generic-poky/documentation/dev-manual/dev-manual-kernel-appendix.xml

841 lines
42 KiB
XML
Raw Normal View History

<!DOCTYPE appendix PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
<appendix id='dev-manual-kernel-appendix'>
<title>Kernel Modification Example</title>
<para>
Kernel modification involves changing or adding configurations to an existing kernel,
adding recipes to the kernel that are needed to support specific hardware features, or even
changing the source code itself.
This section presents some simple examples that modify the kernel source code,
change the kernel configuration, and add a kernel source recipe.
<!-- [WRITER'S NOTE: I might want to work in information about applying a local
change to a kernel layer and also pushing a change upstream into the tree]
<orderedlist>
<listitem><para>Iteratively determine and set kernel configurations and make
kernel recipe changes.</para></listitem>
<listitem><para>Apply your configuration changes to your local kernel layer.
</para></listitem>
<listitem><para>Push your configuration and recipe changes upstream into the
Yocto Project source repositories to make them available to the community.
</para></listitem>
</orderedlist> -->
</para>
<section id='modifying-the-kernel-source-code'>
<title>Modifying the Kernel Source Code</title>
<para>
This example adds some simple QEMU emulator console output at boot time by
adding <filename>printk</filename> statements to the kernel's
<filename>calibrate.c</filename> source code file.
Booting the modified image causes the added messages to appear on the emulator's
console.
</para>
<para>
For a general flow of the example, see
<xref linkend='kernel-modification-workflow'>Kernel Modification Workflow</xref>
earlier in this manual.
</para>
<section id='understanding-the-files-you-need'>
<title>Understanding the Files You Need</title>
<para>
Before you modify the kernel you need to know what Git repositories and file
structures you need.
Briefly, you need the following:
<itemizedlist>
<listitem><para>A local Yocto Project files Git repository</para></listitem>
<listitem><para>The <filename>poky-extras</filename> Git repository placed
within the local Yocto Project files Git repository</para></listitem>
<listitem><para>A bare clone of the Linux Yocto kernel that you want to modify
</para></listitem>
<listitem><para>A copy of that bare clone in which you make your source
modifcations</para></listitem>
</itemizedlist>
</para>
<para>
The following illustration summarizes what you need:
</para>
<para>
<imagedata fileref="figures/kernel-example-repos.png" width="7in" depth="5in"
align="center" scale="100" />
</para>
<para>
Here is a brief description of the four areas:
<itemizedlist>
<listitem><para><emphasis>Local Yocto Project Files:</emphasis> This Git
repository contains all the metadata that supports building images in the
Yocto Project build environment.
Note that the Git repository in our example also contains the
<filename>poky-extras</filename> Git repository, which contains the
kernel metadata specific to building a kernel image.
The Local Yocto Project files Git repository also contains the build directory
and configuration files that let you control the build.</para></listitem>
<listitem><para><emphasis><filename>poky-extras</filename>:</emphasis> This
Git repository contains the <filename>meta-kernel-dev</filename> layer,
which is where you make changes that append to the kernel build recipes.
You edit <filename>.bbappend</filename> files to point the build to your
local kernel source files and to define the kernel being built.
This Git repository is a gathering place for extensions to the Linux Yocto
(or really any) kernel recipes that faciliate the creation and development
of kernel features, BSPs or configuration</para></listitem>
<listitem><para><emphasis>Bare Clone of the Linux Yocto Git Repository:</emphasis>
This bare Git repository tracks the upstream Git repository of the Linux Yocto kernel
you are changing.
As mentioned, when you build the Linux Yocto kernel image you point to this repository
so that the build process can locate the locally changed source files.
When you modify the kernel image you must work with a bare clone.
</para></listitem>
<listitem><para><emphasis>Copy of the Linux Yocto Kernel Bare Clone:</emphasis>
This Git repository contains the actual source files that you modify.
Any changes you make to files in this location need to ultimately be pushed
to the bare clone using the <filename>git push</filename> command.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='setting-up-the-local-yocto-project-files-git-repository'>
<title>Setting Up the Local Yocto Project Files Git Repository</title>
<para>
You can get files through tarball extraction or by cloning the <filename>poky</filename>
Git repository.
See the bulleted item
<link linkend='local-yp-release'>Yocto Project Release</link> in
<xref linkend='getting-setup'>Getting Setup</xref> earlier in this manual
for information on how to get these files.
</para>
<para>
This example assumes the name of the Git repository is <filename>poky</filename>.
Once you have the repository set up,
you have many development branches from which you can work.
From inside the repository you can see the branch names and the tag names used
in the Git repository using either of the following two commands:
<literallayout class='monospaced'>
$ cd poky
$ git branch -a
$ git tag -l
</literallayout>
For this example, we are going to use the Yocto Project 1.1_M3 Release,
which maps to the <filename>1.1_M3</filename> branch in the repository.
These commands create a local branch named <filename>1.1_M3</filename>
that tracks the remote branch of the same name.
<literallayout class='monospaced'>
$ git checkout -b 1.1_M3 origin/1.1_M3
Branch 1.1_M3 set up to track remote branch 1.1_M3 from origin.
Switched to a new branch '1.1_M3'
</literallayout>
</para>
</section>
<section id='setting-up-the-poky-extras-git-repository'>
<title>Setting Up the <filename>poky-extras</filename> Git Repository</title>
<para>
This example places the <filename>poky-extras</filename> Git repository inside
of <filename>poky</filename>.
See the bulleted item
<link linkend='poky-extras-repo'>The
<filename>poky-extras</filename> Git Repository</link> in
<xref linkend='getting-setup'>Getting Setup</xref> earlier in this manual
for information on how to get these files.
</para>
</section>
<section id='setting-up-the-bare-clone-and-its-copy'>
<title>Setting Up the Bare Clone and its Copy</title>
<para>
This example modifies the <filename>linux-yocto-2.6.37</filename> kernel.
Thus, you need to create a bare clone of that kernel and then make a copy of the
bare clone.
See the bulleted item
<link linkend='local-kernel-files'>Linux Yocto Kernel</link> in
<xref linkend='getting-setup'>Getting Setup</xref> earlier in this manual
for information on how to do that.
</para>
<para>
The bare clone exists simply as the receiving end of <filename>git push</filename>
commands after you make edits and commits inside the copy of the clone.
The copy (<filename>linux-yocto-2.6.37</filename> in this example) has to have
a local branch created and checked out for your work.
The following commands create and checkout the branch:
<literallayout class='monospaced'>
$ cd ~/linux-yocto-2.6.37
$ git checkout -b common-pc-base origin/yocto/standard/common-pc/base
Branch common-pc-base set up to track remote branch yocto/standard/common-pc/base from origin.
Switched to a new branch 'common-pc-base'
</literallayout>
</para>
</section>
<section id='building-and-booting-the-default-qemu-kernel-image'>
<title>Building and Booting the Default QEMU Kernel Image</title>
<para>
In this example before we make changes to the kernel image we will build it first
and see how it boots inside the QEMU emulator.
<note>
Because a full build can take hours, you should check two variables in the
<filename>build</filename> directory that is created after you source the
<filename>oe-init-build-env</filename> script.
You can find these variables
<filename>BB_NUMBER_THREADS</filename> and <filename>PARALLEL_MAKE</filename>
in the <filename>build/conf</filename> directory in the
<filename>local.conf</filename> configuration file.
By default, these variables are commented out.
If your host development system supports multi-core and multi-thread capabilities
you can uncomment these statements and set the variables to significantly shorten
the full build time.
As a guideline, set <filename>BB_NUMBER_THREADS</filename> to twice the number
of cores your machine supports and set <filename>PARALLEL_MAKE</filename> to one and
a half times the number of cores your machine supports.
</note>
These commands build the default <filename>qemux86</filename> image:
<literallayout class='monospaced'>
$ cd ~/poky
$ source oe-init-build-env
### Shell environment set up for builds. ###
You can now run 'bitbake &lt;target&gt;'
Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
meta-toolchain-sdk
adt-installer
meta-ide-support
You can also run generated qemu images with a command like 'runqemu qemux86'
$ bitbake -k core-image-minimal
</literallayout>
</para>
<para>
The <filename>source</filename> command sets up the build environment, while the
following <filename>bitbake</filename> command starts the build.
</para>
<para>
After the build completes, you can start the QEMU emulator using the resulting image
<filename>qemux86</filename> as follows:
<literallayout class='monospaced'>
$ runqemu qemux86
</literallayout>
</para>
<para>
As the image boots in the emulator, console messages and status appear across the
terminal window.
Because the output scrolls by quickly it is difficult to read.
To examine the output you can log into the system using the
login <filename>root</filename> with no password.
Once you are logged in, you can issue the following command to scroll through the
console output:
<literallayout class='monospaced'>
# dmesg | less
</literallayout>
</para>
<para>
Take note of the output as you will want to look for your inserted print command output
later in the example.
</para>
</section>
<section id='changing-the-source-code-and-pushing-it-to-the-bare-clone'>
<title>Changing the Source Code and Pushing it to the Bare Clone</title>
<para>
The file you change in this example is named <filename>calibrate.c</filename>
and is located in the <filename>linux-yocto-2.6.37</filename> Git repository
in <filename>init</filename>.
For this example simply insert several <filename>printk</filename> statements
at the beginning of the <filename>calibrate_delay</filename> function.
Now let's look at the changes to the source code.
Here is the unaltered code at the start of this function:
<literallayout class='monospaced'>
void __cpuinit calibrate_delay(void)
{
unsigned long ticks, loopbit;
int lps_precision = LPS_PREC;
static bool printed;
if (preset_lpj) {
.
.
.
</literallayout>
</para>
<para>
This example uses the following five <filename>printk</filename> statements
just after defining <filename>lps_precision</filename>:
<literallayout class='monospaced'>
void __cpuinit calibrate_delay(void)
{
unsigned long ticks, loopbit;
int lps_precision = LPS_PREC;
printk("*************************************\n");
printk("* *\n");
printk("* HELLO YOCTO KERNEL *\n");
printk("* *\n");
printk("*************************************\n");
static bool printed;
if (preset_lpj) {
.
.
.
</literallayout>
</para>
<para>
After making and saving your changes, you need to stage them for the push.
The following Git commands stage and commit your changes:
<literallayout class='monospaced'>
$ git add calibrate.c
$ git commit --signoff
</literallayout>
</para>
<para>
Once the source code has been modified you need to use Git to push the changes to
the bare clone.
If you do not push the changes then the Yocto Project build system will not pick
the changed source files.
</para>
<para>
To push the changes do the following:
<literallayout class='monospaced'>
$ git push origin common-pc-base:yocto/standard/common-pc/base
</literallayout>
</para>
<para>
For general information on how to push a change using Git, see [WRITER'S NOTE: need
the link to the submitting a change section].
</para>
</section>
<section id='changing-build-parameters-for-your-build'>
<title>Changing Build Parameters for Your Build</title>
<para>
At this point the source has been changed and pushed.
Now you need to define some variables used by the Yocto Project build system to locate your
source.
You essentially need to identify where to find the kernel recipe and the changed source code.
You also need to be sure some basic configurations are in place that identify the
type of machine you are building and to help speed up the build should your host support
multiple-core and thread capabilities.
</para>
<para>
Do the following to make sure the build parameters are set up for the example.
Once you set up these build parameters they should not have to change unless you
change the target architecture of the machine you are building or you move
the bare clone, copy of the clone, or the <filename>poky-extras</filename> repository:
<itemizedlist>
<listitem><para><emphasis>Build for the Correct Target Architecture</emphasis> - The
<filename>local.conf</filename> in the build directory defines the build's
target architecture.
By default,
<filename>MACHINE</filename> is set to <filename>qemux86</filename>, which
specifies a 32-bit Intel Architecture target machine suitable for the
QEMU emulator.
So for this example, <filename>MACHINE</filename> is correctly configured.
</para></listitem>
<listitem><para><emphasis>Optimize Build Time</emphasis> - Also in the
<filename>local.conf</filename> file are two variables that can speed your
build time if your host supports multi-core and multi-thread capabilities:
<filename>BB_NUMBER_THREADS</filename> and <filename>PARALLEL_MAKE</filename>.
If the host system has multiple cores then you can optimize build time
by setting <filename>BB_NUMBER_THREADS</filename> to twice the number of
cores and setting <filename>PARALLEL_MAKE</filename> to one and a half times the
number of cores.</para></listitem>
<listitem><para><emphasis>Identify Your <filename>meta-kernel-dev</filename>
Layer</emphasis> - The <filename>BBLAYERS</filename> variable in the
<filename>bblayers.conf</filename> found in the
<filename>poky/build/conf</filename> directory needs to have the path to your local
<filename>meta-kernel-dev</filename> layer.
By default, the <filename>BBLAYERS</filename> variable contains paths to
<filename>meta</filename> and <filename>meta-yocto</filename> in the
<filename>poky</filename> Git repository.
Add the path to your <filename>meta-kernel-dev</filename> location.
Here is an example:
<literallayout class='monospaced'>
BBLAYERS = " \
/home/scottrif/poky/meta \
/home/scottrif/poky/meta-yocto \
/home/scottrif/poky/poky-extras/meta-kernel-dev \
"
</literallayout></para></listitem>
<listitem><para><emphasis>Identify Your Source Files</emphasis> - In the
<filename>linux-yocto_2.6.37.bbappend</filename> file located in the
<filename>poky-extras/meta-kernel-dev/recipes-kernel/linux</filename>
directory you need to identify the location of the
local source code, which in this example is the bare clone named
<filename>linux-yocto-2.6.37.git</filename>.
To do this, set the <filename>KSRC_linux_yocto</filename> to point to your
local <filename>linux-yocto-2.6.37.git</filename> Git repository by adding the
following statement:
<literallayout class='monospaced'>
KSRC_linux_yocto ?= /home/scottrif/linux-yocto-2.6.37.git
</literallayout></para></listitem>
<listitem><para><emphasis>Specify the Kernel Machine</emphasis> - Also in the
<filename>linux-yocto_2.6.37.bbappend</filename> you need to specify
the kernel machine with the following statement:
<literallayout class='monospaced'>
KMACHINE_qemux86 = "yocto/standard/common-pc/base"
</literallayout></para></listitem>
</itemizedlist>
</para>
<note>
Due to some issues there is one more change you have to make before attempting your
build.
</note>
</section>
<section id='building-and-booting-the-modified-qemu-kernel-image'>
<title>Building and Booting the Modified QEMU Kernel Image</title>
<para>
Next, you need to build the modified image.
Do the following:
<orderedlist>
<listitem><para>Your environment should be set up since you previously sourced
the <filename>oe-init-build-env</filename> script.
If it isn't, source the script again from the <filename>poky</filename>
again.</para></listitem>
<listitem><para>Be sure any old images are cleaned out by running the
<filename>cleanall</filename> BitBake task as follows:
<literallayout class='monospaced'>
$ bitbake -c cleanall linux-yocto
</literallayout></para></listitem>
<listitem><para>Build the kernel image using this command:
<literallayout class='monospaced'>
$ bitbake -k core-image-minimal
</literallayout></para></listitem>
</orderedlist>
</para>
<para>
Next, boot the modified image in the QEMU emulator using this command:
<literallayout class='monospaced'>
$ runqemu qemux86
</literallayout>
</para>
<para>
Log into the machine using <filename>root</filename> with no password and then
use the following shell command to scroll through the console's boot output.
<literallayout class='monospaced'>
# dmesg | less
</literallayout>
</para>
<para>
You should see the results of your <filename>printk</filename> statements
as part of the output.
</para>
</section>
</section>
<!-- <section id='is-vfat-supported'>
<title>Is VFAT Supported?</title>
<para>
<literallayout class='monospaced'>
I entered runqemu qemux86 and it fires upthis fires up the emulator and uses the
image and filesystem in the build area created in the previous section.
Then I copied over a pre-created and formated 5.2MB VFAT file named vfat.img.
I did this with scp vfat.img root@192.168.7.2:
The file is in the root directory.
I had to do this because the mkfs.vfat vfat.img command does not work.
mkfs is not recognized in the qemu terminal session.
when I try mount -o loop -t vfat vfat.img mnt/ I get the error
mount: can't set up loop device: No space left on device.
This error is because the loop module is not currently in the kernel image.
However, this module is available in the
build area in the tarball modules-2.6.37.6-yocto-starndard+-20-qemux86.tgz.
You can add this to the kernel image by adding the
IMAGE_INSTALL += " kernel-module-loop" statement at the top of the local.conf
file in the build area and then rebuilding the kernel using bitbake.
It should just build whatever is necessary and not go through an entire build again.
The <filename>menuconfig</filename> tool provides an interactive method with which
to set kernel configurations.
In order to use <filename>menuconfig</filename> from within the BitBake environment
you need to source an environment setup script.
This script is located in the local Yocto Project file structure and is called
<filename>oe-init-build-env</filename>.
</para>
<para>
The following command sets up the environment:
<literallayout class='monospaced'>
$ cd ~/poky
$ source oe-init-build-env
$ runqemu qemux86
Continuing with the following parameters:
KERNEL: [/home/scottrif/poky/build/tmp/deploy/images/bzImage-qemux86.bin]
ROOTFS: [/home/scottrif/poky/build/tmp/deploy/images/core-image-sato-qemux86.ext3]
FSTYPE: [ext3]
Setting up tap interface under sudo
Acquiring lockfile for tap0...
WARNING: distccd not present, no distcc support loaded.
Running qemu...
/home/scottrif/poky/build/tmp/sysroots/x86_64-linux/usr/bin/qemu
-kernel /home/scottrif/poky/build/tmp/deploy/images/bzImage-qemux86.bin
-net nic,vlan=0 -net tap,vlan=0,ifname=tap0,script=no,downscript=no
-hda /home/scottrif/poky/build/tmp/deploy/images/core-image-sato-qemux86.ext3
-show-cursor -usb -usbdevice wacom-tablet -vga vmware -enable-gl -no-reboot
-m 128 &dash;&dash;append "vga=0 root=/dev/hda rw mem=128M ip=192.168.7.2::192.168.7.1:255.255.255.0 oprofile.timer=1 "
Enabling opengl
vmsvga_value_write: guest runs Linux.
</literallayout>
</para>
</section>
<section id='prepare-to-use-menuconfig'>
<title>Prepare to use <filename>menuconfig</filename></title>
<para>
The <filename>menuconfig</filename> tool provides an interactive method with which
to set kernel configurations.
In order to use <filename>menuconfig</filename> from within the BitBake environment
you need to source an environment setup script.
This script is located in the local Yocto Project file structure and is called
<filename>oe-init-build-env</filename>.
</para>
<para>
The following command sets up the environment:
<literallayout class='monospaced'>
$ cd ~/poky
$ source oe-init-build-env
</literallayout>
</para>
</section>
<section id='make-configuration-changes-to-the-kernel'>
<title>Make Configuration Changes to the Kernel</title>
<para>
After setting up the environment to run <filename>menuconfig</filename> you are ready
to use the tool to interactively change the kernel configuration.
In this example we are basing our changes on the <filename>linux-yocto-2.6.37</filename>
kernel.
The Yocto Project build environment recognizes this kernel as
<filename>linux-yocto</filename>.
Thus, the following command from the shell in which you previously sourced the
environment initialization script launches <filename>menuconfig</filename>:
<literallayout class='monospaced'>
$ bitbake linux-yocto -c menuconfig
</literallayout>
</para>
<para>
[WRITER'S NOTE: Stuff from here down are crib notes]
</para>
<para>
Once menuconfig fires up you see all kinds of categories that you can interactively
investigate.
If they have an "M" in it then the feature is "modularized".
I guess that means that means that it needs to be manually linked in when the
kernel is booted??? (Not sure).
If they have an "*" then the feature is automatically part of the kernel.]
</para>
<para>
So the tmp/work/ area was created in poky and there is a .config file in there and
a .config.old file.
The old one must have been created when I exited from menuconfig after poking around
a bit.
Nope - appears to just be created automatically.
</para>
<para>
A good practice is to first determine what configurations you have for the kernel.
You can see the results by looking in the .config file in the build/tmp/work/qemux86-poky-linux area
of the local YP files.
There is a directory named linux-yocto-2.6.37* in the directory.
In that directory is a directory named linux-qemux86-standard-build.
In that directory you will find a file named .config that is the configuration file
for the kernel that will be used when you build the kernel.
You can open that file up and examine it.
If you do a search for "VFAT" you will see that that particular configuration is not
enabled for the kernel.
This means that you cannot print a VFAT text file, or for that matter, even mount one
from the image if you were to build it at this point.
</para>
<para>
You can prove the point by actually trying it at this point.
Here are the commands:
<literallayout class='monospaced'>
$ mkdir ~/vfat-test
$ cd ~/vfat-test
$ dd if=/dev/zero of=vfat.img bs=1024 count=5000 [creates a 5MB disk image]
5+0 records in
5+0 records out
5242880 bytes (5.2 MB) copied, 0.00798912 s, 656 MB/s
$ ls -lah [lists the contents of the new image. l=long, a=all, h=human readable]
total 5.1M
drwxr-xr-x 2 srifenbark scottrif 4.0K 2011-08-01 08:18 .
drwxr-xr-x 66 srifenbark scottrif 4.0K 2011-08-01 08:14 ..
-rw-r&dash;&dash;r&dash;&dash; 1 srifenbark scottrif 5.0M 2011-08-01 08:18 vfat.img
$ mkfs.vfat vfat.img [formats the disk image]
mkfs.vfat 3.0.7 (24 Dec 2009)
$ mkdir mnt [mounts the disk image]
$ sudo su [gives you root privilege]
# mount -o loop vfat.img mnt [mounts it as a loop device]
# ls mnt [shows nothing in mnt]
# mount [lists the mounted filesystems - note/dev/loop0]
/dev/sda1 on / type ext4 (rw,errors=remount-ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
none on /sys type sysfs (rw,noexec,nosuid,nodev)
none on /sys/fs/fuse/connections type fusectl (rw)
none on /sys/kernel/debug type debugfs (rw)
none on /sys/kernel/security type securityfs (rw)
none on /dev type devtmpfs (rw,mode=0755)
none on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620)
none on /dev/shm type tmpfs (rw,nosuid,nodev)
none on /var/run type tmpfs (rw,nosuid,mode=0755)
none on /var/lock type tmpfs (rw,noexec,nosuid,nodev)
none on /lib/init/rw type tmpfs (rw,nosuid,mode=0755)
binfmt_misc on /proc/sys/fs/binfmt_misc type binfmt_misc (rw,noexec,nosuid,nodev)
gvfs-fuse-daemon on /home/scottrif/.gvfs type fuse.gvfs-fuse-daemon (rw,nosuid,nodev,user=srifenbark)
/dev/loop0 on /home/scottrif/vfat-test/mnt type vfat (rw)
# echo "hello world" > mnt/hello.txt [creates a text file in the mounted VFAT system]
# ls mnt [verifies the file is there]
hello.txt
# cat mnt/hello.txt [displays the contents of the file created]
hello world
# umount mnt [unmounts the system and destroys the loop]
# exit [gets out of privileged user mode]
exit
$ lsmod [this stuff Darren did to show me ]
Module Size Used by [the status of modules in the regular linux kernel]
nls_iso8859_1 4633 0
nls_cp437 6351 0
vfat 10866 0
fat 55350 1 vfat
snd_hda_codec_atihdmi 3023 1
binfmt_misc 7960 1
snd_hda_codec_realtek 279008 1
ppdev 6375 0
snd_hda_intel 25805 2
fbcon 39270 71
tileblit 2487 1 fbcon
font 8053 1 fbcon
bitblit 5811 1 fbcon
snd_hda_codec 85759 3 snd_hda_codec_atihdmi,snd_hda_codec_realtek,snd_hda_intel
softcursor 1565 1 bitblit
snd_seq_dummy 1782 0
snd_hwdep 6924 1 snd_hda_codec
vga16fb 12757 0
snd_pcm_oss 41394 0
snd_mixer_oss 16299 1 snd_pcm_oss
snd_pcm 87946 3 snd_hda_intel,snd_hda_codec,snd_pcm_oss
vgastate 9857 1 vga16fb
snd_seq_oss 31191 0
snd_seq_midi 5829 0
snd_rawmidi 23420 1 snd_seq_midi
radeon 744506 3
snd_seq_midi_event 7267 2 snd_seq_oss,snd_seq_midi
ttm 61007 1 radeon
snd_seq 57481 6 snd_seq_dummy,snd_seq_oss,snd_seq_midi,snd_seq_midi_event
drm_kms_helper 30742 1 radeon
snd_timer 23649 2 snd_pcm,snd_seq
snd_seq_device 6888 5 snd_seq_dummy,snd_seq_oss,snd_seq_midi,snd_rawmidi,snd_seq
usb_storage 50377 0
snd 71283 16 \
snd_hda_codec_realtek,snd_hda_intel,snd_hda_codec, \
snd_hwdep,snd_pcm_oss,snd_mixer_oss,snd_pcm, \
snd_seq_oss,snd_rawmidi,snd_seq,snd_timer,snd_seq_device
soundcore 8052 1 snd
psmouse 65040 0
drm 198886 5 radeon,ttm,drm_kms_helper
i2c_algo_bit 6024 1 radeon
serio_raw 4918 0
snd_page_alloc 8500 2 snd_hda_intel,snd_pcm
dell_wmi 2177 0
dcdbas 6886 0
lp 9336 0
parport 37160 2 ppdev,lp
usbhid 41116 0
ohci1394 30260 0
hid 83888 1 usbhid
ieee1394 94771 1 ohci1394
tg3 122382 0
</literallayout>
</para>
</section>
</section> -->
</appendix>
<!--
EXTRA STUFF I MIGHT NEED BUT NOW SURE RIGHT NOW.
In the standard layer structure you have several areas that you need to examine or
modify.
For this example the layer contains four areas:
<itemizedlist>
<listitem><para><emphasis><filename>conf</filename></emphasis> - Contains the
<filename>layer.conf</filename> that identifies the location of the recipe files.
</para></listitem>
<listitem><para><emphasis><filename>images</filename></emphasis> - Contains the
image recipe file.
This recipe includes the base image you will be using and specifies other
packages the image might need.</para></listitem>
<listitem><para><emphasis><filename>recipes-bsp</filename></emphasis> - Contains
recipes specific to the hardware for which you are developing the kernel.
</para></listitem>
<listitem><para><emphasis><filename>recipes-kernel</filename></emphasis> - Contains the
"append" files that add information to the main recipe kernel.
</para></listitem>
</itemizedlist>
</para>
<para>
Let's take a look at the <filename>layer.conf</filename> in the
<filename>conf</filename> directory first.
This configuration file enables the Yocto Project build system to locate and
use the information in your new layer.
</para>
<para>
The variable <filename>BBPATH</filename> needs to include the path to your layer
as follows:
<literallayout class='monospaced'>
BBPATH := "${BBPATH}:${LAYERDIR}"
</literallayout>
And, the variable <filename>BBFILES</filename> needs to be modified to include your
recipe and append files:
<literallayout class='monospaced'>
BBFILES := "${BBFILES} ${LAYERDIR}/images/*.bb \
${LAYERDIR}/images/*.bbappend \
${LAYERDIR}/recipes-*/*/*.bb \
${LAYERDIR}/recipes-*/*/*.bbappend"
</literallayout>
Finally, you need to be sure to use your layer name in these variables at the
end of the file:
<literallayout class='monospaced'>
BBFILE_COLLECTIONS += "elc"
BBFILE_PATTERN_elc := "^${LAYERDIR}/"
BBFILE_PRIORITY_elc = "9"
</literallayout>
</para>
<para>
The <filename>images</filename> directory contains an append file that helps
further define the image.
In our example, the base image is <filename>core-image-minimal</filename>.
The image does, however, need some additional modules that we are using
for this example.
These modules support the amixer functionality.
Here is the append file:
<literallayout class='monospaced'>
require recipes-core/images/poky-image-minimal.bb
IMAGE_INSTALL += "dropbear alsa-utils-aplay alsa-utils-alsamixer"
IMAGE_INSTALL_append_qemux86 += " kernel-module-snd-ens1370 \
kernel-module-snd-rawmidi kernel-module-loop kernel-module-nls-cp437 \
kernel-module-nls-iso8859-1 qemux86-audio alsa-utils-amixer"
LICENSE = "MIT"
</literallayout>
</para>
<para>
While the focus of this example is not on the BSP, it is worth mentioning that the
<filename>recipes-bsp</filename> directory has the recipes and append files for
features that the hardware requires.
In this example, there is a script and a recipe to support the
<filename>amixer</filename> functionality in QEMU.
It is beyond the scope of this manual to go too deeply into the script.
Suffice it to say that the script tests for the presence of the mixer, sets up
default mixer values, enables the mixer, unmutes master and then
sets the volume to 100.
</para>
<para>
The recipe <filename>qemu86-audio.bb</filename> installs and runs the
<filename>amixer</filename> when the system boots.
Here is the recipe:
<literallayout class='monospaced'>
SUMMARY = "Provide a basic init script to enable audio"
DESCRIPTION = "Set the volume and unmute the Front mixer setting during boot."
SECTION = "base"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${POKYBASE}/LICENSE;md5=3f40d7994397109285ec7b81fdeb3b58"
PR = "r4"
inherit update-rc.d
RDEPENDS = "alsa-utils-amixer"
SRC_URI = "file://qemux86-audio"
INITSCRIPT_NAME = "qemux86-audio"
INITSCRIPT_PARAMS = "defaults 90"
do_install() {
install -d ${D}${sysconfdir} \
${D}${sysconfdir}/init.d
install -m 0755 ${WORKDIR}/qemux86-audio ${D}${sysconfdir}/init.d
cat ${WORKDIR}/${INITSCRIPT_NAME} | \
sed -e 's,/etc,${sysconfdir},g' \
-e 's,/usr/sbin,${sbindir},g' \
-e 's,/var,${localstatedir},g' \
-e 's,/usr/bin,${bindir},g' \
-e 's,/usr,${prefix},g' > ${D}${sysconfdir}/init.d/${INITSCRIPT_NAME}
chmod 755 ${D}${sysconfdir}/init.d/${INITSCRIPT_NAME}
}
</literallayout>
</para>
<para>
The last area to look at is <filename>recipes-kernel</filename>.
This area holds configuration fragments and kernel append files.
The append file must have the same name as the kernel recipe, which is
<filename>linux-yocto-2.6.37</filename> in this example.
The file can <filename>SRC_URI</filename> statements to point to configuration
fragments you might have in the layer.
The file can also contain <filename>KERNEL_FEATURES</filename> statements that specify
included kernel configurations that ship with the Yocto Project.
</para>
-->
<!--
vim: expandtab tw=80 ts=4
-->