9
0
Fork 0
barebox/common/imx-bbu-nand-fcb.c

1298 lines
36 KiB
C

/*
* Copyright (C) 2014 Sascha Hauer, Pengutronix
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation.
*
*/
#define pr_fmt(fmt) "imx-bbu-nand-fcb: " fmt
#include <filetype.h>
#include <common.h>
#include <malloc.h>
#include <errno.h>
#include <fcntl.h>
#include <ioctl.h>
#include <linux/sizes.h>
#include <bbu.h>
#include <fs.h>
#include <linux/mtd/mtd-abi.h>
#include <linux/mtd/nand_mxs.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/stat.h>
#include <io.h>
#include <mach/generic.h>
#include <mtd/mtd-peb.h>
struct dbbt_block {
uint32_t Checksum;
uint32_t FingerPrint;
uint32_t Version;
uint32_t numberBB; /* reserved on i.MX6 */
uint32_t DBBTNumOfPages;
};
struct fcb_block {
uint32_t Checksum; /* First fingerprint in first byte */
uint32_t FingerPrint; /* 2nd fingerprint at byte 4 */
uint32_t Version; /* 3rd fingerprint at byte 8 */
uint8_t DataSetup;
uint8_t DataHold;
uint8_t AddressSetup;
uint8_t DSAMPLE_TIME;
/* These are for application use only and not for ROM. */
uint8_t NandTimingState;
uint8_t REA;
uint8_t RLOH;
uint8_t RHOH;
uint32_t PageDataSize; /* 2048 for 2K pages, 4096 for 4K pages */
uint32_t TotalPageSize; /* 2112 for 2K pages, 4314 for 4K pages */
uint32_t SectorsPerBlock; /* Number of 2K sections per block */
uint32_t NumberOfNANDs; /* Total Number of NANDs - not used by ROM */
uint32_t TotalInternalDie; /* Number of separate chips in this NAND */
uint32_t CellType; /* MLC or SLC */
uint32_t EccBlockNEccType; /* Type of ECC, can be one of BCH-0-20 */
uint32_t EccBlock0Size; /* Number of bytes for Block0 - BCH */
uint32_t EccBlockNSize; /* Block size in bytes for all blocks other than Block0 - BCH */
uint32_t EccBlock0EccType; /* Ecc level for Block 0 - BCH */
uint32_t MetadataBytes; /* Metadata size - BCH */
uint32_t NumEccBlocksPerPage; /* Number of blocks per page for ROM use - BCH */
uint32_t EccBlockNEccLevelSDK; /* Type of ECC, can be one of BCH-0-20 */
uint32_t EccBlock0SizeSDK; /* Number of bytes for Block0 - BCH */
uint32_t EccBlockNSizeSDK; /* Block size in bytes for all blocks other than Block0 - BCH */
uint32_t EccBlock0EccLevelSDK; /* Ecc level for Block 0 - BCH */
uint32_t NumEccBlocksPerPageSDK;/* Number of blocks per page for SDK use - BCH */
uint32_t MetadataBytesSDK; /* Metadata size - BCH */
uint32_t EraseThreshold; /* To set into BCH_MODE register */
uint32_t BootPatch; /* 0 for normal boot and 1 to load patch starting next to FCB */
uint32_t PatchSectors; /* Size of patch in sectors */
uint32_t Firmware1_startingPage;/* Firmware image starts on this sector */
uint32_t Firmware2_startingPage;/* Secondary FW Image starting Sector */
uint32_t PagesInFirmware1; /* Number of sectors in firmware image */
uint32_t PagesInFirmware2; /* Number of sector in secondary FW image */
uint32_t DBBTSearchAreaStartAddress; /* Page address where dbbt search area begins */
uint32_t BadBlockMarkerByte; /* Byte in page data that have manufacturer marked bad block marker, */
/* this will be swapped with metadata[0] to complete page data. */
uint32_t BadBlockMarkerStartBit;/* For BCH ECC sizes other than 8 and 16 the bad block marker does not */
/* start at 0th bit of BadBlockMarkerByte. This field is used to get to */
/* the start bit of bad block marker byte with in BadBlockMarkerByte */
uint32_t BBMarkerPhysicalOffset;/* FCB value that gives byte offset for bad block marker on physical NAND page */
uint32_t BCHType;
uint32_t TMTiming2_ReadLatency;
uint32_t TMTiming2_PreambleDelay;
uint32_t TMTiming2_CEDelay;
uint32_t TMTiming2_PostambleDelay;
uint32_t TMTiming2_CmdAddPause;
uint32_t TMTiming2_DataPause;
uint32_t TMSpeed;
uint32_t TMTiming1_BusyTimeout;
uint32_t DISBBM; /* the flag to enable (1)/disable(0) bi swap */
uint32_t BBMarkerPhysicalOffsetInSpareData; /* The swap position of main area in spare area */
};
struct imx_nand_fcb_bbu_handler {
struct bbu_handler handler;
void (*fcb_create)(struct imx_nand_fcb_bbu_handler *imx_handler,
struct fcb_block *fcb, struct mtd_info *mtd);
enum filetype filetype;
};
#define BF_VAL(v, bf) (((v) & bf##_MASK) >> bf##_OFFSET)
#define GETBIT(v,n) (((v) >> (n)) & 0x1)
static uint8_t calculate_parity_13_8(uint8_t d)
{
uint8_t p = 0;
p |= (GETBIT(d, 6) ^ GETBIT(d, 5) ^ GETBIT(d, 3) ^ GETBIT(d, 2)) << 0;
p |= (GETBIT(d, 7) ^ GETBIT(d, 5) ^ GETBIT(d, 4) ^ GETBIT(d, 2) ^ GETBIT(d, 1)) << 1;
p |= (GETBIT(d, 7) ^ GETBIT(d, 6) ^ GETBIT(d, 5) ^ GETBIT(d, 1) ^ GETBIT(d, 0)) << 2;
p |= (GETBIT(d, 7) ^ GETBIT(d, 4) ^ GETBIT(d, 3) ^ GETBIT(d, 0)) << 3;
p |= (GETBIT(d, 6) ^ GETBIT(d, 4) ^ GETBIT(d, 3) ^ GETBIT(d, 2) ^ GETBIT(d, 1) ^ GETBIT(d, 0)) << 4;
return p;
}
static void encode_hamming_13_8(void *_src, void *_ecc, size_t size)
{
int i;
uint8_t *src = _src;
uint8_t *ecc = _ecc;
for (i = 0; i < size; i++)
ecc[i] = calculate_parity_13_8(src[i]);
}
static int lookup_single_error_13_8(unsigned char syndrome)
{
int i;
unsigned char syndrome_table[] = {
0x1c, 0x16, 0x13, 0x19,
0x1a, 0x07, 0x15, 0x0e,
0x01, 0x02, 0x04, 0x08,
0x10,
};
for (i = 0; i < 13; i ++)
if (syndrome_table[i] == syndrome)
return i;
return -1;
}
static uint32_t calc_chksum(void *buf, size_t size)
{
u32 chksum = 0;
u8 *bp = buf;
size_t i;
for (i = 0; i < size; i++)
chksum += bp[i];
return ~chksum;
}
static __maybe_unused void dump_fcb(void *buf)
{
struct fcb_block *fcb = buf;
pr_debug("Checksum: 0x%08x\n", fcb->Checksum);
pr_debug("FingerPrint: 0x%08x\n", fcb->FingerPrint);
pr_debug("Version: 0x%08x\n", fcb->Version);
pr_debug("DataSetup: 0x%02x\n", fcb->DataSetup);
pr_debug("DataHold: 0x%02x\n", fcb->DataHold);
pr_debug("AddressSetup: 0x%02x\n", fcb->AddressSetup);
pr_debug("DSAMPLE_TIME: 0x%02x\n", fcb->DSAMPLE_TIME);
pr_debug("NandTimingState: 0x%02x\n", fcb->NandTimingState);
pr_debug("REA: 0x%02x\n", fcb->REA);
pr_debug("RLOH: 0x%02x\n", fcb->RLOH);
pr_debug("RHOH: 0x%02x\n", fcb->RHOH);
pr_debug("PageDataSize: 0x%08x\n", fcb->PageDataSize);
pr_debug("TotalPageSize: 0x%08x\n", fcb->TotalPageSize);
pr_debug("SectorsPerBlock: 0x%08x\n", fcb->SectorsPerBlock);
pr_debug("NumberOfNANDs: 0x%08x\n", fcb->NumberOfNANDs);
pr_debug("TotalInternalDie: 0x%08x\n", fcb->TotalInternalDie);
pr_debug("CellType: 0x%08x\n", fcb->CellType);
pr_debug("EccBlockNEccType: 0x%08x\n", fcb->EccBlockNEccType);
pr_debug("EccBlock0Size: 0x%08x\n", fcb->EccBlock0Size);
pr_debug("EccBlockNSize: 0x%08x\n", fcb->EccBlockNSize);
pr_debug("EccBlock0EccType: 0x%08x\n", fcb->EccBlock0EccType);
pr_debug("MetadataBytes: 0x%08x\n", fcb->MetadataBytes);
pr_debug("NumEccBlocksPerPage: 0x%08x\n", fcb->NumEccBlocksPerPage);
pr_debug("EccBlockNEccLevelSDK: 0x%08x\n", fcb->EccBlockNEccLevelSDK);
pr_debug("EccBlock0SizeSDK: 0x%08x\n", fcb->EccBlock0SizeSDK);
pr_debug("EccBlockNSizeSDK: 0x%08x\n", fcb->EccBlockNSizeSDK);
pr_debug("EccBlock0EccLevelSDK: 0x%08x\n", fcb->EccBlock0EccLevelSDK);
pr_debug("NumEccBlocksPerPageSDK: 0x%08x\n", fcb->NumEccBlocksPerPageSDK);
pr_debug("MetadataBytesSDK: 0x%08x\n", fcb->MetadataBytesSDK);
pr_debug("EraseThreshold: 0x%08x\n", fcb->EraseThreshold);
pr_debug("BootPatch: 0x%08x\n", fcb->BootPatch);
pr_debug("PatchSectors: 0x%08x\n", fcb->PatchSectors);
pr_debug("Firmware1_startingPage: 0x%08x\n", fcb->Firmware1_startingPage);
pr_debug("Firmware2_startingPage: 0x%08x\n", fcb->Firmware2_startingPage);
pr_debug("PagesInFirmware1: 0x%08x\n", fcb->PagesInFirmware1);
pr_debug("PagesInFirmware2: 0x%08x\n", fcb->PagesInFirmware2);
pr_debug("DBBTSearchAreaStartAddress: 0x%08x\n", fcb->DBBTSearchAreaStartAddress);
pr_debug("BadBlockMarkerByte: 0x%08x\n", fcb->BadBlockMarkerByte);
pr_debug("BadBlockMarkerStartBit: 0x%08x\n", fcb->BadBlockMarkerStartBit);
pr_debug("BBMarkerPhysicalOffset: 0x%08x\n", fcb->BBMarkerPhysicalOffset);
pr_debug("BCHType: 0x%08x\n", fcb->BCHType);
pr_debug("TMTiming2_ReadLatency: 0x%08x\n", fcb->TMTiming2_ReadLatency);
pr_debug("TMTiming2_PreambleDelay: 0x%08x\n", fcb->TMTiming2_PreambleDelay);
pr_debug("TMTiming2_CEDelay: 0x%08x\n", fcb->TMTiming2_CEDelay);
pr_debug("TMTiming2_PostambleDelay: 0x%08x\n", fcb->TMTiming2_PostambleDelay);
pr_debug("TMTiming2_CmdAddPause: 0x%08x\n", fcb->TMTiming2_CmdAddPause);
pr_debug("TMTiming2_DataPause: 0x%08x\n", fcb->TMTiming2_DataPause);
pr_debug("TMSpeed: 0x%08x\n", fcb->TMSpeed);
pr_debug("TMTiming1_BusyTimeout: 0x%08x\n", fcb->TMTiming1_BusyTimeout);
pr_debug("DISBBM: 0x%08x\n", fcb->DISBBM);
pr_debug("BBMarkerPhysOfsInSpareData: 0x%08x\n", fcb->BBMarkerPhysicalOffsetInSpareData);
}
static __maybe_unused ssize_t raw_read_page(struct mtd_info *mtd, void *dst, loff_t offset)
{
struct mtd_oob_ops ops;
ssize_t ret;
ops.mode = MTD_OPS_RAW;
ops.ooboffs = 0;
ops.datbuf = dst;
ops.len = mtd->writesize;
ops.oobbuf = dst + mtd->writesize;
ops.ooblen = mtd->oobsize;
ret = mtd_read_oob(mtd, offset, &ops);
return ret;
}
static ssize_t raw_write_page(struct mtd_info *mtd, void *buf, loff_t offset)
{
struct mtd_oob_ops ops;
ssize_t ret;
ops.mode = MTD_OPS_RAW;
ops.ooboffs = 0;
ops.datbuf = buf;
ops.len = mtd->writesize;
ops.oobbuf = buf + mtd->writesize;
ops.ooblen = mtd->oobsize;
ret = mtd_write_oob(mtd, offset, &ops);
return ret;
}
static int read_fcb(struct mtd_info *mtd, int num, struct fcb_block **retfcb)
{
int i;
int bitflips = 0;
u8 parity, np, syndrome, bit_to_flip;
u8 *fcb, *ecc;
int ret;
void *rawpage;
*retfcb = NULL;
rawpage = xmalloc(mtd->writesize + mtd->oobsize);
ret = raw_read_page(mtd, rawpage, mtd->erasesize * num);
if (ret) {
pr_err("Cannot read block %d\n", num);
goto err;
}
fcb = rawpage + 12;
ecc = rawpage + 512 + 12;
for (i = 0; i < 512; i++) {
parity = ecc[i];
np = calculate_parity_13_8(fcb[i]);
syndrome = np ^ parity;
if (syndrome == 0)
continue;
if (!(hweight8(syndrome) & 1)) {
pr_err("Uncorrectable error at offset %d\n", i);
ret = -EIO;
goto err;
}
bit_to_flip = lookup_single_error_13_8(syndrome);
if (bit_to_flip < 0) {
pr_err("Uncorrectable error at offset %d\n", i);
ret = -EIO;
goto err;
}
bitflips++;
if (bit_to_flip > 7)
ecc[i] ^= 1 << (bit_to_flip - 8);
else
fcb[i] ^= 1 << bit_to_flip;
}
*retfcb = xmemdup(rawpage + 12, 512);
ret = 0;
err:
free(rawpage);
return ret;
}
static int fcb_create(struct imx_nand_fcb_bbu_handler *imx_handler,
struct fcb_block *fcb, struct mtd_info *mtd)
{
fcb->FingerPrint = 0x20424346;
fcb->Version = 0x01000000;
fcb->PageDataSize = mtd->writesize;
fcb->TotalPageSize = mtd->writesize + mtd->oobsize;
fcb->SectorsPerBlock = mtd->erasesize / mtd->writesize;
/* Divide ECC strength by two and save the value into FCB structure. */
fcb->EccBlock0EccType =
mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1;
fcb->EccBlockNEccType = fcb->EccBlock0EccType;
fcb->EccBlock0Size = 0x00000200;
fcb->EccBlockNSize = 0x00000200;
fcb->NumEccBlocksPerPage = mtd->writesize / fcb->EccBlock0Size - 1;
/* DBBT search area starts at second page on first block */
fcb->DBBTSearchAreaStartAddress = 1;
fcb->BadBlockMarkerByte = mxs_nand_mark_byte_offset(mtd);
fcb->BadBlockMarkerStartBit = mxs_nand_mark_bit_offset(mtd);
fcb->BBMarkerPhysicalOffset = mtd->writesize;
imx_handler->fcb_create(imx_handler, fcb, mtd);
fcb->Checksum = calc_chksum((void *)fcb + 4, sizeof(*fcb) - 4);
return 0;
}
static int mtd_peb_write_block(struct mtd_info *mtd, void *buf, int block, int len)
{
int ret;
int retries = 0;
if (mtd_peb_is_bad(mtd, block))
return -EINVAL;
again:
ret = mtd_peb_write(mtd, buf, block, 0, len);
if (!ret)
return 0;
if (ret == -EBADMSG) {
ret = mtd_peb_torture(mtd, block);
if (!ret && retries++ < 3)
goto again;
}
return ret;
}
/**
* imx_bbu_firmware_max_blocks - get max number of blocks for firmware
* @mtd: The mtd device
*
* We use 4 blocks for FCB/DBBT, the rest of the partition is
* divided into two equally sized firmware slots. This function
* returns the number of blocks available for one firmware slot.
* The actually usable size may be smaller due to bad blocks.
*/
static int imx_bbu_firmware_max_blocks(struct mtd_info *mtd)
{
return (mtd_div_by_eb(mtd->size, mtd) - 4) / 2;
}
/**
* imx_bbu_firmware_start_block - get start block for a firmware slot
* @mtd: The mtd device
* @num: The slot number (0 or 1)
*
* We use 4 blocks for FCB/DBBT, the rest of the partition is
* divided into two equally sized firmware slots. This function
* returns the start block for the given firmware slot.
*/
static int imx_bbu_firmware_start_block(struct mtd_info *mtd, int num)
{
return 4 + num * imx_bbu_firmware_max_blocks(mtd);
}
static int imx_bbu_write_firmware(struct mtd_info *mtd, unsigned num, void *buf,
size_t len)
{
int ret, i, newbadblock = 0;
int num_blocks = imx_bbu_firmware_max_blocks(mtd);
int block = imx_bbu_firmware_start_block(mtd, num);
pr_info("writing firmware %d to block %d (ofs 0x%08x)\n",
num, block, block * mtd->erasesize);
for (i = 0; i < num_blocks; i++) {
if (mtd_peb_is_bad(mtd, block + i))
continue;
ret = mtd_peb_erase(mtd, block + i);
if (ret && ret != -EIO)
return ret;
}
while (len > 0) {
int now = min(len, mtd->erasesize);
if (!num_blocks) {
pr_err("Out of good eraseblocks, cannot write firmware\n");
return -ENOSPC;
}
pr_debug("writing %p peb %d, left 0x%08x\n",
buf, block, len);
if (mtd_peb_is_bad(mtd, block)) {
pr_debug("skipping block %d\n", block);
num_blocks--;
block++;
continue;
}
ret = mtd_peb_write_block(mtd, buf, block, now);
if (ret == -EIO) {
block++;
num_blocks--;
newbadblock = 1;
continue;
}
if (ret) {
pr_err("Writing block %d failed with: %s\n", block, strerror(-ret));
return ret;
}
len -= now;
buf += now;
block++;
num_blocks--;
}
return newbadblock;
}
static void *dbbt_data_create(struct mtd_info *mtd)
{
int n;
int n_bad_blocks = 0;
void *dbbt = xzalloc(mtd->writesize);
uint32_t *bb = dbbt + 0x8;
uint32_t *n_bad_blocksp = dbbt + 0x4;
int num_blocks = mtd_div_by_eb(mtd->size, mtd);
for (n = 0; n < num_blocks; n++) {
loff_t offset = n * mtd->erasesize;
if (mtd_block_isbad(mtd, offset)) {
n_bad_blocks++;
*bb = n;
bb++;
}
}
if (!n_bad_blocks) {
free(dbbt);
return NULL;
}
*n_bad_blocksp = n_bad_blocks;
return dbbt;
}
static void imx28_dbbt_create(struct dbbt_block *dbbt, int num_bad_blocks)
{
uint32_t a = 0;
uint8_t *p = (void *)dbbt;
int i;
dbbt->numberBB = num_bad_blocks;
for (i = 4; i < 512; i++)
a += p[i];
a ^= 0xffffffff;
dbbt->Checksum = a;
}
/**
* imx_bbu_write_fcb - Write FCB and DBBT raw data to the device
* @mtd: The mtd Nand device
* @block: The block to write to
* @fcb_raw_page: The raw FCB data
* @dbbt_data_page: The DBBT data
*
* This function writes the FCB/DBBT data to the block given in @block
* to the Nand device. The FCB data has to be given in the raw flash
* layout, already with ecc data supplied.
*
* return: 0 on success or a negative error code otherwise.
*/
static int imx_bbu_write_fcb(struct mtd_info *mtd, int block, void *fcb_raw_page,
void *dbbt_data_page)
{
struct dbbt_block *dbbt;
int ret;
int retries = 0;
uint32_t *n_bad_blocksp = dbbt_data_page + 0x4;
again:
dbbt = xzalloc(mtd->writesize);
dbbt->Checksum = 0;
dbbt->FingerPrint = 0x54424244;
dbbt->Version = 0x01000000;
if (dbbt_data_page)
dbbt->DBBTNumOfPages = 1;
if (cpu_is_mx28())
imx28_dbbt_create(dbbt, *n_bad_blocksp);
ret = mtd_peb_erase(mtd, block);
if (ret)
return ret;
ret = raw_write_page(mtd, fcb_raw_page, block * mtd->erasesize);
if (ret) {
pr_err("Writing FCB on block %d failed with %s\n",
block, strerror(-ret));
goto out;
}
ret = mtd_peb_write(mtd, (void *)dbbt, block, mtd->writesize,
mtd->writesize);
if (ret < 0) {
pr_err("Writing DBBT header on block %d failed with %s\n",
block, strerror(-ret));
goto out;
}
if (dbbt_data_page) {
ret = mtd_peb_write(mtd, dbbt_data_page, block, mtd->writesize * 5,
mtd->writesize);
if (ret < 0) {
pr_err("Writing DBBT on block %d failed with %s\n",
block, strerror(-ret));
goto out;
}
}
ret = 0;
out:
free(dbbt);
if (ret == -EBADMSG) {
ret = mtd_peb_torture(mtd, block);
if (!ret && retries++ < 3)
goto again;
}
return ret;
}
/**
* dbbt_block_is_bad - Check if according to the given DBBT a block is bad
* @dbbt: The DBBT data page
* @block: The block to test
*
* This function checks if a block is marked as bad in the given DBBT.
*
* return: true if the block is bad, false otherwise.
*/
static int dbbt_block_is_bad(void *_dbbt, int block)
{
int i;
u32 *dbbt = _dbbt;
int num_bad_blocks;
if (!_dbbt)
return false;
dbbt++; /* reserved */
num_bad_blocks = *dbbt++;
for (i = 0; i < num_bad_blocks; i++) {
if (*dbbt == block)
return true;
dbbt++;
}
return false;
}
/**
* dbbt_check - Check if DBBT is readable and consistent to the mtd BBT
* @mtd: The mtd Nand device
* @dbbt: The page where the DBBT is found
*
* This function checks if the DBBT is readable and consistent to the mtd
* layers idea of bad blocks.
*
* return: 0 if the DBBT is readable and consistent to the mtd BBT, a
* negative error code otherwise.
*/
static int dbbt_check(struct mtd_info *mtd, int page)
{
int ret, needs_cleanup = 0;
size_t r;
void *dbbt_header;
void *dbbt_entries = NULL;
struct dbbt_block *dbbt;
int num_blocks = mtd_div_by_eb(mtd->size, mtd);
int n;
dbbt_header = xmalloc(mtd->writesize);
ret = mtd_read(mtd, page * mtd->writesize, mtd->writesize, &r, dbbt_header);
if (ret == -EUCLEAN) {
pr_warn("page %d needs cleaning\n", page);
needs_cleanup = 1;
} else if (ret < 0) {
pr_err("Cannot read page %d: %s\n", page, strerror(-ret));
goto out;
}
dbbt = dbbt_header;
if (dbbt->FingerPrint != 0x54424244) {
pr_err("dbbt at page %d is readable but does not contain a valid DBBT\n",
page);
ret = -EINVAL;
goto out;
}
if (dbbt->DBBTNumOfPages) {
dbbt_entries = xmalloc(mtd->writesize);
ret = mtd_read(mtd, (page + 4) * mtd->writesize, mtd->writesize, &r, dbbt_entries);
if (ret == -EUCLEAN) {
pr_warn("page %d needs cleaning\n", page);
needs_cleanup = 1;
} else if (ret < 0) {
pr_err("Cannot read page %d: %s\n", page, strerror(-ret));
free(dbbt_entries);
goto out;
}
} else {
dbbt_entries = NULL;
}
for (n = 0; n < num_blocks; n++) {
if (mtd_peb_is_bad(mtd, n) != dbbt_block_is_bad(dbbt_entries, n)) {
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
free(dbbt_header);
free(dbbt_entries);
if (ret < 0)
return ret;
if (needs_cleanup)
return -EUCLEAN;
return 0;
}
/**
* fcb_dbbt_check - Check if a FCB/DBBT is valid
* @mtd: The mtd Nand device
* @num: The number of the FCB, corresponds to the eraseblock number
* @fcb: The FCB to check against
*
* This function checks if FCB/DBBT found on a device are valid. This
* means:
* - the FCB is readable on the device
* - the FCB is the same as the reference passed in @fcb
* - the DBBT is consistent to the mtd BBT
*
* return: 0 if the FCB/DBBT are valid, a negative error code otherwise
*/
static int fcb_dbbt_check(struct mtd_info *mtd, int num, struct fcb_block *fcb)
{
int ret;
struct fcb_block *f;
int pages_per_block = mtd->erasesize / mtd->writesize;
ret = read_fcb(mtd, num, &f);
if (ret)
return ret;
if (memcmp(fcb, f, sizeof(*fcb))) {
ret = -EINVAL;
goto out;
}
ret = dbbt_check(mtd, num * pages_per_block + 1);
if (ret)
goto out;
ret = 0;
out:
free(f);
return ret;
}
/**
* imx_bbu_write_fcbs_dbbts - Write FCBs/DBBTs to first four blocks
* @mtd: The mtd device to write the FCBs/DBBTs to
* @fcb: The FCB block to write
*
* This creates the FCBs/DBBTs and writes them to the first four blocks
* of the Nand device. The raw FCB data is created from the input FCB
* block, the DBBTs are created from the barebox mtd Nand Bad Block
* Table. The DBBTs are written in the second page same of each FCB block.
* Data will actually only be written if it differs from the data found
* on the device or if a return value of -EUCLEAN while reading
* indicates that a refresh is necessary.
*
* return: 0 for success or a negative error code otherwise.
*/
static int imx_bbu_write_fcbs_dbbts(struct mtd_info *mtd, struct fcb_block *fcb)
{
void *dbbt = NULL;
int i, ret, valid = 0;
void *fcb_raw_page;
/*
* The DBBT search start page is configurable in the FCB block.
* This function writes the DBBTs in the pages directly behind
* the FCBs, so everything else is invalid here.
*/
if (fcb->DBBTSearchAreaStartAddress != 1)
return -EINVAL;
fcb_raw_page = xzalloc(mtd->writesize + mtd->oobsize);
memcpy(fcb_raw_page + 12, fcb, sizeof(struct fcb_block));
encode_hamming_13_8(fcb_raw_page + 12, fcb_raw_page + 12 + 512, 512);
dbbt = dbbt_data_create(mtd);
/*
* Set the first and second byte of OOB data to 0xFF, not 0x00. These
* bytes are used as the Manufacturers Bad Block Marker (MBBM). Since
* the FCB is mostly written to the first page in a block, a scan for
* factory bad blocks will detect these blocks as bad, e.g. when
* function nand_scan_bbt() is executed to build a new bad block table.
*/
memset(fcb_raw_page + mtd->writesize, 0xFF, 2);
for (i = 0; i < 4; i++) {
if (mtd_peb_is_bad(mtd, i))
continue;
if (!fcb_dbbt_check(mtd, i, fcb)) {
valid++;
pr_info("FCB/DBBT on block %d still valid\n", i);
continue;
}
pr_info("Writing FCB/DBBT on block %d\n", i);
ret = imx_bbu_write_fcb(mtd, i, fcb_raw_page, dbbt);
if (ret)
pr_err("Writing FCB/DBBT %d failed with: %s\n", i, strerror(-ret));
else
valid++;
}
free(fcb_raw_page);
free(dbbt);
if (!valid)
pr_err("No FCBs/DBBTs could be written. System won't boot from Nand\n");
return valid > 0 ? 0 : -EIO;
}
static int block_is_empty(struct mtd_info *mtd, int block)
{
int rawsize = mtd->writesize + mtd->oobsize;
u8 *rawpage = xmalloc(rawsize);
int ret;
loff_t offset = (loff_t)block * mtd->erasesize;
ret = raw_read_page(mtd, rawpage, offset);
if (ret)
goto err;
ret = nand_check_erased_buf(rawpage, rawsize, 4 * 13);
if (ret == -EBADMSG)
ret = 0;
else if (ret >= 0)
ret = 1;
err:
free(rawpage);
return ret;
}
static int read_firmware(struct mtd_info *mtd, int first_page, int num_pages,
void **firmware)
{
void *buf, *pos;
int pages_per_block = mtd->erasesize / mtd->writesize;
int now, size, block, ret, need_cleaning = 0;
pr_debug("%s: reading %d pages from page %d\n", __func__, num_pages, first_page);
buf = pos = malloc(num_pages * mtd->writesize);
if (!buf)
return -ENOMEM;
if (first_page % pages_per_block) {
pr_err("Firmware does not begin on eraseblock boundary\n");
ret = -EINVAL;
goto err;
}
block = first_page / pages_per_block;
size = num_pages * mtd->writesize;
while (size) {
if (block >= mtd_num_pebs(mtd)) {
ret = -EIO;
goto err;
}
if (mtd_peb_is_bad(mtd, block)) {
block++;
continue;
}
now = min_t(unsigned int , size, mtd->erasesize);
ret = mtd_peb_read(mtd, pos, block, 0, now);
if (ret == -EUCLEAN) {
pr_info("Block %d needs cleaning\n", block);
need_cleaning = 1;
} else if (ret < 0) {
pr_err("Reading PEB %d failed with %d\n", block, ret);
goto err;
}
if (mtd_buf_all_ff(pos, now)) {
/*
* At this point we do not know if this is a
* block that contains only 0xff or if it is
* really empty. We test this by reading a raw
* page and check if it's empty
*/
ret = block_is_empty(mtd, block);
if (ret < 0)
goto err;
if (ret) {
ret = -EINVAL;
goto err;
}
}
pos += now;
size -= now;
block++;
}
ret = 0;
*firmware = buf;
pr_info("Firmware @ page %d, size %d pages has crc32: 0x%08x\n",
first_page, num_pages, crc32(0, buf, num_pages * mtd->writesize));
err:
if (ret < 0) {
free(buf);
pr_warn("Firmware at page %d is not readable\n", first_page);
return ret;
}
if (need_cleaning) {
pr_warn("Firmware at page %d needs cleanup\n", first_page);
return -EUCLEAN;
}
return 0;
}
static void read_firmware_all(struct mtd_info *mtd, struct fcb_block *fcb, void **data, int *len,
int *used_refresh, int *unused_refresh, int *used)
{
void *primary = NULL, *secondary = NULL;
int pages_per_block = mtd->erasesize / mtd->writesize;
int fw0 = imx_bbu_firmware_start_block(mtd, 0) * pages_per_block;
int fw1 = imx_bbu_firmware_start_block(mtd, 1) * pages_per_block;
int first, ret, primary_refresh = 0, secondary_refresh = 0;
*used_refresh = 0;
*unused_refresh = 0;
if (fcb->Firmware1_startingPage == fw0 &&
fcb->Firmware2_startingPage == fw1) {
first = 0;
} else if (fcb->Firmware1_startingPage == fw1 &&
fcb->Firmware2_startingPage == fw0) {
first = 1;
} else {
pr_warn("FCB is not what we expect. Update will not be robust");
*used = 0;
return;
}
if (fcb->PagesInFirmware1 != fcb->PagesInFirmware2) {
pr_warn("FCB is not what we expect. Update will not be robust");
return;
}
*len = fcb->PagesInFirmware1 * mtd->writesize;
ret = read_firmware(mtd, fcb->Firmware1_startingPage, fcb->PagesInFirmware1, &primary);
if (ret > 0)
primary_refresh = 1;
ret = read_firmware(mtd, fcb->Firmware2_startingPage, fcb->PagesInFirmware2, &secondary);
if (ret > 0)
secondary_refresh = 1;
if (!primary && !secondary) {
*unused_refresh = 1;
*used_refresh = 1;
*used = 0;
*data = NULL;
} else if (primary && !secondary) {
*used_refresh = primary_refresh;
*unused_refresh = 1;
*used = first;
*data = primary;
return;
} else if (secondary && !primary) {
*used_refresh = secondary_refresh;
*unused_refresh = 1;
*used = !first;
*data = secondary;
} else {
if (memcmp(primary, secondary, fcb->PagesInFirmware1 * mtd->writesize))
*unused_refresh = 1;
*used_refresh = primary_refresh;
*used = first;
*data = primary;
free(secondary);
}
pr_info("Primary firmware is on pages %d-%d, %svalid, %s\n", fcb->Firmware1_startingPage,
fcb->Firmware1_startingPage + fcb->PagesInFirmware1, primary ? "" : "in",
primary_refresh ? "needs cleanup" : "clean");
pr_info("secondary firmware is on pages %d-%d, %svalid, %s\n", fcb->Firmware2_startingPage,
fcb->Firmware2_startingPage + fcb->PagesInFirmware2, secondary ? "" : "in",
secondary_refresh ? "needs cleanup" : "clean");
pr_info("ROM uses slot %d\n", *used);
}
static int imx_bbu_nand_update(struct bbu_handler *handler, struct bbu_data *data)
{
struct imx_nand_fcb_bbu_handler *imx_handler =
container_of(handler, struct imx_nand_fcb_bbu_handler, handler);
struct cdev *bcb_cdev;
struct mtd_info *mtd;
int ret, i;
struct fcb_block *fcb = NULL;
void *fw = NULL, *fw_orig = NULL;
unsigned fw_size, partition_size;
enum filetype filetype;
unsigned num_blocks_fw;
int pages_per_block;
int used = 0;
int fw_orig_len;
int used_refresh = 0, unused_refresh = 0;
if (data->image) {
filetype = file_detect_type(data->image, data->len);
if (filetype != imx_handler->filetype &&
!bbu_force(data, "Image is not of type %s but of type %s",
file_type_to_string(imx_handler->filetype),
file_type_to_string(filetype)))
return -EINVAL;
}
bcb_cdev = cdev_by_name(handler->devicefile);
if (!bcb_cdev) {
pr_err("%s: No FCB device!\n", __func__);
return -ENODEV;
}
mtd = bcb_cdev->mtd;
partition_size = mtd->size;
pages_per_block = mtd->erasesize / mtd->writesize;
for (i = 0; i < 4; i++) {
read_fcb(mtd, i, &fcb);
if (fcb)
break;
}
/*
* This code uses the following layout in the Nand flash:
*
* fwmaxsize = (n_blocks - 4) / 2
*
* block
*
* 0 ----------------------
* | FCB/DBBT 0 |
* 1 ----------------------
* | FCB/DBBT 1 |
* 2 ----------------------
* | FCB/DBBT 2 |
* 3 ----------------------
* | FCB/DBBT 3 |
* 4 ----------------------
* | Firmware slot 0 |
* 4 + fwmaxsize ----------------------
* | Firmware slot 1 |
* ----------------------
*
* We want a robust update in which a power failure may occur
* everytime without bricking the board, so here's the strategy:
*
* The FCBs contain pointers to the firmware slots in the
* Firmware1_startingPage and Firmware2_startingPage fields. Note that
* Firmware1_startingPage doesn't necessarily point to slot 0. We
* exchange the pointers during update to atomically switch between the
* old and the new firmware.
*
* - We read the first valid FCB and the firmware slots.
* - We check which firmware slot is currently used by the ROM:
* - if no FCB is found or its layout differs from the above layout,
* continue without robust update
* - if only one firmware slot is readable, the ROM uses it
* - if both slots are readable, the ROM will use slot 0
* - Step 1: erase/update the slot currently unused by the ROM
* - Step 2: Update FCBs/DBBTs, thereby letting Firmware1_startingPage
* point to the slot we just updated. From this moment
* on the new firmware will be used and running a
* refresh/repair after a power failure after this
* step will complete the update.
* - Step 3: erase/update the other firmwre slot
* - Step 4: Eventually write FCBs/DBBTs again. This may become
* necessary when step 3 revealed new bad blocks.
*
* This robust update only works when the original FCBs on the device
* uses the same layout as this code does. In other cases update will
* also work, but it won't be robust against power failures.
*
* Refreshing the firmware which is needed when blocks become unreadable
* due to read disturbance works the same way, only that the new firmware
* is the same as the old firmware and that it will only be written when
* reading from the device returns -EUCLEAN indicating that a block needs
* to be rewritten.
*/
if (fcb)
read_firmware_all(mtd, fcb, &fw_orig, &fw_orig_len,
&used_refresh, &unused_refresh, &used);
if (data->image) {
/*
* We have to write one additional page to make the ROM happy.
* Maybe the PagesInFirmwarex fields are really the number of pages - 1.
* kobs-ng has the same.
*/
fw_size = ALIGN(data->len + mtd->writesize, mtd->writesize);
fw = xzalloc(fw_size);
memcpy(fw, data->image, data->len);
free(fw_orig);
used_refresh = 1;
unused_refresh = 1;
free(fcb);
fcb = xzalloc(sizeof(*fcb));
fcb->Firmware1_startingPage = imx_bbu_firmware_start_block(mtd, !used) * pages_per_block;
fcb->Firmware2_startingPage = imx_bbu_firmware_start_block(mtd, used) * pages_per_block;
fcb->PagesInFirmware1 = fw_size / mtd->writesize;
fcb->PagesInFirmware2 = fcb->PagesInFirmware1;
fcb_create(imx_handler, fcb, mtd);
} else {
if (!fcb) {
pr_err("No FCB found on device, cannot refresh\n");
ret = -EINVAL;
goto out;
}
if (!fw_orig) {
pr_err("No firmware found on device, cannot refresh\n");
ret = -EINVAL;
goto out;
}
fw = fw_orig;
fw_size = fw_orig_len;
pr_info("Refreshing existing firmware\n");
}
num_blocks_fw = imx_bbu_firmware_max_blocks(mtd);
if (num_blocks_fw * mtd->erasesize < fw_size) {
pr_err("Not enough space for update\n");
return -ENOSPC;
}
ret = bbu_confirm(data);
if (ret)
goto out;
/* Step 1: write firmware which is currently unused by the ROM */
if (unused_refresh) {
pr_info("%sing slot %d\n", data->image ? "updat" : "refresh", !used);
ret = imx_bbu_write_firmware(mtd, !used, fw, fw_size);
if (ret < 0)
goto out;
} else {
pr_info("firmware slot %d still ok, nothing to do\n", !used);
}
/*
* Step 2: Write FCBs/DBBTs. This will use the firmware we have
* just written as primary firmware. From now on the new
* firmware will be booted.
*/
ret = imx_bbu_write_fcbs_dbbts(mtd, fcb);
if (ret < 0)
goto out;
/* Step 3: Write the secondary firmware */
if (used_refresh) {
pr_info("%sing slot %d\n", data->image ? "updat" : "refresh", used);
ret = imx_bbu_write_firmware(mtd, used, fw, fw_size);
if (ret < 0)
goto out;
} else {
pr_info("firmware slot %d still ok, nothing to do\n", used);
}
/*
* Step 4: If writing the secondary firmware discovered new bad
* blocks, write the FCBs/DBBTs again with updated bad block
* information.
*/
if (ret > 0) {
pr_info("New bad blocks detected, writing FCBs/DBBTs again\n");
ret = imx_bbu_write_fcbs_dbbts(mtd, fcb);
if (ret < 0)
goto out;
}
out:
free(fw);
free(fcb);
return ret;
}
static void imx6_fcb_create(struct imx_nand_fcb_bbu_handler *imx_handler,
struct fcb_block *fcb, struct mtd_info *mtd)
{
/* Also hardcoded in kobs-ng */
fcb->DataSetup = 80;
fcb->DataHold = 60;
fcb->AddressSetup = 25;
fcb->DSAMPLE_TIME = 6;
fcb->MetadataBytes = 10;
}
int imx6_bbu_nand_register_handler(const char *name, unsigned long flags)
{
struct imx_nand_fcb_bbu_handler *imx_handler;
struct bbu_handler *handler;
int ret;
imx_handler = xzalloc(sizeof(*imx_handler));
imx_handler->fcb_create = imx6_fcb_create;
imx_handler->filetype = filetype_arm_barebox;
handler = &imx_handler->handler;
handler->devicefile = "nand0.barebox";
handler->name = name;
handler->flags = flags | BBU_HANDLER_CAN_REFRESH;
handler->handler = imx_bbu_nand_update;
ret = bbu_register_handler(handler);
if (ret)
free(handler);
return ret;
}
#ifdef CONFIG_ARCH_IMX28
#include <mach/imx28-regs.h>
#define GPMI_TIMING0 0x00000070
#define GPMI_TIMING0_ADDRESS_SETUP_MASK (0xff << 16)
#define GPMI_TIMING0_ADDRESS_SETUP_OFFSET 16
#define GPMI_TIMING0_DATA_HOLD_MASK (0xff << 8)
#define GPMI_TIMING0_DATA_HOLD_OFFSET 8
#define GPMI_TIMING0_DATA_SETUP_MASK 0xff
#define GPMI_TIMING0_DATA_SETUP_OFFSET 0
#define GPMI_TIMING1 0x00000080
#define BCH_MODE 0x00000020
#define BCH_FLASH0LAYOUT0 0x00000080
#define BCH_FLASHLAYOUT0_NBLOCKS_MASK (0xff << 24)
#define BCH_FLASHLAYOUT0_NBLOCKS_OFFSET 24
#define BCH_FLASHLAYOUT0_META_SIZE_MASK (0xff << 16)
#define BCH_FLASHLAYOUT0_META_SIZE_OFFSET 16
#define BCH_FLASHLAYOUT0_ECC0_MASK (0xf << 12)
#define BCH_FLASHLAYOUT0_ECC0_OFFSET 12
#define BCH_FLASHLAYOUT0_DATA0_SIZE_MASK 0xfff
#define BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET 0
#define BCH_FLASH0LAYOUT1 0x00000090
#define BCH_FLASHLAYOUT1_PAGE_SIZE_MASK (0xffff << 16)
#define BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET 16
#define BCH_FLASHLAYOUT1_ECCN_MASK (0xf << 12)
#define BCH_FLASHLAYOUT1_ECCN_OFFSET 12
#define BCH_FLASHLAYOUT1_DATAN_SIZE_MASK 0xfff
#define BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET 0
static void imx28_fcb_create(struct imx_nand_fcb_bbu_handler *imx_handler,
struct fcb_block *fcb, struct mtd_info *mtd)
{
u32 fl0, fl1, t0;
void __iomem *bch_regs = (void *)MXS_BCH_BASE;
void __iomem *gpmi_regs = (void *)MXS_GPMI_BASE;
fl0 = readl(bch_regs + BCH_FLASH0LAYOUT0);
fl1 = readl(bch_regs + BCH_FLASH0LAYOUT1);
t0 = readl(gpmi_regs + GPMI_TIMING0);
fcb->MetadataBytes = BF_VAL(fl0, BCH_FLASHLAYOUT0_META_SIZE);
fcb->DataSetup = BF_VAL(t0, GPMI_TIMING0_DATA_SETUP);
fcb->DataHold = BF_VAL(t0, GPMI_TIMING0_DATA_HOLD);
fcb->AddressSetup = BF_VAL(t0, GPMI_TIMING0_ADDRESS_SETUP);
fcb->MetadataBytes = BF_VAL(fl0, BCH_FLASHLAYOUT0_META_SIZE);
fcb->NumEccBlocksPerPage = BF_VAL(fl0, BCH_FLASHLAYOUT0_NBLOCKS);
fcb->EraseThreshold = readl(bch_regs + BCH_MODE);
}
int imx28_bbu_nand_register_handler(const char *name, unsigned long flags)
{
struct imx_nand_fcb_bbu_handler *imx_handler;
struct bbu_handler *handler;
int ret;
imx_handler = xzalloc(sizeof(*imx_handler));
imx_handler->fcb_create = imx28_fcb_create;
imx_handler->filetype = filetype_mxs_bootstream;
handler = &imx_handler->handler;
handler->devicefile = "nand0.barebox";
handler->name = name;
handler->flags = flags | BBU_HANDLER_CAN_REFRESH;
handler->handler = imx_bbu_nand_update;
ret = bbu_register_handler(handler);
if (ret)
free(handler);
return ret;
}
#endif