generic-poky/bitbake/doc/user-manual/user-manual-metadata.xml

1958 lines
90 KiB
XML

<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
<chapter id="user-manual-metadata">
<title>Metadata</title>
<section>
<title>Overview</title>
<para>
The BitBake task executor together with various types of configuration
files form the OpenEmbedded Core.
This section provides an overview of the task executor and the
configuration files by describing their use and interaction.
</para>
<para>
BitBake handles the parsing and execution of the data files.
The data itself is of various types:
<itemizedlist>
<listitem><para><emphasis>Recipes:</emphasis>
Details about particular pieces of software.
</para></listitem>
<listitem><para><emphasis>Class Data:</emphasis>
An abstraction of common build information
(e.g. how to build a Linux kernel).
</para></listitem>
<listitem><para><emphasis>Configuration Data:</emphasis>
Machine-specific settings, policy decisions,
and so forth.
Configuration data acts as the glue to bind everything
together.</para></listitem>
</itemizedlist>
The remainder of this chapter provides examples of BitBake metadata.
Any syntax not supported in any of the previously listed areas
is documented as such.
</para>
</section>
<section id='basic-syntax'>
<title>Basic Syntax</title>
<para>
This section provides some basic syntax examples.
</para>
<section id='basic-variable-setting'>
<title>Basic Variable Setting</title>
<para>
The following example sets <filename>VARIABLE</filename> to
"value".
This assignment occurs immediately as the statement is parsed.
It is a "hard" assignment.
<literallayout class='monospaced'>
VARIABLE = "value"
</literallayout>
</para>
</section>
<section id='variable-expansion'>
<title>Variable Expansion</title>
<para>
BitBake supports variables referencing one another's
contents using a syntax that is similar to shell scripting.
Following is an example that results in <filename>A</filename>
containing "aval" and <filename>B</filename> containing
"preavalpost".
<literallayout class='monospaced'>
A = "aval"
B = "pre${A}post"
</literallayout>
</para>
</section>
<section id='setting-a-default-value'>
<title>Setting a default value (?=)</title>
<para>
You can use the "?=" operator to achieve a "softer" assignment
for a variable.
This type of assignment allows you to define a variable if it
is undefined when the statement is parsed, but to leave the
value alone if the variable has a value.
Here is an example:
<literallayout class='monospaced'>
A ?= "aval"
</literallayout>
If <filename>A</filename> is set at the time this statement is parsed,
the variable retains its value.
However, if <filename>A</filename> is not set,
the variable is set to "aval".
<note>
This assignment is immediate.
Consequently, if multiple "?=" assignments
to a single variable exist, the first of those ends up getting
used.
</note>
</para>
</section>
<section id='setting-a-weak-default-value'>
<title>Setting a weak default value (??=)</title>
<para>
It is possible to use a "weaker" assignment that in the
previous section by using the "??=" operator.
This assignment behaves identical to "?=" except that the
assignment is made at the end of the parsing process rather
than immediately.
Consequently, when multiple "??=" assignments exist, the last
one is used.
Also, any "=" or "?=" assignment will override the value set with
"??=".
Here is an example:
<literallayout class='monospaced'>
A ??= "somevalue"
A ??= "someothervalue"
</literallayout>
If <filename>A</filename> is set before the above statements are parsed,
the variable retains its value.
If <filename>A</filename> is not set,
the variable is set to "someothervalue".
</para>
<para>
Again, this assignment is a "lazy" or "weak" assignment
because it does not occur until the end
of the parsing process.
</para>
</section>
<section id='immediate-variable-expansion'>
<title>Immediate variable expansion (:=)</title>
<para>
The ":=" operator results in a variable's
contents being expanded immediately,
rather than when the variable is actually used:
<literallayout class='monospaced'>
T = "123"
A := "${B} ${A} test ${T}"
T = "456"
B = "${T} bval"
C = "cval"
C := "${C}append"
</literallayout>
In this example, <filename>A</filename> contains
"test 123" because <filename>${B}</filename> and
<filename>${A}</filename> at the time of parsing are undefined,
which leaves "test 123".
And, the variable <filename>C</filename>
contains "cvalappend" since <filename>${C}</filename> immediately
expands to "cval".
</para>
</section>
<section id='appending-and-prepending'>
<title>Appending (+=) and prepending (=+) With Spaces</title>
<para>
Appending and prepending values is common and can be accomplished
using the "+=" and "=+" operators.
These operators insert a space between the current
value and prepended or appended value.
Here are some examples:
<literallayout class='monospaced'>
B = "bval"
B += "additionaldata"
C = "cval"
C =+ "test"
</literallayout>
The variable <filename>B</filename> contains
"bval additionaldata" and <filename>C</filename>
contains "test cval".
</para>
</section>
<section id='appending-and-prepending-without-spaces'>
<title>Appending (.=) and Prepending (=.) Without Spaces</title>
<para>
If you want to append or prepend values without an
inserted space, use the ".=" and "=." operators.
Here are some examples:
<literallayout class='monospaced'>
B = "bval"
B .= "additionaldata"
C = "cval"
C =. "test"
</literallayout>
The variable <filename>B</filename> contains
"bvaladditionaldata" and
<filename>C</filename> contains "testcval".
</para>
</section>
<section id='appending-and-prepending-override-style-syntax'>
<title>Appending and Prepending (Override Style Syntax)</title>
<para>
You can also append and prepend a variable's value
using an override style syntax.
When you use this syntax, no spaces are inserted.
Here are some examples:
<literallayout class='monospaced'>
B = "bval"
B_append = " additional data"
C = "cval"
C_prepend = "additional data "
D = "dval"
D_append = "additional data"
</literallayout>
The variable <filename>B</filename> becomes
"bval additional data" and <filename>C</filename> becomes
"additional data cval".
The variable <filename>D</filename> becomes
"dvaladditional data".
<note>
You must control all spacing when you use the
override syntax.
</note>
</para>
</section>
<section id='removing-override-style-syntax'>
<title>Removal (Override Style Syntax)</title>
<para>
You can remove values from lists using the removal
override style syntax.
Specifying a value for removal causes all occurrences of that
value to be removed from the variable.
</para>
<para>
When you use this syntax, BitBake expects one or more strings.
Surrounding spaces are removed as well.
Here is an example:
<literallayout class='monospaced'>
FOO = "123 456 789 123456 123 456 123 456"
FOO_remove = "123"
FOO_remove = "456"
FOO2 = "abc def ghi abcdef abc def abc def"
FOO2_remove = "abc def"
</literallayout>
The variable <filename>FOO</filename> becomes
"789 123456" and <filename>FOO2</filename> becomes
"ghi abcdef".
</para>
</section>
<section id='variable-flag-syntax'>
<title>Variable Flag Syntax</title>
<para>
Variable flags are BitBake's implementation of variable properties
or attributes.
It is a way of tagging extra information onto a variable.
You can find more out about variable flags in general in the
"<link linkend='variable-flags'>Variable Flags</link>"
section.
</para>
<para>
You can define, append, and prepend values to variable flags.
All the standard syntax operations previously mentioned work
for variable flags except for override style syntax
(i.e. <filename>_prepend</filename>, <filename>_append</filename>,
and <filename>_remove</filename>).
</para>
<para>
Here are some examples showing how to set variable flags:
<literallayout class='monospaced'>
FOO[a] = "abc"
FOO[b] = "123"
FOO[a] += "456"
</literallayout>
The variable <filename>FOO</filename> has two flags:
<filename>a</filename> and <filename>b</filename>.
The flags are immediately set to "abc" and "123", respectively.
The <filename>a</filename> flag becomes "abc456".
</para>
</section>
<section id='inline-python-variable-expansion'>
<title>Inline Python Variable Expansion</title>
<para>
You can use inline Python variable expansion to
set variables.
Here is an example:
<literallayout class='monospaced'>
DATE = "${@time.strftime('%Y%m%d',time.gmtime())}"
</literallayout>
This example results in the <filename>DATE</filename>
variable becoming the current date.
</para>
</section>
</section>
<section id='conditional-syntax-overrides'>
<title>Conditional Syntax (Overrides)</title>
<para>
BitBake uses
<link linkend='var-OVERRIDES'><filename>OVERRIDES</filename></link>
to control what variables are overridden after BitBake
parses recipes and configuration files.
This section describes how you can use
<filename>OVERRIDES</filename> as conditional metadata,
talks about key expansion in relationship to
<filename>OVERRIDES</filename>, and provides some examples
to help with understanding.
</para>
<section id='conditional-metadata'>
<title>Conditional Metadata</title>
<para>
You can use <filename>OVERRIDES</filename> to conditionally select
a specific version of a variable and to conditionally
append or prepend the value of a variable.
<itemizedlist>
<listitem><para><emphasis>Selecting a Variable:</emphasis>
The <filename>OVERRIDES</filename> variable is
a colon-character-separated list that contains items
for which you want to satisfy conditions.
Thus, if you have a variable that is conditional on “arm”, and “arm”
is in <filename>OVERRIDES</filename>, then the “arm”-specific
version of the variable is used rather than the non-conditional
version.
Here is an example:
<literallayout class='monospaced'>
OVERRIDES = "architecture:os:machine"
TEST = "default"
TEST_os = "osspecific"
TEST_nooverride = "othercondvalue"
</literallayout>
In this example, the <filename>OVERRIDES</filename>
variable lists three overrides:
"architecture", "os", and "machine".
The variable <filename>TEST</filename> by itself has a default
value of "default".
You select the os-specific version of the <filename>TEST</filename>
variable by appending the "os" override to the variable
(i.e.<filename>TEST_os</filename>).
</para></listitem>
<listitem><para><emphasis>Appending and Prepending:</emphasis>
BitBake also supports append and prepend operations to
variable values based on whether a specific item is
listed in <filename>OVERRIDES</filename>.
Here is an example:
<literallayout class='monospaced'>
DEPENDS = "glibc ncurses"
OVERRIDES = "machine:local"
DEPENDS_append_machine = "libmad"
</literallayout>
In this example, <filename>DEPENDS</filename> becomes
"glibc ncurses libmad".
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='key-expansion'>
<title>Key Expansion</title>
<para>
Key expansion happens when the BitBake datastore is finalized
just before BitBake expands overrides.
To better understand this, consider the following example:
<literallayout class='monospaced'>
A${B} = "X"
B = "2"
A2 = "Y"
</literallayout>
In this case, after all the parsing is complete, and
before any overrides are handled, BitBake expands
<filename>${B}</filename> into "2".
This expansion causes <filename>A2</filename>, which was
set to "Y" before the expansion, to become "X".
</para>
</section>
<section id='variable-interaction-worked-examples'>
<title>Examples</title>
<para>
Despite the previous explanations that show the different forms of
variable definitions, it can be hard to work
out exactly what happens when variable operators, conditional
overrides, and unconditional overrides are combined.
This section presents some common scenarios along
with explanations for variable interactions that
typically confuse users.
</para>
<para>
There is often confusion concerning the order in which
overrides and various "append" operators take effect.
Recall that an append or prepend operation using "_append"
and "_prepend" does not result in an immediate assignment
as would "+=", ".=", "=+", or "=.".
Consider the following example:
<literallayout class='monospaced'>
OVERRIDES = "foo"
A = "Z"
A_foo_append = "X"
</literallayout>
For this case, <filename>A</filename> is
unconditionally set to "Z" and "X" is
unconditionally and immediately appended to the variable
<filename>A_foo</filename>.
Because overrides have not been applied yet,
<filename>A_foo</filename> is set to "X" due to the append
and <filename>A</filename> simply equals "Z".
</para>
<para>
Applying overrides, however, changes things.
Since "foo" is listed in <filename>OVERRIDES</filename>,
the conditional variable <filename>A</filename> is replaced
with the "foo" version, which is equal to "X".
So effectively, <filename>A_foo</filename> replaces <filename>A</filename>.
</para>
<para>
This next example changes the order of the override and
the append:
<literallayout class='monospaced'>
OVERRIDES = "foo"
A = "Z"
A_append_foo = "X"
</literallayout>
For this case, before overrides are handled,
<filename>A</filename> is set to "Z" and <filename>A_append_foo</filename>
is set to "X".
Once the override for "foo" is applied, however,
<filename>A</filename> gets appended with "X".
Consequently, <filename>A</filename> becomes "ZX".
Notice that spaces are not appended.
</para>
<para>
This next example has the order of the appends and overrides reversed
back as in the first example:
<literallayout class='monospaced'>
OVERRIDES = "foo"
A = "Y"
A_foo_append = "Z"
A_foo_append += "X"
</literallayout>
For this case, before any overrides are resolved,
<filename>A</filename> is set to "Y" using an immediate assignment.
After this immediate assignment, <filename>A_foo</filename> is set
to "Z", and then further appended with
"X" leaving the variable set to "Z X".
Finally, applying the override for "foo" results in the conditional
variable <filename>A</filename> becoming "Z X" (i.e.
<filename>A</filename> is replaced with <filename>A_foo</filename>).
</para>
<para>
This final example mixes in some varying operators:
<literallayout class='monospaced'>
A = "1"
A_append = "2"
A_append = "3"
A += "4"
A .= "5"
</literallayout>
For this case, the type of append operators are affecting the
order of assignments as BitBake passes through the code
multiple times.
Initially, <filename>A</filename> is set to "1 45" because
of the three statements that use immediate operators.
After these assignments are made, BitBake applies the
<filename>_append</filename> operations.
Those operations result in <filename>A</filename> becoming "1 4523".
</para>
</section>
</section>
<section id='sharing-functionality'>
<title>Sharing Functionality</title>
<para>
BitBake allows for metadata sharing through include files
(<filename>.inc</filename>) and class files
(<filename>.bbclass</filename>).
For example, suppose you have a piece of common functionality
such as a task definition that you want to share between
more than one recipe.
In this case, creating a <filename>.bbclass</filename>
file that contains the common functionality and then using
the <filename>inherit</filename> directive in your recipes to
inherit the class would be a common way to share the task.
</para>
<para>
This section presents the mechanisms BitBake provides to
allow you to share functionality between recipes.
Specifically, the mechanisms include <filename>include</filename>,
<filename>inherit</filename>, <filename>INHERIT</filename>, and
<filename>require</filename> directives.
</para>
<section id='locating-include-and-class-files'>
<title>Locating Include and Class Files</title>
<para>
BitBake uses the
<link linkend='var-BBPATH'><filename>BBPATH</filename></link>
variable to locate needed include and class files.
The <filename>BBPATH</filename> variable is analogous to
the environment variable <filename>PATH</filename>.
</para>
<para>
In order for include and class files to be found by BitBake,
they need to be located in a "classes" subdirectory that can
be found in <filename>BBPATH</filename>.
</para>
</section>
<section id='inherit-directive'>
<title><filename>inherit</filename> Directive</title>
<para>
When writing a recipe or class file, you can use the
<filename>inherit</filename> directive to inherit the
functionality of a class (<filename>.bbclass</filename>).
BitBake only supports this directive when used within recipe
and class files (i.e. <filename>.bb</filename> and
<filename>.bbclass</filename>).
</para>
<para>
The <filename>inherit</filename> directive is a rudimentary
means of specifying what classes of functionality your
recipes require.
For example, you can easily abstract out the tasks involved in
building a package that uses Autoconf and Automake and put
those tasks into a class file that can be used by your package.
</para>
<para>
As an example, your recipes could use the following directive
to inherit an <filename>autotools.bbclass</filename> file.
The class file would contain common functionality for using
Autotools that could be shared across recipes:
<literallayout class='monospaced'>
inherit autotools
</literallayout>
In this case, BitBake would search for the directory
<filename>classes/autotools.bbclass</filename>
in <filename>BBPATH</filename>.
<note>
You can override any values and functions of the
inherited class within your recipe by doing so
after the "inherit" statement.
</note>
</para>
</section>
<section id='include-directive'>
<title><filename>include</filename> Directive</title>
<para>
BitBake understands the <filename>include</filename>
directive.
This directive causes BitBake to parse whatever file you specify,
and to insert that file at that location.
The directive is much like Make except that if the path specified
on the include line is a relative path, BitBake locates
the first file it can find within <filename>BBPATH</filename>.
</para>
<para>
As an example, suppose you needed a recipe to include some
self-test definitions:
<literallayout class='monospaced'>
include test_defs.inc
</literallayout>
<note>
The <filename>include</filename> directive does not
produce an error when the file cannot be found.
Consequently, it is recommended that if the file you
are including is expected to exist, you should use
<link linkend='require-inclusion'><filename>require</filename></link>
instead of <filename>include</filename>.
Doing so makes sure that an error is produced if the
file cannot be found.
</note>
</para>
</section>
<section id='require-inclusion'>
<title><filename>require</filename> Directive</title>
<para>
BitBake understands the <filename>require</filename>
directive.
This directive behaves just like the
<filename>include</filename> directive with the exception that
BitBake raises a parsing error if the file to be included cannot
be found.
Thus, any file you require is inserted into the file that is
being parsed at the location of the directive.
</para>
<para>
Similar to how BitBake uses
<link linkend='include-directive'><filename>include</filename></link>,
if the path specified
on the require line is a relative path, BitBake locates
the first file it can find within <filename>BBPATH</filename>.
</para>
<para>
As an example, suppose you have two versions of a recipe
(e.g. <filename>foo_1.2.2.bb</filename> and
<filename>foo_2.0.0.bb</filename>) where
each version contains some identical functionality that could be
shared.
You could create an include file named <filename>foo.inc</filename>
that contains the common definitions needed to build "foo".
You need to be sure <filename>foo.inc</filename> is located in the
same directory as your two recipe files as well.
Once these conditions are set up, you can share the functionality
using a <filename>require</filename> directive from within each
recipe:
<literallayout class='monospaced'>
require foo.inc
</literallayout>
</para>
</section>
<section id='inherit-configuration-directive'>
<title><filename>INHERIT</filename> Configuration Directive</title>
<para>
When creating a configuration file (<filename>.conf</filename>),
you can use the <filename>INHERIT</filename> directive to
inherit a class.
BitBake only supports this directive when used within
a configuration file.
</para>
<para>
As an example, suppose you needed to inherit a class
file called <filename>abc.bbclass</filename> from a
configuration file as follows:
<literallayout class='monospaced'>
INHERIT += "abc"
</literallayout>
This configuration directive causes the named
class to be inherited at the point of the directive
during parsing.
As with the <filename>inherit</filename> directive, the
<filename>.bbclass</filename> file must be located in a
"classes" subdirectory in one of the directories specified
in <filename>BBPATH</filename>.
<note>
Because <filename>.conf</filename> files are parsed
first during BitBake's execution, using
<filename>INHERIT</filename> to inherit a class effectively
inherits the class globally (i.e. for all recipes).
</note>
</para>
</section>
</section>
<section id='functions'>
<title>Functions</title>
<para>
As with most languages, functions are the building blocks that
are used to build up operations into tasks.
BitBake supports three types of functions:
<itemizedlist>
<listitem><para><emphasis>Shell Functions:</emphasis>
Functions written in shell script and executed either
directly as functions, tasks, or both.
They can also be called by other shell functions.
</para></listitem>
<listitem><para><emphasis>BitBake Style Python Functions:</emphasis>
Functions written in Python and executed by BitBake or other
Python functions using <filename>bb.build.exec_func()</filename>.
</para></listitem>
<listitem><para><emphasis>Python Functions:</emphasis>
Functions written in Python and executed by Python.
</para></listitem>
</itemizedlist>
Regardless of the type of function, you can only
define them in class (<filename>.bbclass</filename>)
and recipe (<filename>.bb</filename> or <filename>.inc</filename>)
files.
</para>
<section id='shell-functions'>
<title>Shell Functions</title>
<para>
Functions written in shell script and executed either
directly as functions, tasks, or both.
They can also be called by other shell functions.
Here is an example shell function definition:
<literallayout class='monospaced'>
some_function () {
echo "Hello World"
}
</literallayout>
When you create these types of functions in your recipe
or class files, you need to follow the shell programming
rules.
The scripts are executed by <filename>/bin/sh</filename>,
which may not be a bash shell but might be something
such as <filename>dash</filename>.
You should not use Bash-specific script (bashisms).
</para>
</section>
<section id='bitbake-style-python-functions'>
<title>BitBake Style Python Functions</title>
<para>
These functions are written in Python and executed by
BitBake or other Python functions using
<filename>bb.build.exec_func()</filename>.
</para>
<para>
An example BitBake function is:
<literallayout class='monospaced'>
python some_python_function () {
d.setVar("TEXT", "Hello World")
print d.getVar("TEXT", True)
}
</literallayout>
Because the Python "bb" and "os" modules are already
imported, you do not need to import these modules.
Also in these types of functions, the datastore ("d")
is a global variable and is always automatically
available.
</para>
</section>
<section id='python-functions'>
<title>Python Functions</title>
<para>
These functions are written in Python and are executed by
other Python code.
Examples of Python functions are utility functions
that you intend to call from in-line Python or
from within other Python functions.
Here is an example:
<literallayout class='monospaced'>
def get_depends(d):
if d.getVar('SOMECONDITION', True):
return "dependencywithcond"
else:
return "dependency"
SOMECONDITION = "1"
DEPENDS = "${@get_depends(d)}"
</literallayout>
This would result in <filename>DEPENDS</filename>
containing <filename>dependencywithcond</filename>.
</para>
<para>
Here are some things to know about Python functions:
<itemizedlist>
<listitem><para>Python functions can take parameters.
</para></listitem>
<listitem><para>The BitBake datastore is not
automatically available.
Consequently, you must pass it in as a
parameter to the function.
</para></listitem>
<listitem><para>The "bb" and "os" Python modules are
automatically available.
You do not need to import them.
</para></listitem>
</itemizedlist>
</para>
</section>
</section>
<section id='tasks'>
<title>Tasks</title>
<para>
Tasks are BitBake execution units that originate as
functions and make up the steps that BitBake needs to run
for given recipe.
Tasks are only supported in recipe (<filename>.bb</filename>
or <filename>.inc</filename>) and class
(<filename>.bbclass</filename>) files.
By convention, tasks begin with the string "do_".
</para>
<para>
Here is an example of a task that prints out the date:
<literallayout class='monospaced'>
python do_printdate () {
import time print
time.strftime('%Y%m%d', time.gmtime())
}
</literallayout>
</para>
<section id='promoting-a-function-to-a-task'>
<title>Promoting a Function to a Task</title>
<para>
Any function can be promoted to a task by applying the
<filename>addtask</filename> command.
The <filename>addtask</filename> command also describes
inter-task dependencies.
Here is the function from the previous section but with the
<filename>addtask</filename> command promoting it to a task
and defining some dependencies:
<literallayout class='monospaced'>
python do_printdate () {
import time print
time.strftime('%Y%m%d', time.gmtime())
}
addtask printdate after do_fetch before do_build
</literallayout>
In the example, the function is defined and then promoted
as a task.
The <filename>do_printdate</filename> task becomes a dependency of
the <filename>do_build</filename> task, which is the default
task.
And, the <filename>do_printdate</filename> task is dependent upon
the <filename>do_fetch</filename> task.
Execution of the <filename>do_build</filename> task results
in the <filename>do_printdate</filename> task running first.
</para>
</section>
<section id='passing-information-into-the-build-task-environment'>
<title>Passing Information Into the Build Task Environment</title>
<para>
When running a task, BitBake tightly controls the execution
environment of the build tasks to make
sure unwanted contamination from the build machine cannot
influence the build.
Consequently, if you do want something to get passed into the
build task environment, you must take these two steps:
<orderedlist>
<listitem><para>
Tell BitBake to load what you want from the environment
into the datastore.
You can do so through the
<link linkend='var-BB_ENV_EXTRAWHITE'><filename>BB_ENV_EXTRAWHITE</filename></link>
variable.
For example, assume you want to prevent the build system from
accessing your <filename>$HOME/.ccache</filename>
directory.
The following command tells BitBake to load
<filename>CCACHE_DIR</filename> from the environment into
the datastore:
<literallayout class='monospaced'>
export BB_ENV_EXTRAWHITE="$BB_ENV_EXTRAWHITE CCACHE_DIR"
</literallayout></para></listitem>
<listitem><para>
Tell BitBake to export what you have loaded into the
datastore to the task environment of every running task.
Loading something from the environment into the datastore
(previous step) only makes it available in the datastore.
To export it to the task environment of every running task,
use a command similar to the following in your local configuration
file <filename>local.conf</filename> or your
distribution configuration file:
<literallayout class='monospaced'>
export CCACHE_DIR
</literallayout>
<note>
A side effect of the previous steps is that BitBake
records the variable as a dependency of the build process
in things like the setscene checksums.
If doing so results in unnecessary rebuilds of tasks, you can
whitelist the variable so that the setscene code
ignores the dependency when it creates checksums.
</note></para></listitem>
</orderedlist>
</para>
</section>
</section>
<section id='running-a-task'>
<title>Running a Task</title>
<para>
Tasks can either be a shell task or a Python task.
For shell tasks, BitBake writes a shell script to
<filename>${WORKDIR}/temp/run.do_taskname.pid</filename>
and then executes the script.
The generated shell script contains all the exported variables,
and the shell functions with all variables expanded.
Output from the shell script goes to the file
<filename>${WORKDIR}/temp/log.do_taskname.pid</filename>.
Looking at the expanded shell functions in the run file and
the output in the log files is a useful debugging technique.
</para>
<para>
For Python tasks, BitBake executes the task internally and logs
information to the controlling terminal.
Future versions of BitBake will write the functions to files
similar to the way shell tasks are handled.
Logging will be handled in a way similar to shell tasks as well.
</para>
<para>
Once all the tasks have been completed BitBake exits.
</para>
</section>
<section id='variable-flags'>
<title>Variable Flags</title>
<para>
Variable flags (varflags) help control a task's functionality
and dependencies.
BitBake reads and writes varflags to the datastore using the following
command forms:
<literallayout class='monospaced'>
&lt;variable&gt; = d.getVarFlags("&lt;variable&gt;")
self.d.setVarFlags("FOO", {"func": True})
</literallayout>
</para>
<para>
When working with varflags, the same syntax, with the exception of
overrides, applies.
In other words, you can set, append, and prepend varflags just like
variables.
See the
"<link linkend='variable-flag-syntax'>Variable Flag Syntax</link>"
section for details.
</para>
<para>
BitBake has a defined set of varflags available for recipes and
classes.
You can discover the complete set by using <filename>grep</filename>
within a shell and search on the string "VarFlags".
</para>
<para>
Tasks support a number of these flags which control various
functionality of the task:
<itemizedlist>
<listitem><para><emphasis>dirs:</emphasis>
Directories that should be created before the task runs.
</para></listitem>
<listitem><para><emphasis>cleandirs:</emphasis>
Empty directories that should created before the task runs.
</para></listitem>
<listitem><para><emphasis>noexec:</emphasis>
Marks the tasks as being empty and no execution required.
These flags are used as dependency placeholders or used when
added tasks need to be subsequently disabled.
</para></listitem>
<listitem><para><emphasis>nostamp:</emphasis>
Tells BitBake to not generate a stamp file for a task,
which implies the task is always executed.
</para></listitem>
<listitem><para><emphasis>fakeroot:</emphasis>
Causes a task to be run in a fakeroot environment,
obtained by adding the variables in
<link linkend='var-FAKEROOTENV'><filename>FAKEROOTENV</filename></link>
to the environment.
</para></listitem>
<listitem><para><emphasis>umask:</emphasis>
The umask to run the task under.
</para></listitem>
<listitem><para><emphasis>deptask:</emphasis>
Controls task build-time dependencies.
See the
<link linkend='var-DEPENDS'><filename>DEPENDS</filename></link>
variable and the
"<link linkend='build-dependencies'>Build Dependencies</link>"
section for more information.
</para></listitem>
<listitem><para><emphasis>rdeptask:</emphasis>
Controls task runtime dependencies.
See the
<link linkend='var-RDEPENDS'><filename>RDEPENDS</filename></link>
variable, the
<link linkend='var-RRECOMMENDS'><filename>RRECOMMENDS</filename></link>
variable, and the
"<link linkend='runtime-dependencies'>Runtime Dependencies</link>"
section for more information.
</para></listitem>
<listitem><para><emphasis>recrdeptask:</emphasis>
Controls task recursive runtime dependencies.
See the
<link linkend='var-RDEPENDS'><filename>RDEPENDS</filename></link>
variable, the
<link linkend='var-RRECOMMENDS'><filename>RRECOMMENDS</filename></link>
variable, and the
"<link linkend='recursive-dependencies'>Recursive Dependencies</link>"
section for more information.
</para></listitem>
<listitem><para><emphasis>depends:</emphasis>
Controls inter-task dependencies.
See the
<link linkend='var-DEPENDS'><filename>DEPENDS</filename></link>
variable and the
"<link linkend='inter-task-dependencies'>Inter-Task Dependencies</link>"
section for more information.
</para></listitem>
<listitem><para><emphasis>rdepends:</emphasis>
Controls inter-task runtime dependencies.
See the
<link linkend='var-RDEPENDS'><filename>RDEPENDS</filename></link>
variable, the
<link linkend='var-RRECOMMENDS'><filename>RRECOMMENDS</filename></link>
variable, and the
"<link linkend='inter-task-dependencies'>Inter-Task Dependencies</link>"
section for more information.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='parsing-and-execution'>
<title>Parsing and Execution</title>
<section id='parsing-overview'>
<title>Parsing Overview</title>
<para>
BitBake parses configuration files, classes, recipes, and append
files.
</para>
<para>
The first thing BitBake does is look for the
<filename>bitbake.conf</filename> file.
This file resides in the <filename>conf</filename>
directory, which must be listed in
<link linkend='var-BBPATH'><filename>BBPATH</filename></link>.
</para>
<para>
The <filename>bitbake.conf</filename> file lists other configuration
files to include from the <filename>conf</filename> directory below the
directories listed in <filename>BBPATH</filename>.
In general, the most important of these
configuration files from a user's perspective
is <filename>local.conf</filename>, which contains the user's
customized settings for the build environment.
</para>
<para>
Other notable configuration files are the distribution configuration
file and the machine configuration file.
These configuration files are normally identified by
variables unique to the build systems using BitBake.
For example, the Yocto Project uses the
<filename>DISTRO</filename> and <filename>MACHINE</filename>
variables, respectively.
</para>
<para>
After parsing of the configuration files, some standard classes are
included.
The <filename>base.bbclass</filename> file
is always included.
Other classes that are specified in the configuration using the
<link linkend='var-INHERIT'><filename>INHERIT</filename></link>
variable are also included.
BitBake searches for class files in a "classes" subdirectory under
the paths in <filename>BBPATH</filename> in the same way as
configuration files.
</para>
<para>
After classes are included, the variable
<filename>BBFILES</filename> is set, usually in
<filename>local.conf</filename>, and defines the list of
places to search for recipe and append files.
Adding extra content to <filename>BBFILES</filename> is best
achieved through the use of BitBake layers.
</para>
<para>
BitBake parses each recipe and append file located with
<filename>BBFILES</filename> and stores the values of various
variables into the datastore.
In summary, for each recipe and append file pairing, the configuration
plus the base class of variables are set, followed by the data in the
recipe file itself, followed by any inherit commands
that the recipe file might contain.
</para>
<para>
Because parsing recipe and append files is a time consuming
process, a cache, referred to as the "setscene"
is kept to speed up subsequent parsing.
The setscene is invalid if the timestamps of a recipe changes,
any of the include files change, configuration files change,
or class files on which the recipe file depends change.
</para>
</section>
<section id='parsing-configuration-files'>
<title>Configuration files</title>
<para>
Prior to parsing configuration files, Bitbake looks
at certain variables, including:
<itemizedlist>
<listitem><para><link linkend='var-BB_ENV_WHITELIST'><filename>BB_ENV_WHITELIST</filename></link></para></listitem>
<listitem><para><link linkend='var-BB_PRESERVE_ENV'><filename>BB_PRESERVE_ENV</filename></link></para></listitem>
<listitem><para><link linkend='var-BB_ENV_EXTRAWHITE'><filename>BB_ENV_EXTRAWHITE</filename></link></para></listitem>
<listitem><para><link linkend='var-BB_ORIGENV'><filename>BB_ORIGENV</filename></link></para></listitem>
<listitem><para><link linkend='var-PREFERRED_VERSION'><filename>PREFERRED_VERSION</filename></link></para></listitem>
<listitem><para><link linkend='var-PREFERRED_PROVIDERS'><filename>PREFERRED_PROVIDERS</filename></link></para></listitem>
</itemizedlist>
</para>
<para>
The first kind of metadata in BitBake is configuration metadata.
This metadata is global, and therefore affects all packages and
tasks that are executed.
</para>
<para>
BitBake will first search the current working directory for an
optional <filename>conf/bblayers.conf</filename> configuration file.
This file is expected to contain a
<link linkend='var-BBLAYERS'><filename>BBLAYERS</filename></link>
variable that is a space delimited list of 'layer' directories.
For each directory in this list, a <filename>conf/layer.conf</filename>
file will be searched for and parsed with the
<link linkend='var-LAYERDIR'><filename>LAYERDIR</filename></link>
variable being set to the directory where the layer was found.
The idea is these files will setup
<link linkend='var-BBPATH'><filename>BBPATH</filename></link>
and other variables correctly for a given build directory automatically
for the user.
</para>
<para>
BitBake will then expect to find <filename>conf/bitbake.conf</filename>
file somewhere in the user specified <filename>BBPATH</filename>.
That configuration file generally has include directives to pull
in any other metadata (generally files specific to architecture,
machine, local and so on).
</para>
<para>
Only variable definitions and include directives are allowed
in <filename>.conf</filename> files.
The following variables include:
<itemizedlist>
<listitem><para>
<link linkend='var-BITBAKE_UI'><filename>BITBAKE_UI</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-BBDEBUG'><filename>BBDEBUG</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-MULTI_PROVIDER_WHITELIST'><filename>MULTI_PROVIDER_WHITELIST</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-BB_NUMBER_PARSE_THREADS'><filename>BB_NUMBER_PARSE_THREADS</filename></link>
</para></listitem>
<listitem><para>
<filename>BBPKGS</filename>
</para></listitem>
<listitem><para>
<link linkend='var-BB_DEFAULT_TASK'><filename>BB_DEFAULT_TASK</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-TOPDIR'><filename>TOPDIR</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-BB_VERBOSE_LOGS'><filename>BB_VERBOSE_LOGS</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-BB_NICE_LEVEL'><filename>BB_NICE_LEVEL</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-BBFILE_COLLECTIONS'><filename>BBFILE_COLLECTIONS</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-ASSUME_PROVIDED'><filename>ASSUME_PROVIDED</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-BB_DANGLINGAPPENDS_WARNONLY'><filename>BB_DANGLINGAPPENDS_WARNONLY</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-BBINCLUDED'><filename>BBINCLUDED</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-BBFILE_PRIORITY'><filename>BBFILE_PRIORITY</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-BUILDNAME'><filename>BUILDNAME</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-BBMASK'><filename>BBMASK</filename></link>
</para></listitem>
</itemizedlist>
</para>
<section id='layers'>
<title>Layers</title>
<para>
Layers allow you to isolate different types of
customizations from each other.
While you might find it tempting to keep everything in one layer
when working on a single project, the more modular you organize
your metadata, the easier it is to cope with future changes.
</para>
<para>
To illustrate how you can use layers to keep things modular,
consider machine customizations.
These types of customizations typically reside in a special layer,
rather than a general layer, called a Board Specific Package (BSP) Layer.
Furthermore, the machine customizations should be isolated from
recipes and metadata that support a new GUI environment, for
example.
This situation gives you a couple of layers: one for the machine
configurations and one for the GUI environment.
It is important to understand, however, that the BSP layer can still
make machine-specific additions to recipes within
the GUI environment layer without polluting the GUI layer itself
with those machine-specific changes.
You can accomplish this through a recipe that is a BitBake append
(<filename>.bbappend</filename>) file.
</para>
<para>
There are certain variables specific to layers:
<itemizedlist>
<listitem><para>
<link linkend='var-LAYERDEPENDS'><filename>LAYERDEPENDS</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-LAYERVERSION'><filename>LAYERVERSION</filename></link>
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='schedulers'>
<title>Schedulers</title>
<para>
Variables specific to scheduling functionality exist:
<itemizedlist>
<listitem><para>
<link linkend='var-BB_SCHEDULER'><filename>BB_SCHEDULER</filename></link>
</para></listitem>
<listitem><para>
<link linkend='var-BB_SCHEDULERS'><filename>BB_SCHEDULERS</filename></link>
</para></listitem>
</itemizedlist>
</para>
</section>
</section>
<section id='metadata-classes'>
<title>Classes</title>
<para>
BitBake's rudimentary inheritance mechanism is accomplished using
classes.
As briefly mentioned in the metadata introduction, BitBake
parses a class when an inherit directive is encountered, and it
is located in the <filename>classes</filename> directory
relative to the directories in
<link linkend='var-BBPATH'><filename>BBPATH</filename></link>.
</para>
</section>
<section id='recipe-bb-files'>
<title>Recipe (<filename>.bb</filename>) Files</title>
<para>
Recipe files, which are files that have the
<filename>.bb</filename> file extension, are logical units of
tasks for execution.
Normally, that logical unit is a package that needs to be
built.
</para>
<para>
BitBake obeys all inter-recipe dependencies.
</para>
<para>
Recipe files must reside in locations found in the
<link linkend='var-BBFILES'><filename>BBFILES</filename></link>
variable.
</para>
</section>
<section id='append-bbappend-files'>
<title>Append (<filename>.bbappend</filename>) Files</title>
<para>
Append files, which are files that have the
<filename>.bbappend</filename> file extension, add or
extend build information to an existing
<link linkend='recipe-bb-files'>recipe file</link>.
</para>
<para>
BitBake expects every append file to have a corresponding recipe file.
Furthermore, the append file and corresponding recipe file
must use the same root filename.
The filenames can differ only in the file type suffix used
(e.g. <filename>formfactor_0.0.bb</filename> and
<filename>formfactor_0.0.bbappend</filename>).
</para>
<para>
Information in append files overrides the information in the
similarly-named recipe file.
</para>
</section>
</section>
<section id='events'>
<title>Events</title>
<para>
BitBake allows installation of event handlers within
recipe and class files.
Events are triggered at certain points during operation,
such as the beginning of operation against a given
<filename>.bb</filename>, the start of a given task,
task failure, task success, and so forth.
The intent is to make it easy to do things like email
notification on build failure.
</para>
<para>
Following is an example event handler that
prints the name of the event and the content of
the <filename>FILE</filename> variable:
<literallayout class='monospaced'>
addhandler myclass_eventhandler
python myclass_eventhandler() {
from bb.event import getName
from bb import data
print("The name of the Event is %s" % getName(e))
print("The file we run for is %s" % data.getVar('FILE', e.data, True))
}
</literallayout>
This event handler gets called every time an event is
triggered.
A global variable "<filename>e</filename>" is defined and
"<filename>e.data</filename>" contains an instance of
"<filename>bb.data</filename>".
With the <filename>getName(e)</filename> method, one can get
the name of the triggered event.
</para>
<para>
During all builds, the following common events occur:
<itemizedlist>
<listitem><para>
<filename>bb.event.ConfigParsed()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.ParseStarted()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.ParseProgress()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.ParseCompleted()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.BuildStarted()</filename>
</para></listitem>
<listitem><para>
<filename>bb.build.TaskStarted()</filename>
</para></listitem>
<listitem><para>
<filename>bb.build.TaskInvalid()</filename>
</para></listitem>
<listitem><para>
<filename>bb.build.TaskFailedSilent()</filename>
</para></listitem>
<listitem><para>
<filename>bb.build.TaskFailed()</filename>
</para></listitem>
<listitem><para>
<filename>bb.build.TaskSucceeded()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.BuildCompleted()</filename>
</para></listitem>
<listitem><para>
<filename>bb.cooker.CookerExit()</filename>
</para></listitem>
</itemizedlist>
Here is a list of other events that occur based on specific requests
to the server:
<itemizedlist>
<listitem><para>
<filename>bb.event.TreeDataPreparationStarted()</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.TreeDataPreparationProgress</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.TreeDataPreparationCompleted</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.DepTreeGenerated</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.CoreBaseFilesFound</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.ConfigFilePathFound</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.FilesMatchingFound</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.ConfigFilesFound</filename>
</para></listitem>
<listitem><para>
<filename>bb.event.TargetsTreeGenerated</filename>
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='variants-class-extension-mechanism'>
<title>Variants - Class Extension Mechanism</title>
<para>
BitBake supports two features that facilitate creating
from a single recipe file multiple incarnations of that
recipe file where all incarnations are buildable.
These features are enabled through the
<link linkend='var-BBCLASSEXTEND'><filename>BBCLASSEXTEND</filename></link>
and
<link linkend='var-BBVERSIONS'><filename>BBVERSIONS</filename></link>
variables:
<itemizedlist>
<listitem><para><emphasis><filename>BBCLASSEXTEND</filename>:</emphasis>
This variable is a space separated list of classes used to "extend" the
recipe for each variant.
Here is an example that results in a second incarnation of the current
recipe being available.
This second incarnation will have the "native" class inherited.
<literallayout class='monospaced'>
BBCLASSEXTEND = "native"
</literallayout></para></listitem>
<listitem><para><emphasis><filename>BBVERSIONS</filename>:</emphasis>
This variable allows a single recipe to build multiple versions of a
project from a single recipe file.
You can also specify conditional metadata
(using the
<link linkend='var-OVERRIDES'><filename>OVERRIDES</filename></link>
mechanism) for a single version, or an optionally named range of versions.
Here is an example:
<literallayout class='monospaced'>
BBVERSIONS = "1.0 2.0 git"
SRC_URI_git = "git://someurl/somepath.git"
BBVERSIONS = "1.0.[0-6]:1.0.0+ \ 1.0.[7-9]:1.0.7+"
SRC_URI_append_1.0.7+ = "file://some_patch_which_the_new_versions_need.patch;patch=1"
</literallayout>
The name of the range defaults to the original version of the
recipe.
For example, in OpenEmbedded, the recipe file
<filename>foo_1.0.0+.bb</filename> creates a default name range
of <filename>1.0.0+</filename>.
This is useful because the range name is not only placed
into overrides, but it is also made available for the metadata to use
in the variable that defines the base recipe versions for use in
<filename>file://</filename> search paths
(<link linkend='var-FILESPATH'><filename>FILESPATH</filename></link>).
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='dependencies'>
<title>Dependencies</title>
<para>
To allow for efficient operation given multiple processes
executing in parallel, BitBake handles dependencies at
the task level.
BitBake supports a robust method to handle these dependencies.
</para>
<para>
This section describes several types of dependency mechanisms.
</para>
<section id='dependencies-internal-to-the-bb-file'>
<title>Dependencies Internal to the <filename>.bb</filename> File</title>
<para>
BitBake uses the <filename>addtask</filename> directive
to manage dependencies that are internal to a given recipe
file.
You can use the <filename>addtask</filename> directive to
indicate when a task is dependent on other tasks or when
other tasks depend on that recipe.
Here is an example:
<literallayout class='monospaced'>
addtask printdate after do_fetch before do_build
</literallayout>
In this example, the <filename>printdate</filename> task is
depends on the completion of the <filename>do_fetch</filename>
task.
And, the <filename>do_build</filename> depends on the completion
of the <filename>printdate</filename> task.
</para>
</section>
<section id='build-dependencies'>
<title>Build Dependencies</title>
<para>
BitBake uses the
<link linkend='var-DEPENDS'><filename>DEPENDS</filename></link>
variable to manage build time dependencies.
The "deptask" varflag for tasks signifies the task of each
item listed in <filename>DEPENDS</filename> that must
complete before that task can be executed.
Here is an example:
<literallayout class='monospaced'>
do_configure[deptask] = "do_populate_staging"
</literallayout>
In this example, the <filename>do_populate_staging</filename>
task of each item in <filename>DEPENDS</filename> must complete before
<filename>do_configure</filename> can execute.
</para>
</section>
<section id='runtime-dependencies'>
<title>Runtime Dependencies</title>
<para>
BitBake uses the
<link linkend='var-PACKAGES'><filename>PACKAGES</filename></link>,
<link linkend='var-RDEPENDS'><filename>RDEPENDS</filename></link>, and
<link linkend='var-RRECOMMENDS'><filename>RRECOMMENDS</filename></link>
variables to manage runtime dependencies.
</para>
<para>
The <filename>PACKAGES</filename> variable lists runtime
packages.
Each of those packages can have <filename>RDEPENDS</filename> and
<filename>RRECOMMENDS</filename> runtime dependencies.
The "rdeptask" flag for tasks is used to signify the task of each
item runtime dependency which must have completed before that
task can be executed.
<literallayout class='monospaced'>
do_package_write[rdeptask] = "do_package"
</literallayout>
In the previous example, the <filename>do_package</filename>
task of each item in <filename>RDEPENDS</filename> must have
completed before <filename>do_package_write</filename> can execute.
</para>
</section>
<section id='recursive-dependencies'>
<title>Recursive Dependencies</title>
<para>
BitBake uses the "recrdeptask" flag to manage
recursive task dependencies.
BitBake looks through the build-time and runtime
dependencies of the current recipe, looks through
the task's inter-task
dependencies, and then adds dependencies for the
listed task.
Once BitBake has accomplished this, it recursively works through
the dependencies of those tasks.
Iterative passes continue until all dependencies are discovered
and added.
</para>
<para>
You might want to not only have BitBake look for
dependencies of those tasks, but also have BitBake look
for build-time and runtime dependencies of the dependent
tasks as well.
If that is the case, you need to reference the task name
itself in the task list:
<literallayout class='monospaced'>
do_a[recrdeptask] = "do_a do_b"
</literallayout>
</para>
</section>
<section id='inter-task-dependencies'>
<title>Inter-Task Dependencies</title>
<para>
BitBake uses the "depends" flag in a more generic form
to manage inter-task dependencies.
This more generic form allows for inter-dependency
checks for specific tasks rather than checks for
the data in <filename>DEPENDS</filename>.
Here is an example:
<literallayout class='monospaced'>
do_patch[depends] = "quilt-native:do_populate_staging"
</literallayout>
In this example, the <filename>do_populate_staging</filename>
task of the target <filename>quilt-native</filename>
must have completed before the
<filename>do_patch</filename> task can execute.
</para>
<para>
The "rdepends" flag works in a similar way but takes targets
in the runtime namespace instead of the build-time dependency
namespace.
</para>
</section>
</section>
<section id='accessing-datastore-variables-using-python'>
<title>Accessing Datastore Variables Using Python</title>
<para>
It is often necessary to access variables in the
BitBake datastore using Python functions.
The Bitbake datastore has an API that allows you this
access.
Here is a list of available operations:
</para>
<para>
<informaltable frame='none'>
<tgroup cols='2' align='left' colsep='1' rowsep='1'>
<colspec colname='c1' colwidth='1*'/>
<colspec colname='c2' colwidth='1*'/>
<thead>
<row>
<entry align="left"><emphasis>Operation</emphasis></entry>
<entry align="left"><emphasis>Description</emphasis></entry>
</row>
</thead>
<tbody>
<row>
<entry align="left"><filename>d.getVar("X", expand=False)</filename></entry>
<entry align="left">Returns the value of variable "X".
Using "expand=True" expands the value.</entry>
</row>
<row>
<entry align="left"><filename>d.setVar("X", value)</filename></entry>
<entry align="left">Sets the variable "X" to "value".</entry>
</row>
<row>
<entry align="left"><filename>d.appendVar("X", value)</filename></entry>
<entry align="left">Adds "value" to the end of the variable "X".</entry>
</row>
<row>
<entry align="left"><filename>d.prependVar("X", value)</filename></entry>
<entry align="left">Adds "value" to the start of the variable "X".</entry>
</row>
<row>
<entry align="left"><filename>d.delVar("X")</filename></entry>
<entry align="left">Deletes the variable "X" from the datastore.</entry>
</row>
<row>
<entry align="left"><filename>d.renameVar("X", "Y")</filename></entry>
<entry align="left">Renames the variable "X" to "Y".</entry>
</row>
<row>
<entry align="left"><filename>d.getVarFlag("X", flag, expand=False)</filename></entry>
<entry align="left">Gets "flag" from the variable "X".
Using "expand=True" expands the flag.</entry>
</row>
<row>
<entry align="left"><filename>d.setVarFlag("X", flag, value)</filename></entry>
<entry align="left">Sets "flag" for variable "X" to "value".
<filename>setVarFlags</filename> does not clear previous flags.
Think of this operation as <filename>addVarFlags</filename>.</entry>
</row>
<row>
<entry align="left"><filename>d.appendVarFlag("X", flag, value)</filename></entry>
<entry align="left">Need description.</entry>
</row>
<row>
<entry align="left"><filename>d.prependVarFlag("X", flag, value)</filename></entry>
<entry align="left">Need description.</entry>
</row>
<row>
<entry align="left"><filename>d.delVarFlag("X", flag)</filename></entry>
<entry align="left">Need description.</entry>
</row>
<row>
<entry align="left"><filename>d.setVarFlags("X", flagsdict)</filename></entry>
<entry align="left">Sets the flags specified in
the <filename>dict()</filename> parameter.</entry>
</row>
<row>
<entry align="left"><filename>d.getVarFlags("X")</filename></entry>
<entry align="left">Returns a <filename>dict</filename> of the flags for
the variable "X".</entry>
</row>
<row>
<entry align="left"><filename>d.delVarFlags</filename></entry>
<entry align="left">Deletes all the flags for a variable.</entry>
</row>
</tbody>
</tgroup>
</informaltable>
</para>
</section>
<section id='task-checksums-and-setscene'>
<title>Task Checksums and Setscene</title>
<para>
BitBake uses checksums (or signatures) along with the setscene
to determine if a task needs to be run.
This section describes the process.
To help understand how BitBake does this, the section assumes an
OpenEmbedded metadata-based example.
</para>
<para>
This list is a place holder of content existed from previous work
on the manual.
Some or all of it probably needs integrated into the subsections
that make up this section.
For now, I have just provided a short glossary-like description
for each variable.
Ultimately, this list goes away.
<itemizedlist>
<listitem><para><filename>STAMP</filename>:
The base path to create stamp files.</para></listitem>
<listitem><para><filename>STAMPCLEAN</filename>
Again, the base path to create stamp files but can use wildcards
for matching a range of files for clean operations.
</para></listitem>
<listitem><para><filename>BB_STAMP_WHITELIST</filename>
Lists stamp files that are looked at when the stamp policy
is "whitelist".
</para></listitem>
<listitem><para><filename>BB_STAMP_POLICY</filename>
Defines the mode for comparing timestamps of stamp files.
</para></listitem>
<listitem><para><filename>BB_HASHCHECK_FUNCTION</filename>
Specifies the name of the function to call during
the "setscene" part of the task's execution in order
to validate the list of task hashes.
</para></listitem>
<listitem><para><filename>BB_SETSCENE_VERIFY_FUNCTION</filename>
Specifies a function to call that verifies the list of
planned task execution before the main task execution
happens.
</para></listitem>
<listitem><para><filename>BB_SETSCENE_DEPVALID</filename>
Specifies a function BitBake calls that determines
whether BitBake requires a setscene dependency to
be met.
</para></listitem>
<listitem><para><filename>BB_TASKHASH</filename>
Within an executing task, this variable holds the hash
of the task as returned by the currently enabled
signature generator.
</para></listitem>
</itemizedlist>
</para>
<section id='setscene'>
<title>Setscene</title>
<para>
This section needs to get the concept of the setscene across.
The reader needs to know what it is and what it is used for during
the build process.
</para>
</section>
<section id='checksums'>
<title>Checksums (Signatures)</title>
<para>
A checksum is a unique signature of a task's inputs.
The setscene code uses a checksum to determine if a task needs
to be run.
Because it is a change in a task's inputs that triggers running
the task, the process needs to detect all the inputs to a given task.
For shell tasks, this turns out to be fairly easy because
BitBake generates a "run" shell script for each task and
it is possible to create a checksum that gives you a good idea of when
the task's data changes.
</para>
<para>
To complicate the problem, some things should not be included in
the checksum.
First, there is the actual specific build path of a given task -
the working directory.
It does not matter if the working directory changes because it should not
affect the output for target packages.
The simplistic approach for excluding the working directory is to set
it to some fixed value and create the checksum for the "run" script.
</para>
<para>
Another problem results from the "run" scripts containing functions that
might or might not get called.
The incremental build solution contains code that figures out dependencies
between shell functions.
This code is used to prune the "run" scripts down to the minimum set,
thereby alleviating this problem and making the "run" scripts much more
readable as a bonus.
</para>
<para>
So far we have solutions for shell scripts.
What about Python tasks?
The same approach applies even though these tasks are more difficult.
The process needs to figure out what variables a Python function accesses
and what functions it calls.
Again, the incremental build solution contains code that first figures out
the variable and function dependencies, and then creates a checksum for the data
used as the input to the task.
</para>
<para>
Like the working directory case, situations exist where dependencies
should be ignored.
For these cases, you can instruct the build process to ignore a dependency
by using a line like the following:
<literallayout class='monospaced'>
PACKAGE_ARCHS[vardepsexclude] = "MACHINE"
</literallayout>
This example ensures that the <filename>PACKAGE_ARCHS</filename> variable does not
depend on the value of <filename>MACHINE</filename>, even if it does reference it.
</para>
<para>
Equally, there are cases where we need to add dependencies BitBake
is not able to find.
You can accomplish this by using a line like the following:
<literallayout class='monospaced'>
PACKAGE_ARCHS[vardeps] = "MACHINE"
</literallayout>
This example explicitly adds the <filename>MACHINE</filename> variable as a
dependency for <filename>PACKAGE_ARCHS</filename>.
</para>
<para>
Consider a case with in-line Python, for example, where BitBake is not
able to figure out dependencies.
When running in debug mode (i.e. using <filename>-DDD</filename>), BitBake
produces output when it discovers something for which it cannot figure out
dependencies.
</para>
<para>
Thus far, this section has limited discussion to the direct inputs into a task.
Information based on direct inputs is referred to as the "basehash" in the
code.
However, there is still the question of a task's indirect inputs - the
things that were already built and present in the build directory.
The checksum (or signature) for a particular task needs to add the hashes
of all the tasks on which the particular task depends.
Choosing which dependencies to add is a policy decision.
However, the effect is to generate a master checksum that combines the basehash
and the hashes of the task's dependencies.
</para>
<para>
At the code level, there are a variety of ways both the basehash and the
dependent task hashes can be influenced.
Within the BitBake configuration file, we can give BitBake some extra information
to help it construct the basehash.
The following statement effectively results in a list of global variable
dependency excludes - variables never included in any checksum.
This example uses variables from OpenEmbedded to help illustrate
the concept:
<literallayout class='monospaced'>
BB_HASHBASE_WHITELIST ?= "TMPDIR FILE PATH PWD BB_TASKHASH BBPATH DL_DIR \
SSTATE_DIR THISDIR FILESEXTRAPATHS FILE_DIRNAME HOME LOGNAME SHELL TERM \
USER FILESPATH STAGING_DIR_HOST STAGING_DIR_TARGET COREBASE PRSERV_HOST \
PRSERV_DUMPDIR PRSERV_DUMPFILE PRSERV_LOCKDOWN PARALLEL_MAKE \
CCACHE_DIR EXTERNAL_TOOLCHAIN CCACHE CCACHE_DISABLE LICENSE_PATH SDKPKGSUFFIX"
</literallayout>
The previous example excludes the work directory, which is part of
<filename>TMPDIR</filename>.
</para>
<para>
The rules for deciding which hashes of dependent tasks to include through
dependency chains are more complex and are generally accomplished with a
Python function.
The code in <filename>meta/lib/oe/sstatesig.py</filename> shows two examples
of this and also illustrates how you can insert your own policy into the system
if so desired.
This file defines the two basic signature generators OpenEmbedded Core
uses: "OEBasic" and "OEBasicHash".
By default, there is a dummy "noop" signature handler enabled in BitBake.
This means that behavior is unchanged from previous versions.
<filename>OE-Core</filename> uses the "OEBasicHash" signature handler by default
through this setting in the <filename>bitbake.conf</filename> file:
<literallayout class='monospaced'>
BB_SIGNATURE_HANDLER ?= "OEBasicHash"
</literallayout>
The "OEBasicHash" <filename>BB_SIGNATURE_HANDLER</filename> is the same as the
"OEBasic" version but adds the task hash to the stamp files.
This results in any metadata change that changes the task hash, automatically
causing the task to be run again.
This removes the need to bump
<link linkend='var-PR'><filename>PR</filename></link>
values, and changes to metadata automatically ripple across the build.
</para>
<para>
It is also worth noting that the end result of these signature generators is to
make some dependency and hash information available to the build.
This information includes:
<itemizedlist>
<listitem><para><filename>BB_BASEHASH_task-&lt;taskname&gt;</filename>:
The base hashes for each task in the recipe.
</para></listitem>
<listitem><para><filename>BB_BASEHASH_&lt;filename:taskname&gt;</filename>:
The base hashes for each dependent task.
</para></listitem>
<listitem><para><filename>BBHASHDEPS_&lt;filename:taskname&gt;</filename>:
The task dependencies for each task.
</para></listitem>
<listitem><para><filename>BB_TASKHASH</filename>:
The hash of the currently running task.
</para></listitem>
</itemizedlist>
</para>
</section>
</section>
</chapter>