9
0
Fork 0
barebox/arch/arm/mach-socfpga/include/mach/sequencer.c

5244 lines
156 KiB
C

/*
* Copyright Altera Corporation (C) 2012-2014. All rights reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Altera Corporation nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "sequencer_defines.h"
#include "system.h"
#include "sdram_io.h"
#include "sequencer.h"
#include "tclrpt.h"
/******************************************************************************
******************************************************************************
** NOTE: Special Rules for Globale Variables **
** **
** All global variables that are explicitly initialized (including **
** explicitly initialized to zero), are only initialized once, during **
** configuration time, and not again on reset. This means that they **
** preserve their current contents across resets, which is needed for some **
** special cases involving communication with external modules. In **
** addition, this avoids paying the price to have the memory initialized, **
** even for zeroed data, provided it is explicitly set to zero in the code, **
** and doesn't rely on implicit initialization. **
******************************************************************************
******************************************************************************/
#ifndef ARMCOMPILER
// Temporary workaround to place the initial stack pointer at a safe offset from end
#define STRINGIFY(s) STRINGIFY_STR(s)
#define STRINGIFY_STR(s) #s
asm(".global __alt_stack_pointer");
asm("__alt_stack_pointer = " STRINGIFY(STACK_POINTER));
#endif
#include <mach/sdram.h>
#define NEWVERSION_RDDESKEW 1
#define NEWVERSION_WRDESKEW 1
#define NEWVERSION_GW 1
#define NEWVERSION_WL 1
#define NEWVERSION_DQSEN 1
// Just to make the debugging code more uniform
#define HALF_RATE_MODE 0
#define QUARTER_RATE_MODE 0
#define DELTA_D 1
// case:56390
// VFIFO_CONTROL_WIDTH_PER_DQS is the number of VFIFOs actually instantiated per DQS. This is always one except:
// AV QDRII where it is 2 for x18 and x18w2, and 4 for x36 and x36w2
// RLDRAMII x36 and x36w2 where it is 2.
// In 12.0sp1 we set this to 4 for all of the special cases above to keep it simple.
// In 12.0sp2 or 12.1 this should get moved to generation and unified with the same constant used in the phy mgr
#define VFIFO_CONTROL_WIDTH_PER_DQS 1
// In order to reduce ROM size, most of the selectable calibration steps are
// decided at compile time based on the user's calibration mode selection,
// as captured by the STATIC_CALIB_STEPS selection below.
//
// However, to support simulation-time selection of fast simulation mode, where
// we skip everything except the bare minimum, we need a few of the steps to
// be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
// check, which is based on the rtl-supplied value, or we dynamically compute the
// value to use based on the dynamically-chosen calibration mode
#define BTFLD_FMT "%lx"
// For HPS running on actual hardware
#define DLEVEL 0
#ifdef HPS_HW_SERIAL_SUPPORT
// space around comma is required for varargs macro to remove comma if args is empty
#define DPRINT(level, fmt, args...) if (DLEVEL >= (level)) printf("SEQ.C: " fmt "\n" , ## args)
#define IPRINT(fmt, args...) printf("SEQ.C: " fmt "\n" , ## args)
#else
#define DPRINT(level, fmt, args...)
#define IPRINT(fmt, args...)
#endif
#define BFM_GBL_SET(field,value)
#define BFM_GBL_GET(field) ((long unsigned int)0)
#define BFM_STAGE(stage)
#define BFM_INC_VFIFO
#define COV(label)
#define TRACE_FUNC(fmt, args...) DPRINT(1, "%s[%d]: " fmt, __func__, __LINE__ , ## args)
#define DYNAMIC_CALIB_STEPS (dyn_calib_steps)
#define STATIC_IN_RTL_SIM 0
#define STATIC_SKIP_DELAY_LOOPS 0
#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | STATIC_SKIP_DELAY_LOOPS)
// calibration steps requested by the rtl
static uint16_t dyn_calib_steps = 0;
// To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
// instead of static, we use boolean logic to select between
// non-skip and skip values
//
// The mask is set to include all bits when not-skipping, but is
// zero when skipping
static uint16_t skip_delay_mask = 0; // mask off bits when skipping/not-skipping
#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
((non_skip_value) & skip_delay_mask)
// TODO: The skip group strategy is completely missing
static gbl_t *gbl = 0;
static param_t *param = 0;
static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, uint32_t write_group,
uint32_t use_dm, uint32_t all_correct,
t_btfld * bit_chk, uint32_t all_ranks);
// This (TEST_SIZE) is used to test handling of large roms, to make
// sure we are sizing things correctly
// Note, the initialized data takes up twice the space in rom, since
// there needs to be a copy with the initial value and a copy that is
// written too, since on soft-reset, it needs to have the initial values
// without reloading the memory from external sources
// #define TEST_SIZE (6*1024)
#ifdef TEST_SIZE
#define PRE_POST_TEST_SIZE 3
static unsigned int pre_test_size_mem[PRE_POST_TEST_SIZE] = { 1, 2, 3 };
static unsigned int test_size_mem[TEST_SIZE / sizeof(unsigned int)] = { 100, 200, 300 };
static unsigned int post_test_size_mem[PRE_POST_TEST_SIZE] = { 10, 20, 30 };
static void write_test_mem(void)
{
int i;
for (i = 0; i < PRE_POST_TEST_SIZE; i++) {
pre_test_size_mem[i] = (i + 1) * 10;
post_test_size_mem[i] = (i + 1);
}
for (i = 0; i < sizeof(test_size_mem) / sizeof(unsigned int); i++) {
test_size_mem[i] = i;
}
}
static int check_test_mem(int start)
{
int i;
for (i = 0; i < PRE_POST_TEST_SIZE; i++) {
if (start) {
if (pre_test_size_mem[i] != (i + 1)) {
return 0;
}
if (post_test_size_mem[i] != (i + 1) * 10) {
return 0;
}
} else {
if (pre_test_size_mem[i] != (i + 1) * 10) {
return 0;
}
if (post_test_size_mem[i] != (i + 1)) {
return 0;
}
}
}
for (i = 0; i < sizeof(test_size_mem) / sizeof(unsigned int); i++) {
if (start) {
if (i < 3) {
if (test_size_mem[i] != (i + 1) * 100) {
return 0;
}
} else {
if (test_size_mem[i] != 0) {
return 0;
}
}
} else {
if (test_size_mem[i] != i) {
return 0;
}
}
}
return 1;
}
#endif // TEST_SIZE
static void set_failing_group_stage(uint32_t group, uint32_t stage, uint32_t substage)
{
if (gbl->error_stage == CAL_STAGE_NIL) {
gbl->error_substage = substage;
gbl->error_stage = stage;
gbl->error_group = group;
}
}
static inline void reg_file_set_group(uint32_t set_group)
{
// Read the current group and stage
uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0);
// Clear the group
cur_stage_group &= 0x0000FFFF;
// Set the group
cur_stage_group |= (set_group << 16);
// Write the data back
IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group);
}
static inline void reg_file_set_stage(uint32_t set_stage)
{
// Read the current group and stage
uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0);
// Clear the stage and substage
cur_stage_group &= 0xFFFF0000;
// Set the stage
cur_stage_group |= (set_stage & 0x000000FF);
// Write the data back
IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group);
}
static inline void reg_file_set_sub_stage(uint32_t set_sub_stage)
{
// Read the current group and stage
uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0);
// Clear the substage
cur_stage_group &= 0xFFFF00FF;
// Set the sub stage
cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
// Write the data back
IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group);
}
static inline uint32_t is_write_group_enabled_for_dm(uint32_t write_group)
{
return 1;
}
static inline void select_curr_shadow_reg_using_rank(uint32_t rank)
{
}
static void initialize(void)
{
IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0x3);
//USER memory clock is not stable we begin initialization
IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 0);
//USER calibration status all set to zero
IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, 0);
IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0);
if (((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
param->read_correct_mask_vg =
((t_btfld) 1 <<
(RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
param->write_correct_mask_vg =
((t_btfld) 1 <<
(RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
param->read_correct_mask = ((t_btfld) 1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
param->write_correct_mask = ((t_btfld) 1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
param->dm_correct_mask =
((t_btfld) 1 << (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) - 1;
}
}
static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
{
uint32_t odt_mask_0 = 0;
uint32_t odt_mask_1 = 0;
uint32_t cs_and_odt_mask;
if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
if (LRDIMM) {
// USER LRDIMMs have two cases to consider: single-slot and dual-slot.
// USER In single-slot, assert ODT for write only.
// USER In dual-slot, assert ODT for both slots for write,
// USER and on the opposite slot only for reads.
// USER
// USER Further complicating this is that both DIMMs have either 1 or 2 ODT
// USER inputs, which do the same thing (only one is actually required).
if ((RW_MGR_MEM_CHIP_SELECT_WIDTH / RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 1) {
// USER Single-slot case
if (RW_MGR_MEM_ODT_WIDTH == 1) {
// USER Read = 0, Write = 1
odt_mask_0 = 0x0;
odt_mask_1 = 0x1;
} else if (RW_MGR_MEM_ODT_WIDTH == 2) {
// USER Read = 00, Write = 11
odt_mask_0 = 0x0;
odt_mask_1 = 0x3;
}
} else if ((RW_MGR_MEM_CHIP_SELECT_WIDTH / RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM)
== 2) {
// USER Dual-slot case
if (RW_MGR_MEM_ODT_WIDTH == 2) {
// USER Read: asserted for opposite slot, Write: asserted for both
odt_mask_0 = (rank < 2) ? 0x2 : 0x1;
odt_mask_1 = 0x3;
} else if (RW_MGR_MEM_ODT_WIDTH == 4) {
// USER Read: asserted for opposite slot, Write: asserted for both
odt_mask_0 = (rank < 2) ? 0xC : 0x3;
odt_mask_1 = 0xF;
}
}
} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
//USER 1 Rank
//USER Read: ODT = 0
//USER Write: ODT = 1
odt_mask_0 = 0x0;
odt_mask_1 = 0x1;
} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
//USER 2 Ranks
if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1 ||
(RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2
&& RW_MGR_MEM_CHIP_SELECT_WIDTH == 4)) {
//USER - Dual-Slot , Single-Rank (1 chip-select per DIMM)
//USER OR
//USER - RDIMM, 4 total CS (2 CS per DIMM) means 2 DIMM
//USER Since MEM_NUMBER_OF_RANKS is 2 they are both single rank
//USER with 2 CS each (special for RDIMM)
//USER Read: Turn on ODT on the opposite rank
//USER Write: Turn on ODT on all ranks
odt_mask_0 = 0x3 & ~(1 << rank);
odt_mask_1 = 0x3;
} else {
//USER - Single-Slot , Dual-rank DIMMs (2 chip-selects per DIMM)
//USER Read: Turn on ODT off on all ranks
//USER Write: Turn on ODT on active rank
odt_mask_0 = 0x0;
odt_mask_1 = 0x3 & (1 << rank);
}
} else {
//USER 4 Ranks
//USER Read:
//USER ----------+-----------------------+
//USER | |
//USER | ODT |
//USER Read From +-----------------------+
//USER Rank | 3 | 2 | 1 | 0 |
//USER ----------+-----+-----+-----+-----+
//USER 0 | 0 | 1 | 0 | 0 |
//USER 1 | 1 | 0 | 0 | 0 |
//USER 2 | 0 | 0 | 0 | 1 |
//USER 3 | 0 | 0 | 1 | 0 |
//USER ----------+-----+-----+-----+-----+
//USER
//USER Write:
//USER ----------+-----------------------+
//USER | |
//USER | ODT |
//USER Write To +-----------------------+
//USER Rank | 3 | 2 | 1 | 0 |
//USER ----------+-----+-----+-----+-----+
//USER 0 | 0 | 1 | 0 | 1 |
//USER 1 | 1 | 0 | 1 | 0 |
//USER 2 | 0 | 1 | 0 | 1 |
//USER 3 | 1 | 0 | 1 | 0 |
//USER ----------+-----+-----+-----+-----+
switch (rank) {
case 0:
odt_mask_0 = 0x4;
odt_mask_1 = 0x5;
break;
case 1:
odt_mask_0 = 0x8;
odt_mask_1 = 0xA;
break;
case 2:
odt_mask_0 = 0x1;
odt_mask_1 = 0x5;
break;
case 3:
odt_mask_0 = 0x2;
odt_mask_1 = 0xA;
break;
}
}
} else {
odt_mask_0 = 0x0;
odt_mask_1 = 0x0;
}
if (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2
&& RW_MGR_MEM_CHIP_SELECT_WIDTH == 4 && RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
//USER See RDIMM special case above
cs_and_odt_mask =
(0xFF & ~(1 << (2 * rank))) |
((0xFF & odt_mask_0) << 8) | ((0xFF & odt_mask_1) << 16);
} else if (LRDIMM) {
} else {
cs_and_odt_mask =
(0xFF & ~(1 << rank)) |
((0xFF & odt_mask_0) << 8) | ((0xFF & odt_mask_1) << 16);
}
IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
}
//USER Given a rank, select the set of shadow registers that is responsible for the
//USER delays of such rank, so that subsequent SCC updates will go to those shadow
//USER registers.
static void select_shadow_regs_for_update(uint32_t rank, uint32_t group,
uint32_t update_scan_chains)
{
}
static void scc_mgr_initialize(void)
{
// Clear register file for HPS
// 16 (2^4) is the size of the full register file in the scc mgr:
// RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + MEM_IF_READ_DQS_WIDTH - 1) + 1;
uint32_t i;
for (i = 0; i < 16; i++) {
DPRINT(1, "Clearing SCC RFILE index %lu", i);
IOWR_32DIRECT(SCC_MGR_HHP_RFILE, i << 2, 0);
}
}
static inline void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
{
WRITE_SCC_DQS_IN_DELAY(read_group, delay);
}
static inline void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, uint32_t delay)
{
WRITE_SCC_DQS_IO_IN_DELAY(delay);
}
static inline void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
{
WRITE_SCC_DQS_EN_PHASE(read_group, phase);
}
static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group, uint32_t phase)
{
uint32_t r;
uint32_t update_scan_chains;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
//USER although the h/w doesn't support different phases per shadow register,
//USER for simplicity our scc manager modeling keeps different phase settings per
//USER shadow reg, and it's important for us to keep them in sync to match h/w.
//USER for efficiency, the scan chain update should occur only once to sr0.
update_scan_chains = (r == 0) ? 1 : 0;
select_shadow_regs_for_update(r, read_group, update_scan_chains);
scc_mgr_set_dqs_en_phase(read_group, phase);
if (update_scan_chains) {
IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
}
}
static inline void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
{
WRITE_SCC_DQDQS_OUT_PHASE(write_group, phase);
}
static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, uint32_t phase)
{
uint32_t r;
uint32_t update_scan_chains;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
//USER although the h/w doesn't support different phases per shadow register,
//USER for simplicity our scc manager modeling keeps different phase settings per
//USER shadow reg, and it's important for us to keep them in sync to match h/w.
//USER for efficiency, the scan chain update should occur only once to sr0.
update_scan_chains = (r == 0) ? 1 : 0;
select_shadow_regs_for_update(r, write_group, update_scan_chains);
scc_mgr_set_dqdqs_output_phase(write_group, phase);
if (update_scan_chains) {
IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, write_group);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
}
}
static inline void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
{
WRITE_SCC_DQS_EN_DELAY(read_group, delay);
}
static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, uint32_t delay)
{
uint32_t r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
select_shadow_regs_for_update(r, read_group, 0);
scc_mgr_set_dqs_en_delay(read_group, delay);
IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group);
// In shadow register mode, the T11 settings are stored in registers
// in the core, which are updated by the DQS_ENA signals. Not issuing
// the SCC_MGR_UPD command allows us to save lots of rank switching
// overhead, by calling select_shadow_regs_for_update with update_scan_chains
// set to 0.
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
}
static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
{
uint32_t read_group;
// Load the setting in the SCC manager
// Although OCT affects only write data, the OCT delay is controlled by the DQS logic block
// which is instantiated once per read group. For protocols where a write group consists
// of multiple read groups, the setting must be set multiple times.
for (read_group =
write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
read_group <
(write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
++read_group) {
WRITE_SCC_OCT_OUT1_DELAY(read_group, delay);
}
}
static void scc_mgr_set_oct_out2_delay(uint32_t write_group, uint32_t delay)
{
uint32_t read_group;
// Load the setting in the SCC manager
// Although OCT affects only write data, the OCT delay is controlled by the DQS logic block
// which is instantiated once per read group. For protocols where a write group consists
// of multiple read groups, the setting must be set multiple times.
for (read_group =
write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
read_group <
(write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
++read_group) {
WRITE_SCC_OCT_OUT2_DELAY(read_group, delay);
}
}
static inline void scc_mgr_set_dqs_bypass(uint32_t write_group, uint32_t bypass)
{
// Load the setting in the SCC manager
WRITE_SCC_DQS_BYPASS(write_group, bypass);
}
static inline void scc_mgr_set_dq_out1_delay(uint32_t write_group, uint32_t dq_in_group,
uint32_t delay)
{
// Load the setting in the SCC manager
WRITE_SCC_DQ_OUT1_DELAY(dq_in_group, delay);
}
static inline void scc_mgr_set_dq_out2_delay(uint32_t write_group, uint32_t dq_in_group,
uint32_t delay)
{
// Load the setting in the SCC manager
WRITE_SCC_DQ_OUT2_DELAY(dq_in_group, delay);
}
static inline void scc_mgr_set_dq_in_delay(uint32_t write_group, uint32_t dq_in_group,
uint32_t delay)
{
// Load the setting in the SCC manager
WRITE_SCC_DQ_IN_DELAY(dq_in_group, delay);
}
static inline void scc_mgr_set_dq_bypass(uint32_t write_group, uint32_t dq_in_group,
uint32_t bypass)
{
// Load the setting in the SCC manager
WRITE_SCC_DQ_BYPASS(dq_in_group, bypass);
}
static inline void scc_mgr_set_rfifo_mode(uint32_t write_group, uint32_t dq_in_group, uint32_t mode)
{
// Load the setting in the SCC manager
WRITE_SCC_RFIFO_MODE(dq_in_group, mode);
}
static inline void scc_mgr_set_hhp_extras(void)
{
// Load the fixed setting in the SCC manager
// bits: 0:0 = 1'b1 - dqs bypass
// bits: 1:1 = 1'b1 - dq bypass
// bits: 4:2 = 3'b001 - rfifo_mode
// bits: 6:5 = 2'b01 - rfifo clock_select
// bits: 7:7 = 1'b0 - separate gating from ungating setting
// bits: 8:8 = 1'b0 - separate OE from Output delay setting
uint32_t value = (0 << 8) | (0 << 7) | (1 << 5) | (1 << 2) | (1 << 1) | (1 << 0);
WRITE_SCC_HHP_EXTRAS(value);
}
static inline void scc_mgr_set_hhp_dqse_map(void)
{
// Load the fixed setting in the SCC manager
WRITE_SCC_HHP_DQSE_MAP(0);
}
static inline void scc_mgr_set_dqs_out1_delay(uint32_t write_group, uint32_t delay)
{
WRITE_SCC_DQS_IO_OUT1_DELAY(delay);
}
static inline void scc_mgr_set_dqs_out2_delay(uint32_t write_group, uint32_t delay)
{
WRITE_SCC_DQS_IO_OUT2_DELAY(delay);
}
static inline void scc_mgr_set_dm_out1_delay(uint32_t write_group, uint32_t dm, uint32_t delay)
{
WRITE_SCC_DM_IO_OUT1_DELAY(dm, delay);
}
static inline void scc_mgr_set_dm_out2_delay(uint32_t write_group, uint32_t dm, uint32_t delay)
{
WRITE_SCC_DM_IO_OUT2_DELAY(dm, delay);
}
static inline void scc_mgr_set_dm_in_delay(uint32_t write_group, uint32_t dm, uint32_t delay)
{
WRITE_SCC_DM_IO_IN_DELAY(dm, delay);
}
static inline void scc_mgr_set_dm_bypass(uint32_t write_group, uint32_t dm, uint32_t bypass)
{
// Load the setting in the SCC manager
WRITE_SCC_DM_BYPASS(dm, bypass);
}
//USER Zero all DQS config
// TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
static void scc_mgr_zero_all(void)
{
uint32_t i, r;
//USER Zero all DQS config settings, across all groups and all shadow registers
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
// Strictly speaking this should be called once per group to make
// sure each group's delay chain is refreshed from the SCC register file,
// but since we're resetting all delay chains anyway, we can save some
// runtime by calling select_shadow_regs_for_update just once to switch
// rank.
select_shadow_regs_for_update(r, 0, 1);
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
// The phases actually don't exist on a per-rank basis, but there's
// no harm updating them several times, so let's keep the code simple.
scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
scc_mgr_set_dqs_en_phase(i, 0);
scc_mgr_set_dqs_en_delay(i, 0);
}
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
scc_mgr_set_dqdqs_output_phase(i, 0);
// av/cv don't have out2
scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
}
//USER multicast to all DQS group enables
IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, 0xff);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
}
static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
{
// mode = 0 : Do NOT bypass - Half Rate Mode
// mode = 1 : Bypass - Full Rate Mode
// only need to set once for all groups, pins, dq, dqs, dm
if (write_group == 0) {
DPRINT(1, "Setting HHP Extras");
scc_mgr_set_hhp_extras();
DPRINT(1, "Done Setting HHP Extras");
}
//USER multicast to all DQ enables
IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff);
IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff);
//USER update current DQS IO enable
IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
//USER update the DQS logic
IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, write_group);
//USER hit update
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
// Moving up to avoid warnings
static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
{
uint32_t read_group;
// Although OCT affects only write data, the OCT delay is controlled by the DQS logic block
// which is instantiated once per read group. For protocols where a write group consists
// of multiple read groups, the setting must be scanned multiple times.
for (read_group =
write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
read_group <
(write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
++read_group) {
IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group);
}
}
static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin, int32_t out_only)
{
uint32_t i, r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
select_shadow_regs_for_update(r, write_group, 1);
//USER Zero all DQ config settings
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
scc_mgr_set_dq_out1_delay(write_group, i, 0);
scc_mgr_set_dq_out2_delay(write_group, i, IO_DQ_OUT_RESERVE);
if (!out_only) {
scc_mgr_set_dq_in_delay(write_group, i, 0);
}
}
//USER multicast to all DQ enables
IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff);
//USER Zero all DM config settings
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
if (!out_only) {
// Do we really need this?
scc_mgr_set_dm_in_delay(write_group, i, 0);
}
scc_mgr_set_dm_out1_delay(write_group, i, 0);
scc_mgr_set_dm_out2_delay(write_group, i, IO_DM_OUT_RESERVE);
}
//USER multicast to all DM enables
IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff);
//USER zero all DQS io settings
if (!out_only) {
scc_mgr_set_dqs_io_in_delay(write_group, 0);
}
// av/cv don't have out2
scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_load_dqs_for_write_group(write_group);
//USER multicast to all DQS IO enables (only 1)
IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
//USER hit update to zero everything
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
}
//USER load up dqs config settings
static void scc_mgr_load_dqs(uint32_t dqs)
{
IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, dqs);
}
//USER load up dqs io config settings
static void scc_mgr_load_dqs_io(void)
{
IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
}
//USER load up dq config settings
static void scc_mgr_load_dq(uint32_t dq_in_group)
{
IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, dq_in_group);
}
//USER load up dm config settings
static void scc_mgr_load_dm(uint32_t dm)
{
IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, dm);
}
//USER apply and load a particular input delay for the DQ pins in a group
//USER group_bgn is the index of the first dq pin (in the write group)
static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group, uint32_t group_bgn,
uint32_t delay)
{
uint32_t i, p;
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
scc_mgr_set_dq_in_delay(write_group, p, delay);
scc_mgr_load_dq(p);
}
}
//USER apply and load a particular output delay for the DQ pins in a group
static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group, uint32_t group_bgn,
uint32_t delay1)
{
uint32_t i, p;
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
scc_mgr_set_dq_out1_delay(write_group, i, delay1);
scc_mgr_load_dq(i);
}
}
//USER apply and load a particular output delay for the DM pins in a group
static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group, uint32_t delay1)
{
uint32_t i;
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
scc_mgr_set_dm_out1_delay(write_group, i, delay1);
scc_mgr_load_dm(i);
}
}
//USER apply and load delay on both DQS and OCT out1
static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, uint32_t delay)
{
scc_mgr_set_dqs_out1_delay(write_group, delay);
scc_mgr_load_dqs_io();
scc_mgr_set_oct_out1_delay(write_group, delay);
scc_mgr_load_dqs_for_write_group(write_group);
}
//USER set delay on both DQS and OCT out1 by incrementally changing
//USER the settings one dtap at a time towards the target value, to avoid
//USER breaking the lock of the DLL/PLL on the memory device.
static void scc_mgr_set_group_dqs_io_and_oct_out1_gradual(uint32_t write_group, uint32_t delay)
{
uint32_t d = READ_SCC_DQS_IO_OUT1_DELAY();
while (d > delay) {
--d;
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
if (QDRII) {
rw_mgr_mem_dll_lock_wait();
}
}
while (d < delay) {
++d;
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
if (QDRII) {
rw_mgr_mem_dll_lock_wait();
}
}
}
//USER apply a delay to the entire output side: DQ, DM, DQS, OCT
static void scc_mgr_apply_group_all_out_delay(uint32_t write_group, uint32_t group_bgn,
uint32_t delay)
{
//USER dq shift
scc_mgr_apply_group_dq_out1_delay(write_group, group_bgn, delay);
//USER dm shift
scc_mgr_apply_group_dm_out1_delay(write_group, delay);
//USER dqs and oct shift
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, delay);
}
//USER apply a delay to the entire output side (DQ, DM, DQS, OCT) and to all ranks
static void scc_mgr_apply_group_all_out_delay_all_ranks(uint32_t write_group, uint32_t group_bgn,
uint32_t delay)
{
uint32_t r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
select_shadow_regs_for_update(r, write_group, 1);
scc_mgr_apply_group_all_out_delay(write_group, group_bgn, delay);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
}
//USER apply a delay to the entire output side: DQ, DM, DQS, OCT
static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group, uint32_t group_bgn,
uint32_t delay)
{
uint32_t i, p, new_delay;
//USER dq shift
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
new_delay = READ_SCC_DQ_OUT2_DELAY(i);
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
DPRINT(1, "%s(%lu, %lu, %lu) DQ[%lu,%lu]: %lu > %lu => %lu",
__func__, write_group, group_bgn, delay, i, p,
new_delay, (long unsigned int)IO_IO_OUT2_DELAY_MAX,
(long unsigned int)IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_set_dq_out2_delay(write_group, i, new_delay);
scc_mgr_load_dq(i);
}
//USER dm shift
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
new_delay = READ_SCC_DM_IO_OUT2_DELAY(i);
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
DPRINT(1, "%s(%lu, %lu, %lu) DM[%lu]: %lu > %lu => %lu",
__func__, write_group, group_bgn, delay, i,
new_delay, (long unsigned int)IO_IO_OUT2_DELAY_MAX,
(long unsigned int)IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_set_dm_out2_delay(write_group, i, new_delay);
scc_mgr_load_dm(i);
}
//USER dqs shift
new_delay = READ_SCC_DQS_IO_OUT2_DELAY();
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
DPRINT(1, "%s(%lu, %lu, %lu) DQS: %lu > %d => %d; adding %lu to OUT1",
__func__, write_group, group_bgn, delay,
new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
scc_mgr_set_dqs_out1_delay(write_group, new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_set_dqs_out2_delay(write_group, new_delay);
scc_mgr_load_dqs_io();
//USER oct shift
new_delay = READ_SCC_OCT_OUT2_DELAY(write_group);
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
DPRINT(1, "%s(%lu, %lu, %lu) DQS: %lu > %d => %d; adding %lu to OUT1",
__func__, write_group, group_bgn, delay,
new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
new_delay - IO_IO_OUT2_DELAY_MAX);
scc_mgr_set_oct_out1_delay(write_group, new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_set_oct_out2_delay(write_group, new_delay);
scc_mgr_load_dqs_for_write_group(write_group);
}
//USER apply a delay to the entire output side (DQ, DM, DQS, OCT) and to all ranks
static void scc_mgr_apply_group_all_out_delay_add_all_ranks(uint32_t write_group,
uint32_t group_bgn, uint32_t delay)
{
uint32_t r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
select_shadow_regs_for_update(r, write_group, 1);
scc_mgr_apply_group_all_out_delay_add(write_group, group_bgn, delay);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
}
static inline void scc_mgr_spread_out2_delay_all_ranks(uint32_t write_group, uint32_t test_bgn)
{
}
// optimization used to recover some slots in ddr3 inst_rom
// could be applied to other protocols if we wanted to
static void set_jump_as_return(void)
{
// to save space, we replace return with jump to special shared RETURN instruction
// so we set the counter to large value so that we always jump
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0xFF);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_RETURN);
}
// should always use constants as argument to ensure all computations are performed at compile time
static inline void delay_for_n_mem_clocks(const uint32_t clocks)
{
uint32_t afi_clocks;
uint8_t inner;
uint8_t outer;
uint16_t c_loop;
afi_clocks = (clocks + AFI_RATE_RATIO - 1) / AFI_RATE_RATIO; /* scale (rounding up) to get afi clocks */
// Note, we don't bother accounting for being off a little bit because of a few extra instructions in outer loops
// Note, the loops have a test at the end, and do the test before the decrement, and so always perform the loop
// 1 time more than the counter value
if (afi_clocks == 0) {
inner = outer = c_loop = 0;
} else if (afi_clocks <= 0x100) {
inner = afi_clocks - 1;
outer = 0;
c_loop = 0;
} else if (afi_clocks <= 0x10000) {
inner = 0xff;
outer = (afi_clocks - 1) >> 8;
c_loop = 0;
} else {
inner = 0xff;
outer = 0xff;
c_loop = (afi_clocks - 1) >> 16;
}
// rom instructions are structured as follows:
//
// IDLE_LOOP2: jnz cntr0, TARGET_A
// IDLE_LOOP1: jnz cntr1, TARGET_B
// return
//
// so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and TARGET_B is
// set to IDLE_LOOP2 as well
//
// if we have no outer loop, though, then we can use IDLE_LOOP1 only, and set
// TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
//
// a little confusing, but it helps save precious space in the inst_rom and sequencer rom
// and keeps the delays more accurate and reduces overhead
if (afi_clocks <= 0x100) {
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner));
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_IDLE_LOOP1);
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP1);
} else {
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner));
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer));
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_IDLE_LOOP2);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_IDLE_LOOP2);
// hack to get around compiler not being smart enough
if (afi_clocks <= 0x10000) {
// only need to run once
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP2);
} else {
do {
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP2);
} while (c_loop-- != 0);
}
}
}
// should always use constants as argument to ensure all computations are performed at compile time
static inline void delay_for_n_ns(const uint32_t nanoseconds)
{
delay_for_n_mem_clocks((1000 * nanoseconds) / (1000000 / AFI_CLK_FREQ) * AFI_RATE_RATIO);
}
// Special routine to recover memory device from illegal state after
// ck/dqs relationship is violated.
static inline void recover_mem_device_after_ck_dqs_violation(void)
{
// Current protocol doesn't require any special recovery
}
static void rw_mgr_rdimm_initialize(void)
{
}
static void rw_mgr_mem_initialize(void)
{
uint32_t r;
//USER The reset / cke part of initialization is broadcasted to all ranks
IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, RW_MGR_RANK_ALL);
// Here's how you load register for a loop
//USER Counters are located @ 0x800
//USER Jump address are located @ 0xC00
//USER For both, registers 0 to 3 are selected using bits 3 and 2, like in
//USER 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
// I know this ain't pretty, but Avalon bus throws away the 2 least significant bits
//USER start with memory RESET activated
//USER tINIT is typically 200us (but can be adjusted in the GUI)
//USER The total number of cycles required for this nested counter structure to
//USER complete is defined by:
//USER num_cycles = (CTR2 + 1) * [(CTR1 + 1) * (2 * (CTR0 + 1) + 1) + 1] + 1
//USER Load counters
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL));
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL));
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL));
//USER Load jump address
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_0_CKE_0);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_0_CKE_0);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_RESET_0_CKE_0);
//USER Execute count instruction
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_0_CKE_0);
//USER indicate that memory is stable
IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
//USER transition the RESET to high
//USER Wait for 500us
//USER num_cycles = (CTR2 + 1) * [(CTR1 + 1) * (2 * (CTR0 + 1) + 1) + 1] + 1
//USER Load counters
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL));
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL));
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL));
//USER Load jump address
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_1_CKE_0);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_1_CKE_0);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_RESET_1_CKE_0);
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_1_CKE_0);
//USER bring up clock enable
//USER tXRP < 250 ck cycles
delay_for_n_mem_clocks(250);
// USER initialize RDIMM buffer so MRS and RZQ Calibrate commands will be
// USER propagated to discrete memory devices
rw_mgr_rdimm_initialize();
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER Use Mirror-ed commands for odd ranks if address mirrorring is on
if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_DLL_RESET_MIRR);
} else {
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_DLL_RESET);
}
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_ZQCL);
//USER tZQinit = tDLLK = 512 ck cycles
delay_for_n_mem_clocks(512);
}
}
static void rw_mgr_mem_dll_lock_wait(void)
{
}
//USER At the end of calibration we have to program the user settings in, and
//USER hand off the memory to the user.
static void rw_mgr_mem_handoff(void)
{
uint32_t r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER precharge all banks ...
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
//USER load up MR settings specified by user
//USER Use Mirror-ed commands for odd ranks if address mirrorring is on
if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_USER_MIRR);
} else {
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
delay_for_n_mem_clocks(4);
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_USER);
}
//USER need to wait tMOD (12CK or 15ns) time before issuing other commands,
//USER but we will have plenty of NIOS cycles before actual handoff so its okay.
}
}
//USER performs a guaranteed read on the patterns we are going to use during a read test to ensure memory works
static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, uint32_t group,
uint32_t num_tries, t_btfld * bit_chk,
uint32_t all_ranks)
{
uint32_t r, vg;
t_btfld correct_mask_vg;
t_btfld tmp_bit_chk;
uint32_t rank_end =
all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
//USER Load up a constant bursts of read commands
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_GUARANTEED_READ);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_GUARANTEED_READ_CONT);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;; vg--) {
//USER reset the fifos to get pointers to known state
IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
tmp_bit_chk =
tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP,
((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + vg) << 2),
__RW_MGR_GUARANTEED_READ);
tmp_bit_chk =
tmp_bit_chk | (correct_mask_vg & ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
if (vg == 0) {
break;
}
}
*bit_chk &= tmp_bit_chk;
}
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2), __RW_MGR_CLEAR_DQS_ENABLE);
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
DPRINT(2, "test_load_patterns(%lu,ALL) => (%lu == %lu) => %lu", group, *bit_chk,
param->read_correct_mask, (long unsigned int)(*bit_chk == param->read_correct_mask));
return (*bit_chk == param->read_correct_mask);
}
static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks(uint32_t group,
uint32_t num_tries,
t_btfld * bit_chk)
{
if (rw_mgr_mem_calibrate_read_test_patterns(0, group, num_tries, bit_chk, 1)) {
return 1;
} else {
// case:139851 - if guaranteed read fails, we can retry using different dqs enable phases.
// It is possible that with the initial phase, dqs enable is asserted/deasserted too close
// to an dqs edge, truncating the read burst.
uint32_t p;
for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++) {
scc_mgr_set_dqs_en_phase_all_ranks(group, p);
if (rw_mgr_mem_calibrate_read_test_patterns
(0, group, num_tries, bit_chk, 1)) {
return 1;
}
}
return 0;
}
}
//USER load up the patterns we are going to use during a read test
static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, uint32_t all_ranks)
{
uint32_t r;
uint32_t rank_end =
all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
//USER Load up a constant bursts
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_GUARANTEED_WRITE_WAIT0);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_GUARANTEED_WRITE_WAIT1);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x04);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_GUARANTEED_WRITE_WAIT2);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x04);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_GUARANTEED_WRITE_WAIT3);
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_GUARANTEED_WRITE);
}
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}
static inline void rw_mgr_mem_calibrate_read_load_patterns_all_ranks(void)
{
rw_mgr_mem_calibrate_read_load_patterns(0, 1);
}
// pe checkout pattern for harden managers
//void pe_checkout_pattern (void)
//{
// // test RW manager
//
// // do some reads to check load buffer
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_READ_B2B_WAIT1);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_READ_B2B_WAIT2);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B);
//
// // clear error word
// IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
//
// IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_READ_B2B);
//
// uint32_t readdata;
//
// // read error word
// readdata = IORD_32DIRECT(BASE_RW_MGR, 0);
//
// // read DI buffer
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 0*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 1*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 2*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 3*4, 0);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_READ_B2B_WAIT1);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_READ_B2B_WAIT2);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B);
//
// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x0);
// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B);
//
// // clear error word
// IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
//
// // do read
// IOWR_32DIRECT (RW_MGR_LOOPBACK_MODE, 0, __RW_MGR_READ_B2B);
//
// // read error word
// readdata = IORD_32DIRECT(BASE_RW_MGR, 0);
//
// // error word should be 0x00
//
// // read DI buffer
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 0*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 1*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 2*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 3*4, 0);
//
// // clear error word
// IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
//
// // do dm read
// IOWR_32DIRECT (RW_MGR_LOOPBACK_MODE, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1);
//
// // read error word
// readdata = IORD_32DIRECT(BASE_RW_MGR, 0);
//
// // error word should be ff
//
// // read DI buffer
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 0*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 1*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 2*4, 0);
// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 3*4, 0);
//
// // exit loopback mode
// IOWR_32DIRECT (BASE_RW_MGR, 0, __RW_MGR_IDLE_LOOP2);
//
// // start of phy manager access
//
// readdata = IORD_32DIRECT (PHY_MGR_MAX_RLAT_WIDTH, 0);
// readdata = IORD_32DIRECT (PHY_MGR_MAX_AFI_WLAT_WIDTH, 0);
// readdata = IORD_32DIRECT (PHY_MGR_MAX_AFI_RLAT_WIDTH, 0);
// readdata = IORD_32DIRECT (PHY_MGR_CALIB_SKIP_STEPS, 0);
// readdata = IORD_32DIRECT (PHY_MGR_CALIB_VFIFO_OFFSET, 0);
// readdata = IORD_32DIRECT (PHY_MGR_CALIB_LFIFO_OFFSET, 0);
//
// // start of data manager test
//
// readdata = IORD_32DIRECT (DATA_MGR_DRAM_CFG , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_WL , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_ADD , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_RL , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_RFC , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_REFI , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_WR , 0);
// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_MRD , 0);
// readdata = IORD_32DIRECT (DATA_MGR_COL_WIDTH , 0);
// readdata = IORD_32DIRECT (DATA_MGR_ROW_WIDTH , 0);
// readdata = IORD_32DIRECT (DATA_MGR_BANK_WIDTH , 0);
// readdata = IORD_32DIRECT (DATA_MGR_CS_WIDTH , 0);
// readdata = IORD_32DIRECT (DATA_MGR_ITF_WIDTH , 0);
// readdata = IORD_32DIRECT (DATA_MGR_DVC_WIDTH , 0);
//
//}
//USER try a read and see if it returns correct data back. has dummy reads inserted into the mix
//USER used to align dqs enable. has more thorough checks than the regular read test.
static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
uint32_t num_tries, uint32_t all_correct,
t_btfld * bit_chk, uint32_t all_groups,
uint32_t all_ranks)
{
uint32_t r, vg;
t_btfld correct_mask_vg;
t_btfld tmp_bit_chk;
uint32_t rank_end =
all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_DELAY_SWEEPS)
&& ENABLE_SUPER_QUICK_CALIBRATION) || BFM_MODE;
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x10);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_READ_B2B_WAIT1);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x10);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_READ_B2B_WAIT2);
if (quick_read_mode) {
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x1); /* need at least two (1+1) reads to capture failures */
} else if (all_groups) {
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x06);
} else {
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x32);
}
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B);
if (all_groups) {
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0,
RW_MGR_MEM_IF_READ_DQS_WIDTH *
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1);
} else {
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x0);
}
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;; vg--) {
//USER reset the fifos to get pointers to known state
IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
tmp_bit_chk =
tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
IOWR_32DIRECT(all_groups ? RW_MGR_RUN_ALL_GROUPS : RW_MGR_RUN_SINGLE_GROUP,
((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + vg) << 2),
__RW_MGR_READ_B2B);
tmp_bit_chk =
tmp_bit_chk | (correct_mask_vg & ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
if (vg == 0) {
break;
}
}
*bit_chk &= tmp_bit_chk;
}
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2), __RW_MGR_CLEAR_DQS_ENABLE);
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
DPRINT(2, "read_test(%lu,ALL,%lu) => (%lu == %lu) => %lu", group, all_groups,
*bit_chk, param->read_correct_mask,
(long unsigned int)(*bit_chk == param->read_correct_mask));
return (*bit_chk == param->read_correct_mask);
} else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
DPRINT(2, "read_test(%lu,ONE,%lu) => (%lu != %lu) => %lu", group, all_groups,
*bit_chk, (long unsigned int)0, (long unsigned int)(*bit_chk != 0x00));
return (*bit_chk != 0x00);
}
}
static inline uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, uint32_t num_tries,
uint32_t all_correct,
t_btfld * bit_chk,
uint32_t all_groups)
{
return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, bit_chk, all_groups,
1);
}
static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t * v)
{
//USER fiddle with FIFO
if (HARD_PHY) {
IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HARD_PHY, 0, grp);
} else if (QUARTER_RATE_MODE && !HARD_VFIFO) {
if ((*v & 3) == 3) {
IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_QR, 0, grp);
} else if ((*v & 2) == 2) {
IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR_HR, 0, grp);
} else if ((*v & 1) == 1) {
IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HR, 0, grp);
} else {
IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
}
} else if (HARD_VFIFO) {
// Arria V & Cyclone V have a hard full-rate VFIFO that only has a single incr signal
IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
} else {
if (!HALF_RATE_MODE || (*v & 1) == 1) {
IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HR, 0, grp);
} else {
IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
}
}
(*v)++;
BFM_INC_VFIFO;
}
//Used in quick cal to properly loop through the duplicated VFIFOs in AV QDRII/RLDRAM
static inline void rw_mgr_incr_vfifo_all(uint32_t grp, uint32_t * v)
{
#if VFIFO_CONTROL_WIDTH_PER_DQS == 1
rw_mgr_incr_vfifo(grp, v);
#else
uint32_t i;
for (i = 0; i < VFIFO_CONTROL_WIDTH_PER_DQS; i++) {
rw_mgr_incr_vfifo(grp * VFIFO_CONTROL_WIDTH_PER_DQS + i, v);
if (i != 0) {
(*v)--;
}
}
#endif
}
static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t * v)
{
uint32_t i;
for (i = 0; i < VFIFO_SIZE - 1; i++) {
rw_mgr_incr_vfifo(grp, v);
}
}
//USER find a good dqs enable to use
#if NEWVERSION_DQSEN
// Navid's version
static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
{
uint32_t i, d, v, p;
uint32_t max_working_cnt;
uint32_t fail_cnt;
t_btfld bit_chk;
uint32_t dtaps_per_ptap;
uint32_t found_begin, found_end;
uint32_t work_bgn, work_mid, work_end, tmp_delay;
uint32_t test_status;
uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
fail_cnt = 0;
//USER **************************************************************
//USER * Step 0 : Determine number of delay taps for each phase tap *
dtaps_per_ptap = 0;
tmp_delay = 0;
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
dtaps_per_ptap++;
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
dtaps_per_ptap--;
tmp_delay = 0;
// VFIFO sweep
//USER *********************************************************
//USER * Step 1 : First push vfifo until we get a failing read *
for (v = 0; v < VFIFO_SIZE;) {
DPRINT(2, "find_dqs_en_phase: vfifo %lu", BFM_GBL_GET(vfifo_idx));
test_status =
rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0);
if (!test_status) {
fail_cnt++;
if (fail_cnt == 2) {
break;
}
}
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
if (v >= VFIFO_SIZE) {
//USER no failing read found!! Something must have gone wrong
DPRINT(2, "find_dqs_en_phase: vfifo failed");
return 0;
}
max_working_cnt = 0;
//USER ********************************************************
//USER * step 2: find first working phase, increment in ptaps *
found_begin = 0;
work_bgn = 0;
for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
work_bgn = tmp_delay;
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
for (i = 0; i < VFIFO_SIZE; i++) {
for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, work_bgn += IO_DELAY_PER_OPA_TAP) {
DPRINT(2, "find_dqs_en_phase: begin: vfifo=%lu ptap=%lu dtap=%lu",
BFM_GBL_GET(vfifo_idx), p, d);
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
test_status =
rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT,
&bit_chk, 0);
if (test_status) {
max_working_cnt = 1;
found_begin = 1;
break;
}
}
if (found_begin) {
break;
}
if (p > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
}
if (found_begin) {
break;
}
}
if (i >= VFIFO_SIZE) {
//USER cannot find working solution
DPRINT(2, "find_dqs_en_phase: no vfifo/ptap/dtap");
return 0;
}
work_end = work_bgn;
//USER If d is 0 then the working window covers a phase tap and we can follow the old procedure
//USER otherwise, we've found the beginning, and we need to increment the dtaps until we find the end
if (d == 0) {
//USER ********************************************************************
//USER * step 3a: if we have room, back off by one and increment in dtaps *
COV(EN_PHASE_PTAP_OVERLAP);
//USER Special case code for backing up a phase
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
}
tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
found_begin = 0;
for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < work_bgn;
d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
DPRINT(2, "find_dqs_en_phase: begin-2: vfifo=%lu ptap=%lu dtap=%lu",
BFM_GBL_GET(vfifo_idx), p, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_begin = 1;
work_bgn = tmp_delay;
break;
}
}
//USER We have found a working dtap before the ptap found above
if (found_begin == 1) {
max_working_cnt++;
}
//USER Restore VFIFO to old state before we decremented it (if needed)
p = p + 1;
if (p > IO_DQS_EN_PHASE_MAX) {
p = 0;
rw_mgr_incr_vfifo(grp, &v);
}
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
//USER ***********************************************************************************
//USER * step 4a: go forward from working phase to non working phase, increment in ptaps *
p = p + 1;
work_end += IO_DELAY_PER_OPA_TAP;
if (p > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
p = 0;
rw_mgr_incr_vfifo(grp, &v);
}
found_end = 0;
for (; i < VFIFO_SIZE + 1; i++) {
for (; p <= IO_DQS_EN_PHASE_MAX; p++, work_end += IO_DELAY_PER_OPA_TAP) {
DPRINT(2, "find_dqs_en_phase: end: vfifo=%lu ptap=%lu dtap=%lu",
BFM_GBL_GET(vfifo_idx), p, (long unsigned int)0);
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_end = 1;
break;
} else {
max_working_cnt++;
}
}
if (found_end) {
break;
}
if (p > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
p = 0;
}
}
if (i >= VFIFO_SIZE + 1) {
//USER cannot see edge of failing read
DPRINT(2, "find_dqs_en_phase: end: failed");
return 0;
}
//USER *********************************************************
//USER * step 5a: back off one from last, increment in dtaps *
//USER Special case code for backing up a phase
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
}
work_end -= IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
//USER * The actual increment of dtaps is done outside of the if/else loop to share code
d = 0;
DPRINT(2, "find_dqs_en_phase: found end v/p: vfifo=%lu ptap=%lu",
BFM_GBL_GET(vfifo_idx), p);
} else {
//USER ********************************************************************
//USER * step 3-5b: Find the right edge of the window using delay taps *
COV(EN_PHASE_PTAP_NO_OVERLAP);
DPRINT(2, "find_dqs_en_phase: begin found: vfifo=%lu ptap=%lu dtap=%lu begin=%lu",
BFM_GBL_GET(vfifo_idx), p, d, work_bgn);
BFM_GBL_SET(dqs_enable_left_edge[grp].v, BFM_GBL_GET(vfifo_idx));
BFM_GBL_SET(dqs_enable_left_edge[grp].p, p);
BFM_GBL_SET(dqs_enable_left_edge[grp].d, d);
BFM_GBL_SET(dqs_enable_left_edge[grp].ps, work_bgn);
work_end = work_bgn;
//USER * The actual increment of dtaps is done outside of the if/else loop to share code
//USER Only here to counterbalance a subtract later on which is not needed if this branch
//USER of the algorithm is taken
max_working_cnt++;
}
//USER The dtap increment to find the failing edge is done here
for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
DPRINT(2, "find_dqs_en_phase: end-2: dtap=%lu", d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
}
//USER Go back to working dtap
if (d != 0) {
work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
DPRINT(2, "find_dqs_en_phase: found end v/p/d: vfifo=%lu ptap=%lu dtap=%lu end=%lu",
BFM_GBL_GET(vfifo_idx), p, d - 1, work_end);
BFM_GBL_SET(dqs_enable_right_edge[grp].v, BFM_GBL_GET(vfifo_idx));
BFM_GBL_SET(dqs_enable_right_edge[grp].p, p);
BFM_GBL_SET(dqs_enable_right_edge[grp].d, d - 1);
BFM_GBL_SET(dqs_enable_right_edge[grp].ps, work_end);
if (work_end >= work_bgn) {
//USER we have a working range
} else {
//USER nil range
DPRINT(2, "find_dqs_en_phase: end-2: failed");
return 0;
}
DPRINT(2, "find_dqs_en_phase: found range [%lu,%lu]", work_bgn, work_end);
// ***************************************************************
//USER * We need to calculate the number of dtaps that equal a ptap
//USER * To do that we'll back up a ptap and re-find the edge of the
//USER * window using dtaps
DPRINT(2, "find_dqs_en_phase: calculate dtaps_per_ptap for tracking");
//USER Special case code for backing up a phase
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
DPRINT(2, "find_dqs_en_phase: backed up cycle/phase: v=%lu p=%lu",
BFM_GBL_GET(vfifo_idx), p);
} else {
p = p - 1;
DPRINT(2, "find_dqs_en_phase: backed up phase only: v=%lu p=%lu",
BFM_GBL_GET(vfifo_idx), p);
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
//USER Increase dtap until we first see a passing read (in case the window is smaller than a ptap),
//USER and then a failing read to mark the edge of the window again
//USER Find a passing read
DPRINT(2, "find_dqs_en_phase: find passing read");
found_passing_read = 0;
found_failing_read = 0;
initial_failing_dtap = d;
for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
DPRINT(2, "find_dqs_en_phase: testing read d=%lu", d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_passing_read = 1;
break;
}
}
if (found_passing_read) {
//USER Find a failing read
DPRINT(2, "find_dqs_en_phase: find failing read");
for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
DPRINT(2, "find_dqs_en_phase: testing read d=%lu", d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_failing_read = 1;
break;
}
}
} else {
DPRINT(1,
"find_dqs_en_phase: failed to calculate dtaps per ptap. Fall back on static value");
}
//USER The dynamically calculated dtaps_per_ptap is only valid if we found a passing/failing read
//USER If we didn't, it means d hit the max (IO_DQS_EN_DELAY_MAX).
//USER Otherwise, dtaps_per_ptap retains its statically calculated value.
if (found_passing_read && found_failing_read) {
dtaps_per_ptap = d - initial_failing_dtap;
}
IOWR_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
DPRINT(2, "find_dqs_en_phase: dtaps_per_ptap=%lu - %lu = %lu", d, initial_failing_dtap,
dtaps_per_ptap);
//USER ********************************************
//USER * step 6: Find the centre of the window *
work_mid = (work_bgn + work_end) / 2;
tmp_delay = 0;
DPRINT(2, "work_bgn=%ld work_end=%ld work_mid=%ld", work_bgn, work_end, work_mid);
//USER Get the middle delay to be less than a VFIFO delay
for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, tmp_delay += IO_DELAY_PER_OPA_TAP) ;
DPRINT(2, "vfifo ptap delay %ld", tmp_delay);
while (work_mid > tmp_delay)
work_mid -= tmp_delay;
DPRINT(2, "new work_mid %ld", work_mid);
tmp_delay = 0;
for (p = 0; p <= IO_DQS_EN_PHASE_MAX && tmp_delay < work_mid;
p++, tmp_delay += IO_DELAY_PER_OPA_TAP) ;
tmp_delay -= IO_DELAY_PER_OPA_TAP;
DPRINT(2, "new p %ld, tmp_delay=%ld", p - 1, tmp_delay);
for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < work_mid;
d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) ;
DPRINT(2, "new d %ld, tmp_delay=%ld", d, tmp_delay);
scc_mgr_set_dqs_en_phase_all_ranks(grp, p - 1);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
//USER push vfifo until we can successfully calibrate. We can do this because
//USER the largest possible margin in 1 VFIFO cycle
for (i = 0; i < VFIFO_SIZE; i++) {
DPRINT(2, "find_dqs_en_phase: center: vfifo=%lu", BFM_GBL_GET(vfifo_idx));
if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
if (i >= VFIFO_SIZE) {
DPRINT(2, "find_dqs_en_phase: center: failed");
return 0;
}
DPRINT(2, "find_dqs_en_phase: center found: vfifo=%li ptap=%lu dtap=%lu",
BFM_GBL_GET(vfifo_idx), p - 1, d);
BFM_GBL_SET(dqs_enable_mid[grp].v, BFM_GBL_GET(vfifo_idx));
BFM_GBL_SET(dqs_enable_mid[grp].p, p - 1);
BFM_GBL_SET(dqs_enable_mid[grp].d, d);
BFM_GBL_SET(dqs_enable_mid[grp].ps, work_mid);
return 1;
}
#if 0
// Ryan's algorithm
static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
{
uint32_t i, d, v, p;
uint32_t min_working_p, max_working_p, min_working_d, max_working_d, max_working_cnt;
uint32_t fail_cnt;
t_btfld bit_chk;
uint32_t dtaps_per_ptap;
uint32_t found_begin, found_end;
uint32_t tmp_delay;
TRACE_FUNC("%lu", grp);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
fail_cnt = 0;
//USER **************************************************************
//USER * Step 0 : Determine number of delay taps for each phase tap *
dtaps_per_ptap = 0;
tmp_delay = 0;
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
dtaps_per_ptap++;
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
dtaps_per_ptap--;
//USER *********************************************************
//USER * Step 1 : First push vfifo until we get a failing read *
for (v = 0; v < VFIFO_SIZE;) {
if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
fail_cnt++;
if (fail_cnt == 2) {
break;
}
}
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
if (i >= VFIFO_SIZE) {
//USER no failing read found!! Something must have gone wrong
return 0;
}
max_working_cnt = 0;
min_working_p = 0;
//USER ********************************************************
//USER * step 2: find first working phase, increment in ptaps *
found_begin = 0;
for (d = 0; d <= dtaps_per_ptap; d++) {
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
for (i = 0; i < VFIFO_SIZE; i++) {
for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++) {
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
if (rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
max_working_cnt = 1;
found_begin = 1;
break;
}
}
if (found_begin) {
break;
}
if (p > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
}
if (found_begin) {
break;
}
}
if (i >= VFIFO_SIZE) {
//USER cannot find working solution
return 0;
}
min_working_p = p;
//USER If d is 0 then the working window covers a phase tap and we can follow the old procedure
//USER otherwise, we've found the beginning, and we need to increment the dtaps until we find the end
if (d == 0) {
//USER ********************************************************************
//USER * step 3a: if we have room, back off by one and increment in dtaps *
min_working_d = 0;
//USER Special case code for backing up a phase
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
found_begin = 0;
for (d = 0; d <= dtaps_per_ptap; d++) {
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_begin = 1;
min_working_d = d;
break;
}
}
//USER We have found a working dtap before the ptap found above
if (found_begin == 1) {
min_working_p = p;
max_working_cnt++;
}
//USER Restore VFIFO to old state before we decremented it
p = p + 1;
if (p > IO_DQS_EN_PHASE_MAX) {
p = 0;
rw_mgr_incr_vfifo(grp, &v);
}
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
//USER ***********************************************************************************
//USER * step 4a: go forward from working phase to non working phase, increment in ptaps *
p = p + 1;
if (p > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
p = 0;
rw_mgr_incr_vfifo(grp, &v);
}
found_end = 0;
for (; i < VFIFO_SIZE + 1; i++) {
for (; p <= IO_DQS_EN_PHASE_MAX; p++) {
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_end = 1;
break;
} else {
max_working_cnt++;
}
}
if (found_end) {
break;
}
if (p > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
p = 0;
}
}
if (i >= VFIFO_SIZE + 1) {
//USER cannot see edge of failing read
return 0;
}
//USER *********************************************************
//USER * step 5a: back off one from last, increment in dtaps *
max_working_d = 0;
//USER Special case code for backing up a phase
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
}
max_working_p = p;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
for (d = 0; d <= IO_DQS_EN_DELAY_MAX; d++) {
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
}
//USER Go back to working dtap
if (d != 0) {
max_working_d = d - 1;
}
} else {
//USER ********************************************************************
//USER * step 3-5b: Find the right edge of the window using delay taps *
max_working_p = min_working_p;
min_working_d = d;
for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
}
//USER Go back to working dtap
if (d != 0) {
max_working_d = d - 1;
}
//USER Only here to counterbalance a subtract later on which is not needed if this branch
//USER of the algorithm is taken
max_working_cnt++;
}
//USER ********************************************
//USER * step 6: Find the centre of the window *
//USER If the number of working phases is even we will step back a phase and find the
//USER edge with a larger delay chain tap
if ((max_working_cnt & 1) == 0) {
p = min_working_p + (max_working_cnt - 1) / 2;
//USER Special case code for backing up a phase
if (max_working_p == 0) {
max_working_p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
max_working_p = max_working_p - 1;
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, max_working_p);
//USER Code to determine at which dtap we should start searching again for a failure
//USER If we've moved back such that the max and min p are the same, we should start searching
//USER from where the window actually exists
if (max_working_p == min_working_p) {
d = min_working_d;
} else {
d = max_working_d;
}
for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
}
//USER Go back to working dtap
if (d != 0) {
max_working_d = d - 1;
}
} else {
p = min_working_p + (max_working_cnt) / 2;
}
while (p > IO_DQS_EN_PHASE_MAX) {
p -= (IO_DQS_EN_PHASE_MAX + 1);
}
d = (min_working_d + max_working_d) / 2;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
//USER push vfifo until we can successfully calibrate
for (i = 0; i < VFIFO_SIZE; i++) {
if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
if (i >= VFIFO_SIZE) {
return 0;
}
return 1;
}
#endif
#else
// Val's original version
static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
{
uint32_t i, j, v, d;
uint32_t min_working_d, max_working_cnt;
uint32_t fail_cnt;
t_btfld bit_chk;
uint32_t delay_per_ptap_mid;
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
fail_cnt = 0;
//USER first push vfifo until we get a failing read
v = 0;
for (i = 0; i < VFIFO_SIZE; i++) {
if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
fail_cnt++;
if (fail_cnt == 2) {
break;
}
}
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
if (v >= VFIFO_SIZE) {
//USER no failing read found!! Something must have gone wrong
return 0;
}
max_working_cnt = 0;
min_working_d = 0;
for (i = 0; i < VFIFO_SIZE + 1; i++) {
for (d = 0; d <= IO_DQS_EN_PHASE_MAX; d++) {
scc_mgr_set_dqs_en_phase_all_ranks(grp, d);
rw_mgr_mem_calibrate_read_test_all_ranks(grp, NUM_READ_PB_TESTS,
PASS_ONE_BIT, &bit_chk, 0);
if (bit_chk) {
//USER passing read
if (max_working_cnt == 0) {
min_working_d = d;
}
max_working_cnt++;
} else {
if (max_working_cnt > 0) {
//USER already have one working value
break;
}
}
}
if (d > IO_DQS_EN_PHASE_MAX) {
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
} else {
//USER found working solution!
d = min_working_d + (max_working_cnt - 1) / 2;
while (d > IO_DQS_EN_PHASE_MAX) {
d -= (IO_DQS_EN_PHASE_MAX + 1);
}
break;
}
}
if (i >= VFIFO_SIZE + 1) {
//USER cannot find working solution or cannot see edge of failing read
return 0;
}
//USER in the case the number of working steps is even, use 50ps taps to further center the window
if ((max_working_cnt & 1) == 0) {
delay_per_ptap_mid = IO_DELAY_PER_OPA_TAP / 2;
//USER increment in 50ps taps until we reach the required amount
for (i = 0, j = 0; i <= IO_DQS_EN_DELAY_MAX && j < delay_per_ptap_mid;
i++, j += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) ;
scc_mgr_set_dqs_en_delay_all_ranks(grp, i - 1);
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, d);
//USER push vfifo until we can successfully calibrate
for (i = 0; i < VFIFO_SIZE; i++) {
if (rw_mgr_mem_calibrate_read_test_all_ranks
(grp, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
//USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
if (i >= VFIFO_SIZE) {
return 0;
}
return 1;
}
#endif
// Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different dq_in_delay values
static inline uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay(uint32_t
write_group,
uint32_t
read_group,
uint32_t
test_bgn)
{
uint32_t found;
uint32_t i;
uint32_t p;
uint32_t d;
uint32_t r;
const uint32_t delay_step = IO_IO_IN_DELAY_MAX / (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
// try different dq_in_delays since the dq path is shorter than dqs
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
select_shadow_regs_for_update(r, write_group, 1);
for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
i++, p++, d += delay_step) {
DPRINT(1,
"rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay: g=%lu/%lu r=%lu, i=%lu p=%lu d=%lu",
write_group, read_group, r, i, p, d);
scc_mgr_set_dq_in_delay(write_group, p, d);
scc_mgr_load_dq(p);
}
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
DPRINT(1,
"rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay: g=%lu/%lu found=%lu; Reseting delay chain to zero",
write_group, read_group, found);
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
select_shadow_regs_for_update(r, write_group, 1);
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
scc_mgr_set_dq_in_delay(write_group, p, 0);
scc_mgr_load_dq(p);
}
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
return found;
}
//USER per-bit deskew DQ and center
#if NEWVERSION_RDDESKEW
static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, uint32_t write_group,
uint32_t read_group, uint32_t test_bgn,
uint32_t use_read_test, uint32_t update_fom)
{
uint32_t i, p, d, min_index;
//USER Store these as signed since there are comparisons with signed numbers
t_btfld bit_chk;
t_btfld sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
int32_t mid;
int32_t orig_mid_min, mid_min;
int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, final_dqs_en;
int32_t dq_margin, dqs_margin;
uint32_t stop;
start_dqs = READ_SCC_DQS_IN_DELAY(read_group);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
start_dqs_en = READ_SCC_DQS_EN_DELAY(read_group);
}
select_curr_shadow_reg_using_rank(rank_bgn);
//USER per-bit deskew
//USER set the left and right edge of each bit to an illegal value
//USER use (IO_IO_IN_DELAY_MAX + 1) as an illegal value
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
}
//USER Search for the left edge of the window for each bit
for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
//USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit
if (use_read_test) {
stop =
!rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, NUM_READ_PB_TESTS,
PASS_ONE_BIT, &bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk =
bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group -
(write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
DPRINT(2, "vfifo_center(left): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu",
d, sticky_bit_chk, param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
//USER Remember a passing test as the left_edge
left_edge[i] = d;
} else {
//USER If a left edge has not been seen yet, then a future passing test will mark this edge as the right edge
if (left_edge[i] == IO_IO_IN_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
DPRINT(2,
"vfifo_center[l,d=%lu]: bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld",
d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
//USER Reset DQ delay chains to 0
scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
DPRINT(2, "vfifo_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i],
i, right_edge[i]);
//USER Check for cases where we haven't found the left edge, which makes our assignment of the the
//USER right edge invalid. Reset it to the illegal value.
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1)
&& (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
DPRINT(2, "vfifo_center: reset right_edge[%lu]: %ld", i, right_edge[i]);
}
//USER Reset sticky bit (except for bits where we have seen both the left and right edge)
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1)
&& (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
sticky_bit_chk = sticky_bit_chk | 1;
}
if (i == 0) {
break;
}
}
//USER Search for the right edge of the window for each bit
for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
uint32_t delay = d + start_dqs_en;
if (delay > IO_DQS_EN_DELAY_MAX) {
delay = IO_DQS_EN_DELAY_MAX;
}
scc_mgr_set_dqs_en_delay(read_group, delay);
}
scc_mgr_load_dqs(read_group);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
//USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit
if (use_read_test) {
stop =
!rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, NUM_READ_PB_TESTS,
PASS_ONE_BIT, &bit_chk, 0, 0);
} else {
rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT,
&bit_chk, 0);
bit_chk =
bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
(read_group -
(write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
DPRINT(2, "vfifo_center(right): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu",
d, sticky_bit_chk, param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
//USER Remember a passing test as the right_edge
right_edge[i] = d;
} else {
if (d != 0) {
//USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
} else {
//USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1
if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1
&& left_edge[i] != IO_IO_IN_DELAY_MAX + 1) {
right_edge[i] = -1;
}
//USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
else if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
}
}
DPRINT(2,
"vfifo_center[r,d=%lu]: bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld",
d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
// Store all observed margins
//USER Check that all bits have a window
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
DPRINT(2, "vfifo_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i],
i, right_edge[i]);
BFM_GBL_SET(dq_read_left_edge[read_group][i], left_edge[i]);
BFM_GBL_SET(dq_read_right_edge[read_group][i], right_edge[i]);
if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1)
|| (right_edge[i] == IO_IO_IN_DELAY_MAX + 1)) {
//USER Restore delay chain settings before letting the loop in
//USER rw_mgr_mem_calibrate_vfifo to retry different dqs/ck relationships
scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
scc_mgr_set_dqs_en_delay(read_group, start_dqs_en);
}
scc_mgr_load_dqs(read_group);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
DPRINT(1, "vfifo_center: failed to find edge [%lu]: %ld %ld", i,
left_edge[i], right_edge[i]);
if (use_read_test) {
set_failing_group_stage(read_group * RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO, CAL_SUBSTAGE_VFIFO_CENTER);
} else {
set_failing_group_stage(read_group * RW_MGR_MEM_DQ_PER_READ_DQS + i,
CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
}
return 0;
}
}
//USER Find middle of window for each DQ bit
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < mid_min) {
mid_min = mid;
min_index = i;
}
}
//USER -mid_min/2 represents the amount that we need to move DQS. If mid_min is odd and positive we'll need to add one to
//USER make sure the rounding in further calculations is correct (always bias to the right), so just add 1 for all positive values
if (mid_min > 0) {
mid_min++;
}
mid_min = mid_min / 2;
DPRINT(1, "vfifo_center: mid_min=%ld (index=%lu)", mid_min, min_index);
//USER Determine the amount we can change DQS (which is -mid_min)
orig_mid_min = mid_min;
new_dqs = start_dqs - mid_min;
if (new_dqs > IO_DQS_IN_DELAY_MAX) {
new_dqs = IO_DQS_IN_DELAY_MAX;
} else if (new_dqs < 0) {
new_dqs = 0;
}
mid_min = start_dqs - new_dqs;
DPRINT(1, "vfifo_center: new mid_min=%ld new_dqs=%ld", mid_min, new_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) {
mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
} else if (start_dqs_en - mid_min < 0) {
mid_min += start_dqs_en - mid_min;
}
}
new_dqs = start_dqs - mid_min;
DPRINT(1, "vfifo_center: start_dqs=%ld start_dqs_en=%ld new_dqs=%ld mid_min=%ld",
start_dqs, IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, new_dqs, mid_min);
//USER Initialize data for export structures
dqs_margin = IO_IO_IN_DELAY_MAX + 1;
dq_margin = IO_IO_IN_DELAY_MAX + 1;
//USER add delay to bring centre of all DQ windows to the same "level"
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
//USER Use values before divide by 2 to reduce round off error
shift_dq =
(left_edge[i] - right_edge[i] -
(left_edge[min_index] - right_edge[min_index])) / 2 + (orig_mid_min - mid_min);
DPRINT(2, "vfifo_center: before: shift_dq[%lu]=%ld", i, shift_dq);
if (shift_dq + (int32_t) READ_SCC_DQ_IN_DELAY(p) > (int32_t) IO_IO_IN_DELAY_MAX) {
shift_dq = (int32_t) IO_IO_IN_DELAY_MAX - READ_SCC_DQ_IN_DELAY(i);
} else if (shift_dq + (int32_t) READ_SCC_DQ_IN_DELAY(p) < 0) {
shift_dq = -(int32_t) READ_SCC_DQ_IN_DELAY(p);
}
DPRINT(2, "vfifo_center: after: shift_dq[%lu]=%ld", i, shift_dq);
final_dq[i] = READ_SCC_DQ_IN_DELAY(p) + shift_dq;
scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]);
scc_mgr_load_dq(p);
DPRINT(2, "vfifo_center: margin[%lu]=[%ld,%ld]", i,
left_edge[i] - shift_dq + (-mid_min), right_edge[i] + shift_dq - (-mid_min));
//USER To determine values for export structures
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) {
dq_margin = left_edge[i] - shift_dq + (-mid_min);
}
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) {
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
}
final_dqs = new_dqs;
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
final_dqs_en = start_dqs_en - mid_min;
}
//USER Move DQS-en
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
scc_mgr_load_dqs(read_group);
}
//USER Move DQS
scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
scc_mgr_load_dqs(read_group);
if (update_fom) {
//USER Export values
gbl->fom_in +=
(dq_margin +
dqs_margin) / (RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
}
DPRINT(2, "vfifo_center: dq_margin=%ld dqs_margin=%ld", dq_margin, dqs_margin);
//USER Do not remove this line as it makes sure all of our decisions have been applied
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
return (dq_margin >= 0) && (dqs_margin >= 0);
}
#else
static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, uint32_t grp,
uint32_t test_bgn, uint32_t use_read_test)
{
uint32_t i, p, d;
uint32_t mid;
t_btfld bit_chk;
uint32_t max_working_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
uint32_t dq_margin, dqs_margin;
uint32_t start_dqs;
//USER per-bit deskew.
//USER start of the per-bit sweep with the minimum working delay setting for
//USER all bits.
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
max_working_dq[i] = 0;
}
for (d = 1; d <= IO_IO_IN_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
if (!rw_mgr_mem_calibrate_read_test
(rank_bgn, grp, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0, 0)) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
max_working_dq[i] = d;
}
bit_chk = bit_chk >> 1;
}
}
}
//USER determine minimum working value for DQ
dq_margin = IO_IO_IN_DELAY_MAX;
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (max_working_dq[i] < dq_margin) {
dq_margin = max_working_dq[i];
}
}
//USER add delay to bring all DQ windows to the same "level"
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
if (max_working_dq[i] > dq_margin) {
scc_mgr_set_dq_in_delay(write_group, i, max_working_dq[i] - dq_margin);
} else {
scc_mgr_set_dq_in_delay(write_group, i, 0);
}
scc_mgr_load_dq(p, p);
}
//USER sweep DQS window, may potentially have more window due to per-bit-deskew that was done
//USER in the previous step.
start_dqs = READ_SCC_DQS_IN_DELAY(grp);
for (d = start_dqs + 1; d <= IO_DQS_IN_DELAY_MAX; d++) {
scc_mgr_set_dqs_bus_in_delay(grp, d);
scc_mgr_load_dqs(grp);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
if (!rw_mgr_mem_calibrate_read_test
(rank_bgn, grp, NUM_READ_TESTS, PASS_ALL_BITS, &bit_chk, 0, 0)) {
break;
}
}
scc_mgr_set_dqs_bus_in_delay(grp, start_dqs);
//USER margin on the DQS pin
dqs_margin = d - start_dqs - 1;
//USER find mid point, +1 so that we don't go crazy pushing DQ
mid = (dq_margin + dqs_margin + 1) / 2;
gbl->fom_in += dq_margin + dqs_margin;
// TCLRPT_SET(debug_summary_report->fom_in, debug_summary_report->fom_in + (dq_margin + dqs_margin));
// TCLRPT_SET(debug_cal_report->cal_status_per_group[grp].fom_in, (dq_margin + dqs_margin));
//USER center DQS ... if the headroom is setup properly we shouldn't need to
if (dqs_margin > mid) {
scc_mgr_set_dqs_bus_in_delay(grp, READ_SCC_DQS_IN_DELAY(grp) + dqs_margin - mid);
if (DDRX) {
uint32_t delay = READ_SCC_DQS_EN_DELAY(grp) + dqs_margin - mid;
if (delay > IO_DQS_EN_DELAY_MAX) {
delay = IO_DQS_EN_DELAY_MAX;
}
scc_mgr_set_dqs_en_delay(grp, delay);
}
}
scc_mgr_load_dqs(grp);
//USER center DQ
if (dq_margin > mid) {
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
scc_mgr_set_dq_in_delay(write_group, i,
READ_SCC_DQ_IN_DELAY(i) + dq_margin - mid);
scc_mgr_load_dq(p, p);
}
dqs_margin += dq_margin - mid;
dq_margin -= dq_margin - mid;
}
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
return (dq_margin + dqs_margin) > 0;
}
#endif
//USER calibrate the read valid prediction FIFO.
//USER
//USER - read valid prediction will consist of finding a good DQS enable phase, DQS enable delay, DQS input phase, and DQS input delay.
//USER - we also do a per-bit deskew on the DQ lines.
#if NEWVERSION_GW
//USER VFIFO Calibration -- Full Calibration
static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, uint32_t test_bgn)
{
uint32_t p, d, rank_bgn, sr;
uint32_t dtaps_per_ptap;
uint32_t tmp_delay;
t_btfld bit_chk;
uint32_t grp_calibrated;
uint32_t write_group, write_test_bgn;
uint32_t failed_substage;
uint32_t dqs_in_dtaps, orig_start_dqs;
//USER update info for sims
reg_file_set_stage(CAL_STAGE_VFIFO);
if (DDRX) {
write_group = read_group;
write_test_bgn = test_bgn;
} else {
write_group =
read_group / (RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
write_test_bgn = read_group * RW_MGR_MEM_DQ_PER_READ_DQS;
}
// USER Determine number of delay taps for each phase tap
dtaps_per_ptap = 0;
tmp_delay = 0;
if (!QDRII) {
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
dtaps_per_ptap++;
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
dtaps_per_ptap--;
tmp_delay = 0;
}
//USER update info for sims
reg_file_set_group(read_group);
grp_calibrated = 0;
reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
if (DDRX || RLDRAMX) {
// In RLDRAMX we may be messing the delay of pins in the same write group but outside of
// the current read group, but that's ok because we haven't calibrated the output side yet.
if (d > 0) {
scc_mgr_apply_group_all_out_delay_add_all_ranks(write_group,
write_test_bgn, d);
}
}
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; p++) {
//USER set a particular dqdqs phase
if (DDRX) {
scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
}
//USER Previous iteration may have failed as a result of ck/dqs or ck/dk violation,
//USER in which case the device may require special recovery.
if (DDRX || RLDRAMX) {
if (d != 0 || p != 0) {
recover_mem_device_after_ck_dqs_violation();
}
}
DPRINT(1, "calibrate_vfifo: g=%lu p=%lu d=%lu", read_group, p, d);
BFM_GBL_SET(gwrite_pos[read_group].p, p);
BFM_GBL_SET(gwrite_pos[read_group].d, d);
//USER Load up the patterns used by read calibration using current DQDQS phase
rw_mgr_mem_calibrate_read_load_patterns_all_ranks();
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
(read_group, 1, &bit_chk)) {
DPRINT(1, "Guaranteed read test failed: g=%lu p=%lu d=%lu",
read_group, p, d);
break;
}
}
// Loop over different DQS in delay chains for the purpose of DQS Enable calibration finding one bit working
orig_start_dqs = READ_SCC_DQS_IN_DELAY(read_group);
for (dqs_in_dtaps = orig_start_dqs;
dqs_in_dtaps <= IO_DQS_IN_DELAY_MAX && grp_calibrated == 0;
dqs_in_dtaps++) {
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
if (!param->skip_shadow_regs[sr]) {
//USER Select shadow register set
select_shadow_regs_for_update(rank_bgn, read_group,
1);
WRITE_SCC_DQS_IN_DELAY(read_group, dqs_in_dtaps);
scc_mgr_load_dqs(read_group);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
}
// case:56390
grp_calibrated = 1;
if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
(write_group, read_group, test_bgn)) {
// USER Read per-bit deskew can be done on a per shadow register basis
for (rank_bgn = 0, sr = 0;
rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
//USER Determine if this set of ranks should be skipped entirely
if (!param->skip_shadow_regs[sr]) {
//USER Select shadow register set
select_shadow_regs_for_update(rank_bgn,
read_group,
1);
// Before doing read deskew, set DQS in back to the reserve value
WRITE_SCC_DQS_IN_DELAY(read_group,
orig_start_dqs);
scc_mgr_load_dqs(read_group);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
// If doing read after write calibration, do not update FOM now - do it then
if (!rw_mgr_mem_calibrate_vfifo_center
(rank_bgn, write_group, read_group,
test_bgn, 1, 0)) {
grp_calibrated = 0;
failed_substage =
CAL_SUBSTAGE_VFIFO_CENTER;
}
}
}
} else {
grp_calibrated = 0;
failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
}
}
}
}
if (grp_calibrated == 0) {
set_failing_group_stage(write_group, CAL_STAGE_VFIFO, failed_substage);
return 0;
}
//USER Reset the delay chains back to zero if they have moved > 1 (check for > 1 because loop will increase d even when pass in first case)
if (DDRX || RLDRAMII) {
if (d > 2) {
scc_mgr_zero_group(write_group, write_test_bgn, 1);
}
}
return 1;
}
#else
//USER VFIFO Calibration -- Full Calibration
static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t g, uint32_t test_bgn)
{
uint32_t p, rank_bgn, sr;
uint32_t grp_calibrated;
uint32_t failed_substage;
//USER update info for sims
reg_file_set_stage(CAL_STAGE_VFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
//USER update info for sims
reg_file_set_group(g);
grp_calibrated = 0;
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; p++) {
//USER set a particular dqdqs phase
if (DDRX) {
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
}
//USER Load up the patterns used by read calibration using current DQDQS phase
rw_mgr_mem_calibrate_read_load_patterns_all_ranks();
if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
(read_group, 1, &bit_chk)) {
break;
}
}
grp_calibrated = 1;
if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay(g, g, test_bgn)) {
// USER Read per-bit deskew can be done on a per shadow register basis
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
//USER Determine if this set of ranks should be skipped entirely
if (!param->skip_shadow_regs[sr]) {
//USER Select shadow register set
select_shadow_regs_for_update(rank_bgn, read_group, 1);
if (!rw_mgr_mem_calibrate_vfifo_center
(rank_bgn, g, test_bgn, 1)) {
grp_calibrated = 0;
failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
}
}
}
} else {
grp_calibrated = 0;
failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
}
}
if (grp_calibrated == 0) {
set_failing_group_stage(g, CAL_STAGE_VFIFO, failed_substage);
return 0;
}
return 1;
}
#endif
//USER VFIFO Calibration -- Read Deskew Calibration after write deskew
static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, uint32_t test_bgn)
{
uint32_t rank_bgn, sr;
uint32_t grp_calibrated;
uint32_t write_group;
//USER update info for sims
reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
if (DDRX) {
write_group = read_group;
} else {
write_group =
read_group / (RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
}
//USER update info for sims
reg_file_set_group(read_group);
grp_calibrated = 1;
// USER Read per-bit deskew can be done on a per shadow register basis
for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
//USER Determine if this set of ranks should be skipped entirely
if (!param->skip_shadow_regs[sr]) {
//USER Select shadow register set
select_shadow_regs_for_update(rank_bgn, read_group, 1);
// This is the last calibration round, update FOM here
if (!rw_mgr_mem_calibrate_vfifo_center
(rank_bgn, write_group, read_group, test_bgn, 0, 1)) {
grp_calibrated = 0;
}
}
}
if (grp_calibrated == 0) {
set_failing_group_stage(write_group, CAL_STAGE_VFIFO_AFTER_WRITES,
CAL_SUBSTAGE_VFIFO_CENTER);
return 0;
}
return 1;
}
//USER Calibrate LFIFO to find smallest read latency
static uint32_t rw_mgr_mem_calibrate_lfifo(void)
{
uint32_t found_one;
t_btfld bit_chk;
//USER update info for sims
reg_file_set_stage(CAL_STAGE_LFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
//USER Load up the patterns used by read calibration for all ranks
rw_mgr_mem_calibrate_read_load_patterns_all_ranks();
found_one = 0;
do {
IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
DPRINT(2, "lfifo: read_lat=%lu", gbl->curr_read_lat);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
(0, NUM_READ_TESTS, PASS_ALL_BITS, &bit_chk, 1)) {
break;
}
found_one = 1;
//USER reduce read latency and see if things are working
//USER correctly
gbl->curr_read_lat--;
} while (gbl->curr_read_lat > 0);
//USER reset the fifos to get pointers to known state
IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
if (found_one) {
//USER add a fudge factor to the read latency that was determined
gbl->curr_read_lat += 2;
IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
DPRINT(2, "lfifo: success: using read_lat=%lu", gbl->curr_read_lat);
return 1;
} else {
set_failing_group_stage(0xff, CAL_STAGE_LFIFO, CAL_SUBSTAGE_READ_LATENCY);
DPRINT(2, "lfifo: failed at initial read_lat=%lu", gbl->curr_read_lat);
return 0;
}
}
//USER issue write test command.
//USER two variants are provided. one that just tests a write pattern and another that
//USER tests datamask functionality.
static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, uint32_t test_dm)
{
uint32_t mcc_instruction;
uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES)
&& ENABLE_SUPER_QUICK_CALIBRATION) || BFM_MODE;
uint32_t rw_wl_nop_cycles;
//USER Set counter and jump addresses for the right
//USER number of NOP cycles.
//USER The number of supported NOP cycles can range from -1 to infinity
//USER Three different cases are handled:
//USER
//USER 1. For a number of NOP cycles greater than 0, the RW Mgr looping
//USER mechanism will be used to insert the right number of NOPs
//USER
//USER 2. For a number of NOP cycles equals to 0, the micro-instruction
//USER issuing the write command will jump straight to the micro-instruction
//USER that turns on DQS (for DDRx), or outputs write data (for RLD), skipping
//USER the NOP micro-instruction all together
//USER
//USER 3. A number of NOP cycles equal to -1 indicates that DQS must be turned
//USER on in the same micro-instruction that issues the write command. Then we need
//USER to directly jump to the micro-instruction that sends out the data
//USER
//USER NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters (2 and 3). One
//USER jump-counter (0) is used to perform multiple write-read operations.
//USER one counter left to issue this command in "multiple-group" mode.
rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
if (rw_wl_nop_cycles == -1) {
//USER CNTR 2 - We want to execute the special write operation that
//USER turns on DQS right away and then skip directly to the instruction that
//USER sends out the data. We set the counter to a large number so that the
//USER jump is always taken
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0xFF);
//USER CNTR 3 - Not used
if (test_dm) {
mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
__RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP);
} else {
mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_BANK_0_DATA);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_BANK_0_NOP);
}
} else if (rw_wl_nop_cycles == 0) {
//USER CNTR 2 - We want to skip the NOP operation and go straight to
//USER the DQS enable instruction. We set the counter to a large number so that the
//USER jump is always taken
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0xFF);
//USER CNTR 3 - Not used
if (test_dm) {
mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0;
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS);
} else {
mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0;
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_BANK_0_DQS);
}
} else {
//USER CNTR 2 - In this case we want to execute the next instruction and NOT
//USER take the jump. So we set the counter to 0. The jump address doesn't count
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x0);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, 0x0);
//USER CNTR 3 - Set the nop counter to the number of cycles we need to loop for, minus 1
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, rw_wl_nop_cycles - 1);
if (test_dm) {
mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0;
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP);
} else {
mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0;
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_BANK_0_NOP);
}
}
IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
if (quick_write_mode) {
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x08);
} else {
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x40);
}
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, mcc_instruction);
//USER CNTR 1 - This is used to ensure enough time elapses for read data to come back.
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x30);
if (test_dm) {
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT);
} else {
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_LFSR_WR_RD_BANK_0_WAIT);
}
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2), mcc_instruction);
}
//USER Test writes, can check for a single bit pass or multiple bit pass
static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, uint32_t write_group,
uint32_t use_dm, uint32_t all_correct,
t_btfld * bit_chk, uint32_t all_ranks)
{
uint32_t r;
t_btfld correct_mask_vg;
t_btfld tmp_bit_chk;
uint32_t vg;
uint32_t rank_end =
all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
*bit_chk = param->write_correct_mask;
correct_mask_vg = param->write_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
tmp_bit_chk = 0;
for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;; vg--) {
//USER reset the fifos to get pointers to known state
IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
tmp_bit_chk =
tmp_bit_chk << (RW_MGR_MEM_DQ_PER_WRITE_DQS /
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
rw_mgr_mem_calibrate_write_test_issue(write_group *
RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS
+ vg, use_dm);
tmp_bit_chk =
tmp_bit_chk | (correct_mask_vg & ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
DPRINT(2,
"write_test(%lu,%lu,%lu) :[%lu,%lu] " BTFLD_FMT " & ~%x => "
BTFLD_FMT " => " BTFLD_FMT, write_group, use_dm, all_correct, r, vg,
correct_mask_vg, IORD_32DIRECT(BASE_RW_MGR, 0),
correct_mask_vg & ~IORD_32DIRECT(BASE_RW_MGR, 0), tmp_bit_chk);
if (vg == 0) {
break;
}
}
*bit_chk &= tmp_bit_chk;
}
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
DPRINT(2, "write_test(%lu,%lu,ALL) : " BTFLD_FMT " == " BTFLD_FMT " => %lu",
write_group, use_dm, *bit_chk, param->write_correct_mask,
(long unsigned int)(*bit_chk == param->write_correct_mask));
return (*bit_chk == param->write_correct_mask);
} else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
DPRINT(2, "write_test(%lu,%lu,ONE) : " BTFLD_FMT " != " BTFLD_FMT " => %lu",
write_group, use_dm, *bit_chk, (long unsigned int)0,
(long unsigned int)(*bit_chk != 0));
return (*bit_chk != 0x00);
}
}
static inline uint32_t rw_mgr_mem_calibrate_write_test_all_ranks(uint32_t write_group,
uint32_t use_dm,
uint32_t all_correct,
t_btfld * bit_chk)
{
return rw_mgr_mem_calibrate_write_test(0, write_group, use_dm, all_correct, bit_chk, 1);
}
//USER level the write operations
#if NEWVERSION_WL
//USER Write Levelling -- Full Calibration
static uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
{
uint32_t p, d;
uint32_t num_additional_fr_cycles = 0;
t_btfld bit_chk;
uint32_t work_bgn, work_end, work_mid;
uint32_t tmp_delay;
uint32_t found_begin;
uint32_t dtaps_per_ptap;
//USER update info for sims
reg_file_set_stage(CAL_STAGE_WLEVEL);
reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
//USER maximum phases for the sweep
dtaps_per_ptap = IORD_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0);
//USER starting phases
//USER update info for sims
reg_file_set_group(g);
//USER starting and end range where writes work
scc_mgr_spread_out2_delay_all_ranks(g, test_bgn);
work_bgn = 0;
work_end = 0;
//USER step 1: find first working phase, increment in ptaps, and then in dtaps if ptaps doesn't find a working phase
found_begin = 0;
tmp_delay = 0;
for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) {
scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
work_bgn = tmp_delay;
for (p = 0;
p <= IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH;
p++, work_bgn += IO_DELAY_PER_OPA_TAP) {
DPRINT(2, "wlevel: begin-1: p=%lu d=%lu", p, d);
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) {
found_begin = 1;
break;
}
}
if (found_begin) {
break;
}
}
if (p > IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH) {
//USER fail, cannot find first working phase
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WORKING_DELAY);
return 0;
}
DPRINT(2, "wlevel: first valid p=%lu d=%lu", p, d);
reg_file_set_sub_stage(CAL_SUBSTAGE_LAST_WORKING_DELAY);
//USER If d is 0 then the working window covers a phase tap and we can follow the old procedure
//USER otherwise, we've found the beginning, and we need to increment the dtaps until we find the end
if (d == 0) {
COV(WLEVEL_PHASE_PTAP_OVERLAP);
work_end = work_bgn + IO_DELAY_PER_OPA_TAP;
//USER step 2: if we have room, back off by one and increment in dtaps
if (p > 0) {
int found = 0;
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1);
tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP;
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_bgn;
d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) {
DPRINT(2, "wlevel: begin-2: p=%lu d=%lu", (p - 1), d);
scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
if (rw_mgr_mem_calibrate_write_test_all_ranks
(g, 0, PASS_ONE_BIT, &bit_chk)) {
found = 1;
work_bgn = tmp_delay;
break;
}
}
{
uint32_t d2;
uint32_t p2;
if (found) {
d2 = d;
p2 = p - 1;
} else {
d2 = 0;
p2 = p;
}
DPRINT(2, "wlevel: found begin-A: p=%lu d=%lu ps=%lu", p2, d2,
work_bgn);
BFM_GBL_SET(dqs_wlevel_left_edge[g].p, p2);
BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d2);
BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn);
}
scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, 0);
} else {
DPRINT(2, "wlevel: found begin-B: p=%lu d=%lu ps=%lu", p, d, work_bgn);
BFM_GBL_SET(dqs_wlevel_left_edge[g].p, p);
BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d);
BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn);
}
//USER step 3: go forward from working phase to non working phase, increment in ptaps
for (p = p + 1;
p <= IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH;
p++, work_end += IO_DELAY_PER_OPA_TAP) {
DPRINT(2, "wlevel: end-0: p=%lu d=%lu", p, (long unsigned int)0);
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
if (!rw_mgr_mem_calibrate_write_test_all_ranks
(g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
//USER step 4: back off one from last, increment in dtaps
//USER The actual increment is done outside the if/else statement since it is shared with other code
p = p - 1;
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
work_end -= IO_DELAY_PER_OPA_TAP;
d = 0;
} else {
//USER step 5: Window doesn't cover phase tap, just increment dtaps until failure
//USER The actual increment is done outside the if/else statement since it is shared with other code
COV(WLEVEL_PHASE_PTAP_NO_OVERLAP);
work_end = work_bgn;
DPRINT(2, "wlevel: found begin-C: p=%lu d=%lu ps=%lu", p, d, work_bgn);
BFM_GBL_SET(dqs_wlevel_left_edge[g].p, p);
BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d);
BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn);
}
//USER The actual increment until failure
for (; d <= IO_IO_OUT1_DELAY_MAX; d++, work_end += IO_DELAY_PER_DCHAIN_TAP) {
DPRINT(2, "wlevel: end: p=%lu d=%lu", p, d);
scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
scc_mgr_zero_group(g, test_bgn, 1);
work_end -= IO_DELAY_PER_DCHAIN_TAP;
if (work_end >= work_bgn) {
//USER we have a working range
} else {
//USER nil range
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_LAST_WORKING_DELAY);
return 0;
}
DPRINT(2, "wlevel: found end: p=%lu d=%lu; range: [%lu,%lu]", p, d - 1, work_bgn, work_end);
BFM_GBL_SET(dqs_wlevel_right_edge[g].p, p);
BFM_GBL_SET(dqs_wlevel_right_edge[g].d, d - 1);
BFM_GBL_SET(dqs_wlevel_right_edge[g].ps, work_end);
//USER center
work_mid = (work_bgn + work_end) / 2;
DPRINT(2, "wlevel: work_mid=%ld", work_mid);
tmp_delay = 0;
for (p = 0;
p <= IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH
&& tmp_delay < work_mid; p++, tmp_delay += IO_DELAY_PER_OPA_TAP) ;
if (tmp_delay > work_mid) {
tmp_delay -= IO_DELAY_PER_OPA_TAP;
p--;
}
while (p > IO_DQDQS_OUT_PHASE_MAX) {
tmp_delay -= IO_DELAY_PER_OPA_TAP;
p--;
}
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
DPRINT(2, "wlevel: p=%lu tmp_delay=%lu left=%lu", p, tmp_delay, work_mid - tmp_delay);
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_mid;
d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) ;
if (tmp_delay > work_mid) {
tmp_delay -= IO_DELAY_PER_DCHAIN_TAP;
d--;
}
DPRINT(2, "wlevel: p=%lu d=%lu tmp_delay=%lu left=%lu", p, d, tmp_delay,
work_mid - tmp_delay);
scc_mgr_apply_group_all_out_delay_add_all_ranks(g, test_bgn, d);
DPRINT(2, "wlevel: found middle: p=%lu d=%lu", p, d);
BFM_GBL_SET(dqs_wlevel_mid[g].p, p);
BFM_GBL_SET(dqs_wlevel_mid[g].d, d);
BFM_GBL_SET(dqs_wlevel_mid[g].ps, work_mid);
return 1;
}
#else
//USER Write Levelling -- Full Calibration
static uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
{
uint32_t p, d;
t_btfld bit_chk;
uint32_t work_bgn, work_end, work_mid;
uint32_t tmp_delay;
//USER update info for sims
reg_file_set_stage(CAL_STAGE_WLEVEL);
reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
//USER maximum phases for the sweep
//USER starting phases
//USER update info for sims
reg_file_set_group(g);
//USER starting and end range where writes work
work_bgn = 0;
work_end = 0;
//USER step 1: find first working phase, increment in ptaps
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++, work_bgn += IO_DELAY_PER_OPA_TAP) {
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
if (p > IO_DQDQS_OUT_PHASE_MAX) {
//USER fail, cannot find first working phase
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WORKING_DELAY);
return 0;
}
work_end = work_bgn + IO_DELAY_PER_OPA_TAP;
reg_file_set_sub_stage(CAL_SUBSTAGE_LAST_WORKING_DELAY);
//USER step 2: if we have room, back off by one and increment in dtaps
if (p > 0) {
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1);
tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP;
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_bgn;
d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) {
scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) {
work_bgn = tmp_delay;
break;
}
}
scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, 0);
}
//USER step 3: go forward from working phase to non working phase, increment in ptaps
for (p = p + 1; p <= IO_DQDQS_OUT_PHASE_MAX; p++, work_end += IO_DELAY_PER_OPA_TAP) {
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
//USER step 4: back off one from last, increment in dtaps
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1);
work_end -= IO_DELAY_PER_OPA_TAP;
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++, work_end += IO_DELAY_PER_DCHAIN_TAP) {
scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, 0);
if (work_end > work_bgn) {
//USER we have a working range
} else {
//USER nil range
set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_LAST_WORKING_DELAY);
return 0;
}
//USER center
work_mid = (work_bgn + work_end) / 2;
tmp_delay = 0;
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && tmp_delay < work_mid;
p++, tmp_delay += IO_DELAY_PER_OPA_TAP) ;
tmp_delay -= IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1);
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_mid;
d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) ;
scc_mgr_apply_group_all_out_delay_add_all_ranks(g, test_bgn, d - 1);
return 1;
}
#endif
//USER center all windows. do per-bit-deskew to possibly increase size of certain windows
#if NEWVERSION_WRDESKEW
static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, uint32_t write_group,
uint32_t test_bgn)
{
uint32_t i, p, min_index;
int32_t d;
//USER Store these as signed since there are comparisons with signed numbers
t_btfld bit_chk;
t_btfld sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
int32_t mid;
int32_t mid_min, orig_mid_min;
int32_t new_dqs, start_dqs, shift_dq;
int32_t dq_margin, dqs_margin, dm_margin;
uint32_t stop;
int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
int32_t win_best = 0;
dm_margin = 0;
start_dqs = READ_SCC_DQS_IO_OUT1_DELAY();
select_curr_shadow_reg_using_rank(rank_bgn);
//USER per-bit deskew
//USER set the left and right edge of each bit to an illegal value
//USER use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
}
//USER Search for the left edge of the window for each bit
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
//USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit
stop =
!rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT,
&bit_chk, 0);
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
DPRINT(2,
"write_center(left): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT
" && %lu [bit_chk=" BTFLD_FMT "]", d, sticky_bit_chk,
param->write_correct_mask, stop, bit_chk);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
//USER Remember a passing test as the left_edge
left_edge[i] = d;
} else {
//USER If a left edge has not been seen yet, then a future passing test will mark this edge as the right edge
if (left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
DPRINT(2,
"write_center[l,d=%lu): bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld",
d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
//USER Reset DQ delay chains to 0
scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
DPRINT(2, "write_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i],
i, right_edge[i]);
//USER Check for cases where we haven't found the left edge, which makes our assignment of the the
//USER right edge invalid. Reset it to the illegal value.
if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)
&& (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
DPRINT(2, "write_center: reset right_edge[%lu]: %ld", i, right_edge[i]);
}
//USER Reset sticky bit (except for bits where we have seen the left edge)
sticky_bit_chk = sticky_bit_chk << 1;
if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
sticky_bit_chk = sticky_bit_chk | 1;
}
if (i == 0) {
break;
}
}
//USER Search for the right edge of the window for each bit
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d + start_dqs);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
if (QDRII) {
rw_mgr_mem_dll_lock_wait();
}
//USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit
stop =
!rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT,
&bit_chk, 0);
if (stop) {
recover_mem_device_after_ck_dqs_violation();
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
DPRINT(2, "write_center (right): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu",
d, sticky_bit_chk, param->write_correct_mask, stop);
if (stop == 1) {
if (d == 0) {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
//USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1
if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1
&& left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -1;
}
}
}
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
//USER Remember a passing test as the right_edge
right_edge[i] = d;
} else {
if (d != 0) {
//USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
} else {
//USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1
if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1
&& left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -1;
}
//USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
else if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
}
}
DPRINT(2,
"write_center[r,d=%lu): bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld",
d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
//USER Check that all bits have a window
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
DPRINT(2, "write_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i],
i, right_edge[i]);
BFM_GBL_SET(dq_write_left_edge[write_group][i], left_edge[i]);
BFM_GBL_SET(dq_write_right_edge[write_group][i], right_edge[i]);
if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)
|| (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
set_failing_group_stage(test_bgn + i, CAL_STAGE_WRITES,
CAL_SUBSTAGE_WRITES_CENTER);
return 0;
}
}
//USER Find middle of window for each DQ bit
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
mid = left_edge[i] - right_edge[i];
if (mid < mid_min) {
mid_min = mid;
min_index = i;
}
}
//USER -mid_min/2 represents the amount that we need to move DQS. If mid_min is odd and positive we'll need to add one to
//USER make sure the rounding in further calculations is correct (always bias to the right), so just add 1 for all positive values
if (mid_min > 0) {
mid_min++;
}
mid_min = mid_min / 2;
DPRINT(1, "write_center: mid_min=%ld", mid_min);
//USER Determine the amount we can change DQS (which is -mid_min)
orig_mid_min = mid_min;
new_dqs = start_dqs;
mid_min = 0;
DPRINT(1, "write_center: start_dqs=%ld new_dqs=%ld mid_min=%ld", start_dqs, new_dqs,
mid_min);
//USER Initialize data for export structures
dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
//USER add delay to bring centre of all DQ windows to the same "level"
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
//USER Use values before divide by 2 to reduce round off error
shift_dq =
(left_edge[i] - right_edge[i] -
(left_edge[min_index] - right_edge[min_index])) / 2 + (orig_mid_min - mid_min);
DPRINT(2, "write_center: before: shift_dq[%lu]=%ld", i, shift_dq);
if (shift_dq + (int32_t) READ_SCC_DQ_OUT1_DELAY(i) > (int32_t) IO_IO_OUT1_DELAY_MAX) {
shift_dq = (int32_t) IO_IO_OUT1_DELAY_MAX - READ_SCC_DQ_OUT1_DELAY(i);
} else if (shift_dq + (int32_t) READ_SCC_DQ_OUT1_DELAY(i) < 0) {
shift_dq = -(int32_t) READ_SCC_DQ_OUT1_DELAY(i);
}
DPRINT(2, "write_center: after: shift_dq[%lu]=%ld", i, shift_dq);
scc_mgr_set_dq_out1_delay(write_group, i, READ_SCC_DQ_OUT1_DELAY(i) + shift_dq);
scc_mgr_load_dq(i);
DPRINT(2, "write_center: margin[%lu]=[%ld,%ld]", i,
left_edge[i] - shift_dq + (-mid_min), right_edge[i] + shift_dq - (-mid_min));
//USER To determine values for export structures
if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) {
dq_margin = left_edge[i] - shift_dq + (-mid_min);
}
if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) {
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
}
}
//USER Move DQS
if (QDRII) {
scc_mgr_set_group_dqs_io_and_oct_out1_gradual(write_group, new_dqs);
} else {
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
DPRINT(2, "write_center: DM");
//USER set the left and right edge of each bit to an illegal value
//USER use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value
left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
//USER Search for the/part of the window with DM shift
for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
scc_mgr_apply_group_dm_out1_delay(write_group, d);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
if (rw_mgr_mem_calibrate_write_test
(rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) {
//USE Set current end of the window
end_curr = -d;
//USER If a starting edge of our window has not been seen this is our current start of the DM window
if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) {
bgn_curr = -d;
}
//USER If current window is bigger than best seen. Set best seen to be current window
if ((end_curr - bgn_curr + 1) > win_best) {
win_best = end_curr - bgn_curr + 1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
//USER We just saw a failing test. Reset temp edge
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
}
}
//USER Reset DM delay chains to 0
scc_mgr_apply_group_dm_out1_delay(write_group, 0);
//USER Check to see if the current window nudges up aganist 0 delay. If so we need to continue the search by shifting DQS otherwise DQS search begins as a new search
if (end_curr != 0) {
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
}
//USER Search for the/part of the window with DQS shifts
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
// Note: This only shifts DQS, so are we limiting ourselve to
// width of DQ unnecessarily
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d + new_dqs);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
if (rw_mgr_mem_calibrate_write_test
(rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) {
//USE Set current end of the window
end_curr = d;
//USER If a beginning edge of our window has not been seen this is our current begin of the DM window
if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) {
bgn_curr = d;
}
//USER If current window is bigger than best seen. Set best seen to be current window
if ((end_curr - bgn_curr + 1) > win_best) {
win_best = end_curr - bgn_curr + 1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
//USER We just saw a failing test. Reset temp edge
recover_mem_device_after_ck_dqs_violation();
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
//USER Early exit optimization: if ther remaining delay chain space is less than already seen largest window we can exit
if ((win_best - 1) > (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
break;
}
}
}
//USER assign left and right edge for cal and reporting;
left_edge[0] = -1 * bgn_best;
right_edge[0] = end_best;
DPRINT(2, "dm_calib: left=%ld right=%ld", left_edge[0], right_edge[0]);
BFM_GBL_SET(dm_left_edge[write_group][0], left_edge[0]);
BFM_GBL_SET(dm_right_edge[write_group][0], right_edge[0]);
//USER Move DQS (back to orig)
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
//USER Move DM
//USER Find middle of window for the DM bit
mid = (left_edge[0] - right_edge[0]) / 2;
//USER only move right, since we are not moving DQS/DQ
if (mid < 0) {
mid = 0;
}
//dm_marign should fail if we never find a window
if (win_best == 0) {
dm_margin = -1;
} else {
dm_margin = left_edge[0] - mid;
}
scc_mgr_apply_group_dm_out1_delay(write_group, mid);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
DPRINT(2, "dm_calib: left=%ld right=%ld mid=%ld dm_margin=%ld",
left_edge[0], right_edge[0], mid, dm_margin);
//USER Export values
gbl->fom_out += dq_margin + dqs_margin;
DPRINT(2, "write_center: dq_margin=%ld dqs_margin=%ld dm_margin=%ld", dq_margin, dqs_margin,
dm_margin);
//USER Do not remove this line as it makes sure all of our decisions have been applied
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
}
#else // !NEWVERSION_WRDESKEW
static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, uint32_t write_group,
uint32_t test_bgn)
{
uint32_t i, p, d;
uint32_t mid;
t_btfld bit_chk, sticky_bit_chk;
uint32_t max_working_dq[RW_MGR_MEM_DQ_PER_WRITE_DQS];
uint32_t max_working_dm[RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
uint32_t dq_margin, dqs_margin, dm_margin;
uint32_t start_dqs;
uint32_t stop;
//USER per-bit deskew
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
max_working_dq[i] = 0;
}
for (d = 1; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
if (!rw_mgr_mem_calibrate_write_test
(rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0)) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
max_working_dq[i] = d;
}
bit_chk = bit_chk >> 1;
}
}
}
scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
//USER determine minimum of maximums
dq_margin = IO_IO_OUT1_DELAY_MAX;
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (max_working_dq[i] < dq_margin) {
dq_margin = max_working_dq[i];
}
}
//USER add delay to center DQ windows
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
if (max_working_dq[i] > dq_margin) {
scc_mgr_set_dq_out1_delay(write_group, i, max_working_dq[i] - dq_margin);
} else {
scc_mgr_set_dq_out1_delay(write_group, i, 0);
}
scc_mgr_load_dq(p, i);
}
//USER sweep DQS window, may potentially have more window due to per-bit-deskew
start_dqs = READ_SCC_DQS_IO_OUT1_DELAY();
for (d = start_dqs + 1; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
if (QDRII) {
rw_mgr_mem_dll_lock_wait();
}
if (!rw_mgr_mem_calibrate_write_test
(rank_bgn, write_group, 0, PASS_ALL_BITS, &bit_chk, 0)) {
break;
}
}
scc_mgr_set_dqs_out1_delay(write_group, start_dqs);
scc_mgr_set_oct_out1_delay(write_group, start_dqs);
dqs_margin = d - start_dqs - 1;
//USER time to center, +1 so that we don't go crazy centering DQ
mid = (dq_margin + dqs_margin + 1) / 2;
gbl->fom_out += dq_margin + dqs_margin;
scc_mgr_load_dqs_io();
scc_mgr_load_dqs_for_write_group(write_group);
//USER center dq
if (dq_margin > mid) {
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
scc_mgr_set_dq_out1_delay(write_group, i,
READ_SCC_DQ_OUT1_DELAY(i) + dq_margin - mid);
scc_mgr_load_dq(p, i);
}
dqs_margin += dq_margin - mid;
dq_margin -= dq_margin - mid;
}
//USER do dm centering
if (!RLDRAMX) {
dm_margin = IO_IO_OUT1_DELAY_MAX;
if (QDRII) {
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
i++) {
max_working_dm[i] = 0;
}
}
for (d = 1; d <= IO_IO_OUT1_DELAY_MAX; d++) {
scc_mgr_apply_group_dm_out1_delay(write_group, d);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
if (DDRX) {
if (rw_mgr_mem_calibrate_write_test
(rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) {
max_working_dm[0] = d;
} else {
break;
}
} else {
stop =
!rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
PASS_ALL_BITS, &bit_chk, 0);
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
if (stop == 1) {
break;
} else {
for (i = 0;
i <
RW_MGR_MEM_DATA_MASK_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
if ((bit_chk & param->dm_correct_mask) ==
param->dm_correct_mask) {
max_working_dm[i] = d;
}
bit_chk =
bit_chk >> (RW_MGR_MEM_DATA_WIDTH /
RW_MGR_MEM_DATA_MASK_WIDTH);
}
}
}
}
i = 0;
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
if (max_working_dm[i] > mid) {
scc_mgr_set_dm_out1_delay(write_group, i, max_working_dm[i] - mid);
} else {
scc_mgr_set_dm_out1_delay(write_group, i, 0);
}
scc_mgr_load_dm(i);
if (max_working_dm[i] < dm_margin) {
dm_margin = max_working_dm[i];
}
}
} else {
dm_margin = 0;
}
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
return (dq_margin + dqs_margin) > 0;
}
#endif
//USER calibrate the write operations
static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, uint32_t test_bgn)
{
reg_file_set_stage(CAL_STAGE_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
//USER starting phases
//USER update info for sims
reg_file_set_group(g);
if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
set_failing_group_stage(g, CAL_STAGE_WRITES, CAL_SUBSTAGE_WRITES_CENTER);
return 0;
}
return 1;
}
//USER precharge all banks and activate row 0 in bank "000..." and bank "111..."
static void mem_precharge_and_activate(void)
{
uint32_t r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
if (param->skip_ranks[r]) {
//USER request to skip the rank
continue;
}
//USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
//USER precharge all banks ...
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x0F);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_ACTIVATE_0_AND_1_WAIT1);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x0F);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_ACTIVATE_0_AND_1_WAIT2);
//USER activate rows
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_ACTIVATE_0_AND_1);
}
}
//USER perform all refreshes necessary over all ranks
//USER Configure various memory related parameters.
static void mem_config(void)
{
uint32_t rlat, wlat;
uint32_t rw_wl_nop_cycles;
uint32_t max_latency;
//USER read in write and read latency
wlat = IORD_32DIRECT(MEM_T_WL_ADD, 0);
wlat += IORD_32DIRECT(DATA_MGR_MEM_T_ADD, 0); /* WL for hard phy does not include additive latency */
// YYONG: add addtional write latency to offset the address/command extra clock cycle
// YYONG: We change the AC mux setting causing AC to be delayed by one mem clock cycle
// YYONG: only do this for DDR3
wlat = wlat + 1;
rlat = IORD_32DIRECT(MEM_T_RL_ADD, 0);
if (QUARTER_RATE_MODE) {
//USER In Quarter-Rate the WL-to-nop-cycles works like this
//USER 0,1 -> 0
//USER 2,3,4,5 -> 1
//USER 6,7,8,9 -> 2
//USER etc...
rw_wl_nop_cycles = (wlat + 6) / 4 - 1;
} else if (HALF_RATE_MODE) {
//USER In Half-Rate the WL-to-nop-cycles works like this
//USER 0,1 -> -1
//USER 2,3 -> 0
//USER 4,5 -> 1
//USER etc...
if (wlat % 2) {
rw_wl_nop_cycles = ((wlat - 1) / 2) - 1;
} else {
rw_wl_nop_cycles = (wlat / 2) - 1;
}
} else {
rw_wl_nop_cycles = wlat - 2;
}
gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
//USER For AV/CV, lfifo is hardened and always runs at full rate
//USER so max latency in AFI clocks, used here, is correspondingly smaller
if (QUARTER_RATE_MODE) {
max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) / 4 - 1;
} else if (HALF_RATE_MODE) {
max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) / 2 - 1;
} else {
max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) / 1 - 1;
}
//USER configure for a burst length of 8
if (QUARTER_RATE_MODE) {
//USER write latency
wlat = (wlat + 5) / 4 + 1;
//USER set a pretty high read latency initially
gbl->curr_read_lat = (rlat + 1) / 4 + 8;
} else if (HALF_RATE_MODE) {
//USER write latency
wlat = (wlat - 1) / 2 + 1;
//USER set a pretty high read latency initially
gbl->curr_read_lat = (rlat + 1) / 2 + 8;
} else {
//USER write latency
// Adjust Write Latency for Hard PHY
wlat = wlat + 1;
//USER set a pretty high read latency initially
gbl->curr_read_lat = rlat + 16;
}
if (gbl->curr_read_lat > max_latency) {
gbl->curr_read_lat = max_latency;
}
IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
//USER advertise write latency
gbl->curr_write_lat = wlat;
IOWR_32DIRECT(PHY_MGR_AFI_WLAT, 0, wlat - 2);
//USER initialize bit slips
mem_precharge_and_activate();
}
//USER Set VFIFO and LFIFO to instant-on settings in skip calibration mode
static void mem_skip_calibrate(void)
{
uint32_t vfifo_offset;
uint32_t i, j, r;
// Need to update every shadow register set used by the interface
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
// Strictly speaking this should be called once per group to make
// sure each group's delay chains are refreshed from the SCC register file,
// but since we're resetting all delay chains anyway, we can save some
// runtime by calling select_shadow_regs_for_update just once to switch rank.
select_shadow_regs_for_update(r, 0, 1);
//USER Set output phase alignment settings appropriate for skip calibration
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
scc_mgr_set_dqs_en_phase(i, 0);
// Case:33398
//
// Write data arrives to the I/O two cycles before write latency is reached (720 deg).
// -> due to bit-slip in a/c bus
// -> to allow board skew where dqs is longer than ck
// -> how often can this happen!?
// -> can claim back some ptaps for high freq support if we can relax this, but i digress...
//
// The write_clk leads mem_ck by 90 deg
// The minimum ptap of the OPA is 180 deg
// Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
// The write_clk is always delayed by 2 ptaps
//
// Hence, to make DQS aligned to CK, we need to delay DQS by:
// (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
//
// Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) gives us the number of ptaps, which simplies to:
//
// (1.25 * IO_DLL_CHAIN_LENGTH - 2)
scc_mgr_set_dqdqs_output_phase(i, (1.25 * IO_DLL_CHAIN_LENGTH - 2));
}
IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, 0xff);
IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0xff);
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, i);
IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff);
IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff);
}
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
// Compensate for simulation model behaviour
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
scc_mgr_set_dqs_bus_in_delay(i, 10);
scc_mgr_load_dqs(i);
}
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
//ArriaV has hard FIFOs that can only be initialized by incrementing in sequencer
vfifo_offset = CALIB_VFIFO_OFFSET;
for (j = 0; j < vfifo_offset; j++) {
if (HARD_PHY) {
IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HARD_PHY, 0, 0xff);
} else {
IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, 0xff);
}
}
IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
// For ACV with hard lfifo, we get the skip-cal setting from generation-time constant
gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
}
//USER Memory calibration entry point
static uint32_t mem_calibrate(void)
{
uint32_t i;
uint32_t rank_bgn, sr;
uint32_t write_group, write_test_bgn;
uint32_t read_group, read_test_bgn;
uint32_t run_groups, current_run;
uint32_t failing_groups = 0;
uint32_t group_failed = 0;
uint32_t sr_failed = 0;
// Initialize the data settings
DPRINT(1, "Preparing to init data");
DPRINT(1, "Init complete");
gbl->error_substage = CAL_SUBSTAGE_NIL;
gbl->error_stage = CAL_STAGE_NIL;
gbl->error_group = 0xff;
gbl->fom_in = 0;
gbl->fom_out = 0;
mem_config();
if (ARRIAV || CYCLONEV) {
uint32_t bypass_mode = (HARD_PHY) ? 0x1 : 0x0;
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, i);
scc_set_bypass_mode(i, bypass_mode);
}
}
if (((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
//USER Set VFIFO and LFIFO to instant-on settings in skip calibration mode
mem_skip_calibrate();
} else {
for (i = 0; i < NUM_CALIB_REPEAT; i++) {
//USER Zero all delay chain/phase settings for all groups and all shadow register sets
scc_mgr_zero_all();
run_groups = ~param->skip_groups;
for (write_group = 0, write_test_bgn = 0;
write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
write_group++, write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
// Initialized the group failure
group_failed = 0;
// Mark the group as being attempted for calibration
BFM_GBL_SET(vfifo_idx, 0);
current_run =
run_groups & ((1 << RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
run_groups = run_groups >> RW_MGR_NUM_DQS_PER_WRITE_GROUP;
if (current_run == 0) {
continue;
}
IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, write_group);
scc_mgr_zero_group(write_group, write_test_bgn, 0);
for (read_group =
write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH, read_test_bgn = 0;
read_group <
(write_group +
1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH && group_failed == 0;
read_group++, read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
//USER Calibrate the VFIFO
if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_VFIFO)) {
if (!rw_mgr_mem_calibrate_vfifo
(read_group, read_test_bgn)) {
group_failed = 1;
if (!
(gbl->
phy_debug_mode_flags &
PHY_DEBUG_SWEEP_ALL_GROUPS)) {
return 0;
}
}
}
}
//USER level writes (or align DK with CK for RLDRAMX)
if (group_failed == 0) {
if ((DDRX || RLDRAMII) && !(ARRIAV || CYCLONEV)) {
if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WLEVEL)) {
if (!rw_mgr_mem_calibrate_wlevel
(write_group, write_test_bgn)) {
group_failed = 1;
if (!
(gbl->
phy_debug_mode_flags &
PHY_DEBUG_SWEEP_ALL_GROUPS)) {
return 0;
}
}
}
}
}
//USER Calibrate the output side
if (group_failed == 0) {
for (rank_bgn = 0, sr = 0;
rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
sr_failed = 0;
if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES)) {
if ((STATIC_CALIB_STEPS) &
CALIB_SKIP_DELAY_SWEEPS) {
//USER not needed in quick mode!
} else {
//USER Determine if this set of ranks should be skipped entirely
if (!param->skip_shadow_regs[sr]) {
//USER Select shadow register set
select_shadow_regs_for_update
(rank_bgn, write_group,
1);
if (!rw_mgr_mem_calibrate_writes(rank_bgn, write_group, write_test_bgn)) {
sr_failed = 1;
if (!
(gbl->
phy_debug_mode_flags
&
PHY_DEBUG_SWEEP_ALL_GROUPS))
{
return 0;
}
}
}
}
}
if (sr_failed == 0) {
} else {
group_failed = 1;
}
}
}
if (group_failed == 0) {
for (read_group =
write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH, read_test_bgn = 0;
read_group <
(write_group +
1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
RW_MGR_MEM_IF_WRITE_DQS_WIDTH && group_failed == 0;
read_group++, read_test_bgn +=
RW_MGR_MEM_DQ_PER_READ_DQS) {
if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES)) {
if (!rw_mgr_mem_calibrate_vfifo_end
(read_group, read_test_bgn)) {
group_failed = 1;
if (!
(gbl->
phy_debug_mode_flags &
PHY_DEBUG_SWEEP_ALL_GROUPS)) {
return 0;
}
}
}
}
}
if (group_failed == 0) {
#if STATIC_IN_RTL_SIM
#else
#endif
}
if (group_failed != 0) {
failing_groups++;
}
}
// USER If there are any failing groups then report the failure
if (failing_groups != 0) {
return 0;
}
//USER Calibrate the LFIFO
if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
//USER If we're skipping groups as part of debug, don't calibrate LFIFO
if (param->skip_groups == 0) {
if (!rw_mgr_mem_calibrate_lfifo()) {
return 0;
}
}
}
}
}
//USER Do not remove this line as it makes sure all of our decisions have been applied
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
return 1;
}
static uint32_t run_mem_calibrate(void)
{
uint32_t pass;
uint32_t debug_info;
uint32_t ctrlcfg = IORD_32DIRECT(CTRL_CONFIG_REG, 0);
// Initialize the debug status to show that calibration has started.
// This should occur before anything else
// Reset pass/fail status shown on afi_cal_success/fail
IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_RESET);
//stop tracking manger
IOWR_32DIRECT(CTRL_CONFIG_REG, 0, ctrlcfg & 0xFFBFFFFF);
initialize();
rw_mgr_mem_initialize();
pass = mem_calibrate();
mem_precharge_and_activate();
//pe_checkout_pattern();
IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
if (pass) {
#ifdef TEST_SIZE
if (!check_test_mem(0)) {
gbl->error_stage = 0x92;
gbl->error_group = 0x92;
}
#endif
}
//USER Handoff
//USER Don't return control of the PHY back to AFI when in debug mode
if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
rw_mgr_mem_handoff();
// In Hard PHY this is a 2-bit control:
// 0: AFI Mux Select
// 1: DDIO Mux Select
IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0x2);
}
IOWR_32DIRECT(CTRL_CONFIG_REG, 0, ctrlcfg);
if (pass) {
IPRINT("CALIBRATION PASSED");
gbl->fom_in /= 2;
gbl->fom_out /= 2;
if (gbl->fom_in > 0xff) {
gbl->fom_in = 0xff;
}
if (gbl->fom_out > 0xff) {
gbl->fom_out = 0xff;
}
// Update the FOM in the register file
debug_info = gbl->fom_in;
debug_info |= gbl->fom_out << 8;
IOWR_32DIRECT(REG_FILE_FOM, 0, debug_info);
IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, debug_info);
IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_SUCCESS);
} else {
IPRINT("CALIBRATION FAILED");
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, debug_info);
IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, debug_info);
IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
// Update the failing group/stage in the register file
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, debug_info);
}
// Set the debug status to show that calibration has ended.
// This should occur after everything else
return pass;
}
static void hc_initialize_rom_data(void)
{
uint32_t i;
for (i = 0; i < inst_rom_init_size; i++) {
uint32_t data = inst_rom_init[i];
IOWR_32DIRECT(RW_MGR_INST_ROM_WRITE, (i << 2), data);
}
for (i = 0; i < ac_rom_init_size; i++) {
uint32_t data = ac_rom_init[i];
IOWR_32DIRECT(RW_MGR_AC_ROM_WRITE, (i << 2), data);
}
}
static void initialize_reg_file(void)
{
// Initialize the register file with the correct data
IOWR_32DIRECT(REG_FILE_SIGNATURE, 0, REG_FILE_INIT_SEQ_SIGNATURE);
IOWR_32DIRECT(REG_FILE_DEBUG_DATA_ADDR, 0, 0);
IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, 0);
IOWR_32DIRECT(REG_FILE_FOM, 0, 0);
IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, 0);
IOWR_32DIRECT(REG_FILE_DEBUG1, 0, 0);
IOWR_32DIRECT(REG_FILE_DEBUG2, 0, 0);
}
static void initialize_hps_phy(void)
{
// These may need to be included also:
// wrap_back_en (false)
// atpg_en (false)
// pipelineglobalenable (true)
uint32_t reg;
// Tracking also gets configured here because it's in the same register
uint32_t trk_sample_count = 7500;
uint32_t trk_long_idle_sample_count = (10 << 16) | 100; // Format is number of outer loops in the 16 MSB, sample count in 16 LSB.
reg = 0;
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
// Fix for long latency VFIFO
// This field selects the intrinsic latency to RDATA_EN/FULL path. 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(trk_sample_count);
IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_OFFSET, reg);
reg = 0;
reg |=
SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(trk_sample_count >>
SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
reg |=
SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(trk_long_idle_sample_count);
IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_OFFSET, reg);
reg = 0;
reg |=
SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(trk_long_idle_sample_count
>>
SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_OFFSET, reg);
}
static void initialize_tracking(void)
{
uint32_t concatenated_longidle = 0x0;
uint32_t concatenated_delays = 0x0;
uint32_t concatenated_rw_addr = 0x0;
uint32_t concatenated_refresh = 0x0;
uint32_t dtaps_per_ptap;
uint32_t tmp_delay;
// compute usable version of value in case we skip full computation later
dtaps_per_ptap = 0;
tmp_delay = 0;
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
dtaps_per_ptap++;
tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
}
dtaps_per_ptap--;
concatenated_longidle = concatenated_longidle ^ 10; //longidle outer loop
concatenated_longidle = concatenated_longidle << 16;
concatenated_longidle = concatenated_longidle ^ 100; //longidle sample count
concatenated_delays = concatenated_delays ^ 243; // trfc, worst case of 933Mhz 4Gb
concatenated_delays = concatenated_delays << 8;
concatenated_delays = concatenated_delays ^ 14; // trcd, worst case
concatenated_delays = concatenated_delays << 8;
concatenated_delays = concatenated_delays ^ 10; // vfifo wait
concatenated_delays = concatenated_delays << 8;
concatenated_delays = concatenated_delays ^ 4; // mux delay
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_IDLE;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_ACTIVATE_1;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_SGLE_READ;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_PRECHARGE_ALL;
concatenated_refresh = concatenated_refresh ^ __RW_MGR_REFRESH_ALL;
concatenated_refresh = concatenated_refresh << 24;
concatenated_refresh = concatenated_refresh ^ 1000; // trefi
// Initialize the register file with the correct data
IOWR_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
IOWR_32DIRECT(REG_FILE_TRK_SAMPLE_COUNT, 0, 7500);
IOWR_32DIRECT(REG_FILE_TRK_LONGIDLE, 0, concatenated_longidle);
IOWR_32DIRECT(REG_FILE_DELAYS, 0, concatenated_delays);
IOWR_32DIRECT(REG_FILE_TRK_RW_MGR_ADDR, 0, concatenated_rw_addr);
IOWR_32DIRECT(REG_FILE_TRK_READ_DQS_WIDTH, 0, RW_MGR_MEM_IF_READ_DQS_WIDTH);
IOWR_32DIRECT(REG_FILE_TRK_RFSH, 0, concatenated_refresh);
}
static int socfpga_mem_calibration(void)
{
param_t my_param;
gbl_t my_gbl;
uint32_t pass;
uint32_t i;
param = &my_param;
gbl = &my_gbl;
// Initialize the debug mode flags
gbl->phy_debug_mode_flags = 0;
// Set the calibration enabled by default
gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
// Only enable margining by default if requested
// Only sweep all groups (regardless of fail state) by default if requested
//Set enabled read test by default
// Initialize the register file
initialize_reg_file();
// Initialize any PHY CSR
initialize_hps_phy();
scc_mgr_initialize();
initialize_tracking();
// Initialize the TCL report. This must occur before any printf
// but after the debug mode flags and register file
// USER Enable all ranks, groups
for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) {
param->skip_ranks[i] = 0;
}
for (i = 0; i < NUM_SHADOW_REGS; ++i) {
param->skip_shadow_regs[i] = 0;
}
param->skip_groups = 0;
IPRINT("Preparing to start memory calibration");
DPRINT(1,
"%s%s %s ranks=%lu cs/dimm=%lu dq/dqs=%lu,%lu vg/dqs=%lu,%lu dqs=%lu,%lu dq=%lu dm=%lu "
"ptap_delay=%lu dtap_delay=%lu dtap_dqsen_delay=%lu, dll=%lu",
RDIMM ? "r" : (LRDIMM ? "l" : ""),
DDR2 ? "DDR2" : (DDR3 ? "DDR3"
: (QDRII ? "QDRII"
: (RLDRAMII ? "RLDRAMII"
: (RLDRAM3 ? "RLDRAM3" : "??PROTO??")))),
FULL_RATE ? "FR" : (HALF_RATE ? "HR" : (QUARTER_RATE ? "QR" : "??RATE??")),
(long unsigned int)RW_MGR_MEM_NUMBER_OF_RANKS,
(long unsigned int)RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
(long unsigned int)RW_MGR_MEM_DQ_PER_READ_DQS,
(long unsigned int)RW_MGR_MEM_DQ_PER_WRITE_DQS,
(long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
(long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS,
(long unsigned int)RW_MGR_MEM_IF_READ_DQS_WIDTH,
(long unsigned int)RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
(long unsigned int)RW_MGR_MEM_DATA_WIDTH,
(long unsigned int)RW_MGR_MEM_DATA_MASK_WIDTH,
(long unsigned int)IO_DELAY_PER_OPA_TAP, (long unsigned int)IO_DELAY_PER_DCHAIN_TAP,
(long unsigned int)IO_DELAY_PER_DQS_EN_DCHAIN_TAP,
(long unsigned int)IO_DLL_CHAIN_LENGTH);
DPRINT(1,
"max values: en_p=%lu dqdqs_p=%lu en_d=%lu dqs_in_d=%lu io_in_d=%lu io_out1_d=%lu io_out2_d=%lu"
"dqs_in_reserve=%lu dqs_out_reserve=%lu", (long unsigned int)IO_DQS_EN_PHASE_MAX,
(long unsigned int)IO_DQDQS_OUT_PHASE_MAX, (long unsigned int)IO_DQS_EN_DELAY_MAX,
(long unsigned int)IO_DQS_IN_DELAY_MAX, (long unsigned int)IO_IO_IN_DELAY_MAX,
(long unsigned int)IO_IO_OUT1_DELAY_MAX, (long unsigned int)IO_IO_OUT2_DELAY_MAX,
(long unsigned int)IO_DQS_IN_RESERVE, (long unsigned int)IO_DQS_OUT_RESERVE);
hc_initialize_rom_data();
//USER update info for sims
reg_file_set_stage(CAL_STAGE_NIL);
reg_file_set_group(0);
// Load global needed for those actions that require
// some dynamic calibration support
dyn_calib_steps = STATIC_CALIB_STEPS;
// Load global to allow dynamic selection of delay loop settings
// based on calibration mode
if (!((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_DELAY_LOOPS)) {
skip_delay_mask = 0xff;
} else {
skip_delay_mask = 0x0;
}
#ifdef TEST_SIZE
if (!check_test_mem(1)) {
IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0x9090);
IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
}
write_test_mem();
if (!check_test_mem(0)) {
IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0x9191);
IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
}
#endif
pass = run_mem_calibrate();
// EMPTY
return pass;
}