret_val = e1000_check_phy_reset_block(hw);
if (ret_val)
return E1000_SUCCESS;
dev_dbg(hw->dev, "Resetting Phy...\n");
if (hw->mac_type > e1000_82543) {
if (e1000_is_second_port(hw))
swfw = E1000_SWFW_PHY1_SM;
if (e1000_swfw_sync_acquire(hw, swfw)) {
dev_dbg(hw->dev, "Unable to acquire swfw sync\n");
return -E1000_ERR_SWFW_SYNC;
}
/* Read the device control register and assert the E1000_CTRL_PHY_RST
* bit. Then, take it out of reset.
*/
ctrl = e1000_read_reg(hw, E1000_CTRL);
e1000_write_reg(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
e1000_write_flush(hw);
udelay(100);
e1000_write_reg(hw, E1000_CTRL, ctrl);
e1000_write_flush(hw);
if (hw->mac_type >= e1000_82571)
mdelay(10);
if (e1000_swfw_sync_release(hw, swfw) < 0)
dev_warn(hw->dev,
"Timeout while releasing SWFW_SYNC bits (0x%08x)\n",
swfw);
} else {
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
* bit to put the PHY into reset. Then, take it out of reset.
*/
ctrl_ext = e1000_read_reg(hw, E1000_CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
e1000_write_reg(hw, E1000_CTRL_EXT, ctrl_ext);
e1000_write_flush(hw);
mdelay(10);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
e1000_write_reg(hw, E1000_CTRL_EXT, ctrl_ext);
e1000_write_flush(hw);
}
udelay(150);
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
/* Configure activity LED after PHY reset */
led_ctrl = e1000_read_reg(hw, E1000_LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
e1000_write_reg(hw, E1000_LEDCTL, led_ctrl);
}
/* Wait for FW to finish PHY configuration. */
return e1000_get_phy_cfg_done(hw);
}
/******************************************************************************
* IGP phy init script - initializes the GbE PHY
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void e1000_phy_init_script(struct e1000_hw *hw)
{
uint32_t ret_val;
uint16_t phy_saved_data;
DEBUGFUNC();
switch (hw->mac_type) {
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
case e1000_82547_rev_2:
break;
default:
return;
}
mdelay(20);
/* Save off the current value of register 0x2F5B to be
* restored at the end of this routine. */
ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
/* Disabled the PHY transmitter */
e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
mdelay(20);
e1000_write_phy_reg(hw, 0x0000, 0x0140);
mdelay(5);
switch (hw->mac_type) {
case e1000_82541:
case e1000_82547:
e1000_write_phy_reg(hw, 0x1F95, 0x0001);
e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
e1000_write_phy_reg(hw, 0x1F79, 0x0018);
e1000_write_phy_reg(hw, 0x1F30, 0x1600);
e1000_write_phy_reg(hw, 0x1F31, 0x0014);
e1000_write_phy_reg(hw, 0x1F32, 0x161C);
e1000_write_phy_reg(hw, 0x1F94, 0x0003);
e1000_write_phy_reg(hw, 0x1F96, 0x003F);
e1000_write_phy_reg(hw, 0x2010, 0x0008);
break;
case e1000_82541_rev_2:
case e1000_82547_rev_2:
e1000_write_phy_reg(hw, 0x1F73, 0x0099);
break;
default:
break;
}
e1000_write_phy_reg(hw, 0x0000, 0x3300);
mdelay(20);
/* Now enable the transmitter */
if (!ret_val)
e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
if (hw->mac_type == e1000_82547) {
uint16_t fused, fine, coarse;
/* Move to analog registers page */
e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
if (coarse >
IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
coarse -=
IGP01E1000_ANALOG_FUSE_COARSE_10;
fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
} else if (coarse
== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
(fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
(coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
}
}
}
/******************************************************************************
* Resets the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 of the MII Control register
******************************************************************************/
static int32_t e1000_phy_reset(struct e1000_hw *hw)
{
uint16_t phy_data;
int ret;
DEBUGFUNC();
/*
* In the case of the phy reset being blocked, it's not an error, we
* simply return success without performing the reset.
*/
if (e1000_check_phy_reset_block(hw))
return E1000_SUCCESS;
switch (hw->phy_type) {
case e1000_phy_igp:
case e1000_phy_igp_2:
case e1000_phy_igp_3:
case e1000_phy_ife:
case e1000_phy_igb:
ret = e1000_phy_hw_reset(hw);
if (ret)
return ret;
break;
default:
ret = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if (ret)
return ret;
phy_data |= MII_CR_RESET;
ret = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
if (ret)
return ret;
udelay(1);
break;
}
if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
e1000_phy_init_script(hw);
return E1000_SUCCESS;
}
/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t e1000_detect_gig_phy(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_id_high, phy_id_low;
e1000_phy_type phy_type = e1000_phy_undefined;
DEBUGFUNC();
/* The 82571 firmware may still be configuring the PHY. In this
* case, we cannot access the PHY until the configuration is done. So
* we explicitly set the PHY values. */
if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
hw->phy_id = IGP01E1000_I_PHY_ID;
hw->phy_type = e1000_phy_igp_2;
return E1000_SUCCESS;
}
/* Read the PHY ID Registers to identify which PHY is onboard. */
ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
if (ret_val)
return ret_val;
hw->phy_id = (uint32_t) (phy_id_high << 16);
udelay(20);
ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
if (ret_val)
return ret_val;
hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
switch (hw->mac_type) {
case e1000_82543:
if (hw->phy_id == M88E1000_E_PHY_ID)
phy_type = e1000_phy_m88;
break;
case e1000_82544:
if (hw->phy_id == M88E1000_I_PHY_ID)
phy_type = e1000_phy_m88;
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
if (hw->phy_id == M88E1011_I_PHY_ID)
phy_type = e1000_phy_m88;
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
if (hw->phy_id == IGP01E1000_I_PHY_ID)
phy_type = e1000_phy_igp;
break;
case e1000_82573:
if (hw->phy_id == M88E1111_I_PHY_ID)
phy_type = e1000_phy_m88;
break;
case e1000_82574:
if (hw->phy_id == BME1000_E_PHY_ID)
phy_type = e1000_phy_bm;
break;
case e1000_80003es2lan:
if (hw->phy_id == GG82563_E_PHY_ID)
phy_type = e1000_phy_gg82563;
break;
case e1000_ich8lan:
if (hw->phy_id == IGP03E1000_E_PHY_ID)
phy_type = e1000_phy_igp_3;
if (hw->phy_id == IFE_E_PHY_ID)
phy_type = e1000_phy_ife;
if (hw->phy_id == IFE_PLUS_E_PHY_ID)
phy_type = e1000_phy_ife;
if (hw->phy_id == IFE_C_E_PHY_ID)
phy_type = e1000_phy_ife;
break;
case e1000_igb:
if (hw->phy_id == I210_I_PHY_ID)
phy_type = e1000_phy_igb;
if (hw->phy_id == I350_I_PHY_ID)
phy_type = e1000_phy_igb;
break;
default:
dev_dbg(hw->dev, "Invalid MAC type %d\n", hw->mac_type);
return -E1000_ERR_CONFIG;
}
if (phy_type == e1000_phy_undefined) {
dev_dbg(hw->dev, "Invalid PHY ID 0x%X\n", hw->phy_id);
return -EINVAL;
}
hw->phy_type = phy_type;
return 0;
}
/*****************************************************************************
* Set media type and TBI compatibility.
*
* hw - Struct containing variables accessed by shared code
* **************************************************************************/
static void e1000_set_media_type(struct e1000_hw *hw)
{
DEBUGFUNC();
switch (hw->device_id) {
case E1000_DEV_ID_82545GM_SERDES:
case E1000_DEV_ID_82546GB_SERDES:
case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82571EB_SERDES_DUAL:
case E1000_DEV_ID_82571EB_SERDES_QUAD:
case E1000_DEV_ID_82572EI_SERDES:
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
hw->media_type = e1000_media_type_internal_serdes;
return;
default:
break;
}
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
hw->media_type = e1000_media_type_fiber;
return;
case e1000_ich8lan:
case e1000_82573:
case e1000_82574:
case e1000_igb:
/* The STATUS_TBIMODE bit is reserved or reused
* for the this device.
*/
hw->media_type = e1000_media_type_copper;
return;
default:
break;
}
if (e1000_read_reg(hw, E1000_STATUS) & E1000_STATUS_TBIMODE)
hw->media_type = e1000_media_type_fiber;
else
hw->media_type = e1000_media_type_copper;
}
/**
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
*
* e1000_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int e1000_sw_init(struct eth_device *edev)
{
struct e1000_hw *hw = edev->priv;
int result;
/* PCI config space info */
pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
/* identify the MAC */
result = e1000_set_mac_type(hw);
if (result) {
dev_err(&hw->edev.dev, "Unknown MAC Type\n");
return result;
}
return E1000_SUCCESS;
}
static void fill_rx(struct e1000_hw *hw)
{
volatile struct e1000_rx_desc *rd;
volatile u32 *bla;
int i;
hw->rx_last = hw->rx_tail;
rd = hw->rx_base + hw->rx_tail;
hw->rx_tail = (hw->rx_tail + 1) % 8;
bla = (void *)rd;
for (i = 0; i < 4; i++)
*bla++ = 0;
rd->buffer_addr = cpu_to_le64((unsigned long)hw->packet);
e1000_write_reg(hw, E1000_RDT, hw->rx_tail);
}
/**
* e1000_configure_tx - Configure 8254x Transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void e1000_configure_tx(struct e1000_hw *hw)
{
unsigned long tctl;
unsigned long tipg, tarc;
uint32_t ipgr1, ipgr2;
e1000_write_reg(hw, E1000_TDBAL, (unsigned long)hw->tx_base);
e1000_write_reg(hw, E1000_TDBAH, 0);
e1000_write_reg(hw, E1000_TDLEN, 128);
/* Setup the HW Tx Head and Tail descriptor pointers */
e1000_write_reg(hw, E1000_TDH, 0);
e1000_write_reg(hw, E1000_TDT, 0);
hw->tx_tail = 0;
/* Set the default values for the Tx Inter Packet Gap timer */
if (hw->mac_type <= e1000_82547_rev_2 &&
(hw->media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes))
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
else
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
/* Set the default values for the Tx Inter Packet Gap timer */
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
tipg = DEFAULT_82542_TIPG_IPGT;
ipgr1 = DEFAULT_82542_TIPG_IPGR1;
ipgr2 = DEFAULT_82542_TIPG_IPGR2;
break;
case e1000_80003es2lan:
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
break;
default:
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
ipgr2 = DEFAULT_82543_TIPG_IPGR2;
break;
}
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
e1000_write_reg(hw, E1000_TIPG, tipg);
/* Program the Transmit Control Register */
tctl = e1000_read_reg(hw, E1000_TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
tarc = e1000_read_reg(hw, E1000_TARC0);
/* set the speed mode bit, we'll clear it if we're not at
* gigabit link later */
/* git bit can be set to 1*/
} else if (hw->mac_type == e1000_80003es2lan) {
tarc = e1000_read_reg(hw, E1000_TARC0);
tarc |= 1;
e1000_write_reg(hw, E1000_TARC0, tarc);
tarc = e1000_read_reg(hw, E1000_TARC1);
tarc |= 1;
e1000_write_reg(hw, E1000_TARC1, tarc);
}
e1000_config_collision_dist(hw);
/* Setup Transmit Descriptor Settings for eop descriptor */
hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
/* Need to set up RS bit */
if (hw->mac_type < e1000_82543)
hw->txd_cmd |= E1000_TXD_CMD_RPS;
else
hw->txd_cmd |= E1000_TXD_CMD_RS;
if (hw->mac_type == e1000_igb) {
uint32_t reg_txdctl;
e1000_write_reg(hw, E1000_TCTL_EXT, 0x42 << 10);
reg_txdctl = e1000_read_reg(hw, E1000_TXDCTL);
reg_txdctl |= 1 << 25;
e1000_write_reg(hw, E1000_TXDCTL, reg_txdctl);
mdelay(20);
}
e1000_write_reg(hw, E1000_TCTL, tctl);
}
/**
* e1000_setup_rctl - configure the receive control register
* @adapter: Board private structure
**/
static void e1000_setup_rctl(struct e1000_hw *hw)
{
uint32_t rctl;
rctl = e1000_read_reg(hw, E1000_RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF; /* |
(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
rctl &= ~E1000_RCTL_SBP;
rctl &= ~(E1000_RCTL_SZ_4096);
rctl |= E1000_RCTL_SZ_2048;
rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
e1000_write_reg(hw, E1000_RCTL, rctl);
}
/**
* e1000_configure_rx - Configure 8254x Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void e1000_configure_rx(struct e1000_hw *hw)
{
unsigned long rctl, ctrl_ext;
hw->rx_tail = 0;
/* make sure receives are disabled while setting up the descriptors */
rctl = e1000_read_reg(hw, E1000_RCTL);
e1000_write_reg(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
if (hw->mac_type >= e1000_82540) {
/* Set the interrupt throttling rate. Value is calculated
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
#define MAX_INTS_PER_SEC 8000
#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
e1000_write_reg(hw, E1000_ITR, DEFAULT_ITR);
}
if (hw->mac_type >= e1000_82571) {
ctrl_ext = e1000_read_reg(hw, E1000_CTRL_EXT);
/* Reset delay timers after every interrupt */
ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
e1000_write_reg(hw, E1000_CTRL_EXT, ctrl_ext);
e1000_write_flush(hw);
}
/* Setup the Base and Length of the Rx Descriptor Ring */
e1000_write_reg(hw, E1000_RDBAL, (unsigned long)hw->rx_base);
e1000_write_reg(hw, E1000_RDBAH, 0);
e1000_write_reg(hw, E1000_RDLEN, 128);
/* Setup the HW Rx Head and Tail Descriptor Pointers */
e1000_write_reg(hw, E1000_RDH, 0);
e1000_write_reg(hw, E1000_RDT, 0);
/* Enable Receives */
if (hw->mac_type == e1000_igb) {
uint32_t reg_rxdctl = e1000_read_reg(hw, E1000_RXDCTL);
reg_rxdctl |= 1 << 25;
e1000_write_reg(hw, E1000_RXDCTL, reg_rxdctl);
mdelay(20);
}
e1000_write_reg(hw, E1000_RCTL, rctl);
fill_rx(hw);
}
static int e1000_poll(struct eth_device *edev)
{
struct e1000_hw *hw = edev->priv;
volatile struct e1000_rx_desc *rd;
uint32_t len;
rd = hw->rx_base + hw->rx_last;
if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
return 0;
len = le32_to_cpu(rd->length);
dma_sync_single_for_cpu((unsigned long)hw->packet, len, DMA_FROM_DEVICE);
net_receive(edev, (uchar *)hw->packet, len);
fill_rx(hw);
return 1;
}
static int e1000_transmit(struct eth_device *edev, void *txpacket, int length)
{
struct e1000_hw *hw = edev->priv;
volatile struct e1000_tx_desc *txp;
uint64_t to;
txp = hw->tx_base + hw->tx_tail;
hw->tx_tail = (hw->tx_tail + 1) % 8;
txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, txpacket));
txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
txp->upper.data = 0;
dma_sync_single_for_device((unsigned long)txpacket, length, DMA_TO_DEVICE);
e1000_write_reg(hw, E1000_TDT, hw->tx_tail);
e1000_write_flush(hw);
to = get_time_ns();
while (1) {
if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
break;
if (is_timeout(to, MSECOND)) {
dev_dbg(hw->dev, "e1000: tx timeout\n");
return -ETIMEDOUT;
}
}
return 0;
}
static void e1000_disable(struct eth_device *edev)
{
struct e1000_hw *hw = edev->priv;
/* Turn off the ethernet interface */
e1000_write_reg(hw, E1000_RCTL, 0);
e1000_write_reg(hw, E1000_TCTL, 0);
/* Clear the transmit ring */
e1000_write_reg(hw, E1000_TDH, 0);
e1000_write_reg(hw, E1000_TDT, 0);
/* Clear the receive ring */
e1000_write_reg(hw, E1000_RDH, 0);
e1000_write_reg(hw, E1000_RDT, 0);
mdelay(10);
}
static int e1000_init(struct eth_device *edev)
{
struct e1000_hw *hw = edev->priv;
uint32_t i;
uint32_t mta_size;
uint32_t reg_data;
DEBUGFUNC();
if (hw->mac_type >= e1000_82544)
e1000_write_reg(hw, E1000_WUC, 0);
/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
if ((hw->mac_type == e1000_ich8lan) && ((hw->revision_id < 3) ||
((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
reg_data = e1000_read_reg(hw, E1000_STATUS);
reg_data &= ~0x80000000;
e1000_write_reg(hw, E1000_STATUS, reg_data);
}
/* Set the media type and TBI compatibility */
e1000_set_media_type(hw);
/* Must be called after e1000_set_media_type
* because media_type is used */
e1000_initialize_hardware_bits(hw);
/* Disabling VLAN filtering. */
/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
if (hw->mac_type != e1000_ich8lan) {
if (hw->mac_type < e1000_82545_rev_3)
e1000_write_reg(hw, E1000_VET, 0);
e1000_clear_vfta(hw);
}
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
if (hw->mac_type == e1000_82542_rev2_0) {
dev_dbg(hw->dev, "Disabling MWI on 82542 rev 2.0\n");
pci_write_config_word(hw->pdev, PCI_COMMAND,
hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
e1000_write_reg(hw, E1000_RCTL, E1000_RCTL_RST);
e1000_write_flush(hw);
mdelay(5);
}
for (i = 1; i < E1000_RAR_ENTRIES; i++) {
e1000_write_reg_array(hw, E1000_RA, (i << 1), 0);
e1000_write_reg_array(hw, E1000_RA, (i << 1) + 1, 0);
}
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
if (hw->mac_type == e1000_82542_rev2_0) {
e1000_write_reg(hw, E1000_RCTL, 0);
e1000_write_flush(hw);
mdelay(1);
pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
}
/* Zero out the Multicast HASH table */
mta_size = E1000_MC_TBL_SIZE;
if (hw->mac_type == e1000_ich8lan)
mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
for (i = 0; i < mta_size; i++) {
e1000_write_reg_array(hw, E1000_MTA, i, 0);
/* use write flush to prevent Memory Write Block (MWB) from
* occuring when accessing our register space */
e1000_write_flush(hw);
}
/* More time needed for PHY to initialize */
if (hw->mac_type == e1000_ich8lan)
mdelay(15);
if (hw->mac_type == e1000_igb)
mdelay(15);
e1000_configure_tx(hw);
e1000_configure_rx(hw);
e1000_setup_rctl(hw);
return 0;
}
static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct e1000_hw *hw;
struct eth_device *edev;
int ret;
pci_enable_device(pdev);
pci_set_master(pdev);
hw = xzalloc(sizeof(*hw));
hw->tx_base = dma_alloc_coherent(16 * sizeof(*hw->tx_base), DMA_ADDRESS_BROKEN);
hw->rx_base = dma_alloc_coherent(16 * sizeof(*hw->rx_base), DMA_ADDRESS_BROKEN);
hw->packet = dma_alloc_coherent(4096, DMA_ADDRESS_BROKEN);
edev = &hw->edev;
hw->pdev = pdev;
hw->dev = &pdev->dev;
pdev->dev.priv = hw;
edev->priv = hw;
hw->hw_addr = pci_iomap(pdev, 0);
/* MAC and Phy settings */
if (e1000_sw_init(edev) < 0) {
dev_err(&pdev->dev, "Software init failed\n");
return -EINVAL;
}
if (e1000_check_phy_reset_block(hw))
dev_err(&pdev->dev, "PHY Reset is blocked!\n");
/* Basic init was OK, reset the hardware and allow SPI access */
e1000_reset_hw(hw);
/* Validate the EEPROM and get chipset information */
if (e1000_init_eeprom_params(hw)) {
dev_err(&pdev->dev, "EEPROM is invalid!\n");
return -EINVAL;
}
ret = e1000_register_eeprom(hw);
if (ret < 0) {
dev_err(&pdev->dev, "failed to register EEPROM devices!\n");
return ret;
}
if (e1000_validate_eeprom_checksum(hw))
return -EINVAL;
e1000_get_ethaddr(edev, edev->ethaddr);
/* Set up the function pointers and register the device */
edev->parent = &pdev->dev;
edev->init = e1000_init;
edev->recv = e1000_poll;
edev->send = e1000_transmit;
edev->halt = e1000_disable;
edev->open = e1000_open;
edev->get_ethaddr = e1000_get_ethaddr;
edev->set_ethaddr = e1000_set_ethaddr;
hw->miibus.read = e1000_phy_read;
hw->miibus.write = e1000_phy_write;
hw->miibus.priv = hw;
hw->miibus.parent = &edev->dev;
ret = eth_register(edev);
if (ret)
return ret;
/*
* The e1000 driver does its own phy handling, but registering
* the phy allows to show the phy registers for debugging purposes.
*/
ret = mdiobus_register(&hw->miibus);
if (ret)
return ret;
return 0;
}
static void e1000_remove(struct pci_dev *pdev)
{
struct e1000_hw *hw = pdev->dev.priv;
e1000_disable(&hw->edev);
}
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82542), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_FIBER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82543GC_COPPER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_COPPER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544EI_FIBER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_COPPER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82544GC_LOM), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_COPPER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545GM_COPPER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_COPPER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82545EM_FIBER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546EB_FIBER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_COPPER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82540EM_LOM), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541ER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82541GI_LF), },
/* E1000 PCIe card */
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_COPPER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_FIBER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_COPPER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_FIBER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI_SERDES), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82572EI), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573E_IAMT), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82573L), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82574L), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_UNPROGRAMMED), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_UNPROGRAMMED), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I211_COPPER), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I210_1000BASEKX), },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, E1000_DEV_ID_I350_COPPER), },
{ /* sentinel */ }
};
static struct pci_driver e1000_eth_driver = {
.name = "e1000",
.id_table = e1000_pci_tbl,
.probe = e1000_probe,
.remove = e1000_remove,
};
static int e1000_driver_init(void)
{
return pci_register_driver(&e1000_eth_driver);
}
device_initcall(e1000_driver_init);