generic-poky/documentation/poky-ref-manual/ref-classes.xml

607 lines
28 KiB
XML

<!DOCTYPE appendix PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
<appendix id='ref-classes'>
<title>Reference: Classes</title>
<para>
Class files are used to abstract common functionality and share it amongst multiple
<filename>.bb</filename> files.
Any metadata usually found in a <filename>.bb</filename> file can also be placed in a class
file.
Class files are identified by the extension <filename>.bbclass</filename> and are usually placed
in a <filename>classes/</filename> directory beneath the
<filename>meta*/</filename> directory found in the Yocto Project file's area
Class files can also be pointed to by BUILDDIR (e.g. <filename>build/</filename>)in the same way as
<filename>.conf</filename> files in the <filename>conf</filename> directory.
Class files are searched for in <filename>BBPATH</filename>
using the same method by which <filename>.conf</filename> files are searched.
</para>
<para>
In most cases inheriting the class is enough to enable its features, although
for some classes you might need to set variables or override some of the
default behaviour.
</para>
<section id='ref-classes-base'>
<title>The base class - <filename>base.bbclass</filename></title>
<para>
The base class is special in that every <filename>.bb</filename>
file inherits it automatically.
This class contains definitions for standard basic
tasks such as fetching, unpacking, configuring (empty by default), compiling
(runs any <filename>Makefile</filename> present), installing (empty by default) and packaging
(empty by default).
These classes are often overridden or extended by other classes
such as <filename>autotools.bbclass</filename> or <filename>package.bbclass</filename>.
The class also contains some commonly used functions such as <filename>oe_runmake</filename>.
</para>
</section>
<section id='ref-classes-autotools'>
<title>Autotooled Packages - <filename>autotools.bbclass</filename></title>
<para>
Autotools (<filename>autoconf</filename>, <filename>automake</filename>,
and <filename>libtool</filename>) bring standardization.
This class defines a set of tasks (configure, compile etc.) that
work for all Autotooled packages.
It should usually be enough to define a few standard variables as documented in the
<link linkend='usingpoky-extend-addpkg-autotools'>Autotooled Package</link> section
and then simply <filename>inherit autotools</filename>.
This class can also work with software that emulates Autotools.
</para>
<para>
It's useful to have some idea of how the tasks defined by this class work
and what they do behind the scenes.
<itemizedlist>
<listitem><para><filename>do_configure</filename> &dash; regenerates the
configure script (using <filename>autoreconf</filename>) and then launches it
with a standard set of arguments used during cross-compilation.
You can pass additional parameters to <filename>configure</filename> through the
<filename><link linkend='var-EXTRA_OECONF'>EXTRA_OECONF</link></filename> variable.
</para></listitem>
<listitem><para><filename>do_compile</filename> &dash; runs <filename>make</filename> with
arguments that specify the compiler and linker.
You can pass additional arguments through
the <filename><link linkend='var-EXTRA_OEMAKE'>EXTRA_OEMAKE</link></filename> variable.
</para></listitem>
<listitem><para><filename>do_install</filename> &dash; runs <filename>make install</filename>
and passes a DESTDIR option, which takes its value from the standard
<filename><link linkend='var-DESTDIR'>DESTDIR</link></filename> variable.
</para></listitem>
</itemizedlist>
</para>
</section>
<section id='ref-classes-update-alternatives'>
<title>Alternatives - <filename>update-alternatives.bbclass</filename></title>
<para>
Several programs can fulfill the same or similar function and be installed with the same name.
For example, the <filename>ar</filename> command is available from the
<filename>busybox</filename>, <filename>binutils</filename> and
<filename>elfutils</filename> packages.
The <filename>update-alternatives.bbclass</filename> class handles renaming the
binaries so that multiple packages can be installed without conflicts.
The <filename>ar</filename> command still works regardless of which packages are installed
or subsequently removed.
The class renames the conflicting binary in each package and symlinks the highest
priority binary during installation or removal of packages.
</para>
<para>
Four variables control this class:
<itemizedlist>
<listitem><para><filename>ALTERNATIVE_NAME</filename> &dash; The name of the
binary that is replaced (<filename>ar</filename> in this example).</para></listitem>
<listitem><para><filename>ALTERNATIVE_LINK</filename> &dash; The path to
the resulting binary (<filename>/bin/ar</filename> in this example).</para></listitem>
<listitem><para><filename>ALTERNATIVE_PATH</filename> &dash; The path to the
real binary (<filename>/usr/bin/ar.binutils</filename> in this example).</para></listitem>
<listitem><para><filename>ALTERNATIVE_PRIORITY</filename> &dash; The priority of
the binary.
The version with the most features should have the highest priority.</para></listitem>
</itemizedlist>
</para>
<para>
Currently, the Yocto Project supports only one binary per package.
</para>
</section>
<section id='ref-classes-update-rc.d'>
<title>Initscripts - <filename>update-rc.d.bbclass</filename></title>
<para>
This class uses <filename>update-rc.d</filename> to safely install an
initialization script on behalf of the package.
The Yocto Project takes care of details such as making sure the script is stopped before
a package is removed and started when the package is installed.
Three variables control this class:
<filename><link linkend='var-INITSCRIPT_PACKAGES'>INITSCRIPT_PACKAGES</link></filename>,
<filename><link linkend='var-INITSCRIPT_NAME'>INITSCRIPT_NAME</link></filename> and
<filename><link linkend='var-INITSCRIPT_PARAMS'>INITSCRIPT_PARAMS</link></filename>.
See the variable links for details.
</para>
</section>
<section id='ref-classes-binconfig'>
<title>Binary config scripts - <filename>binconfig.bbclass</filename></title>
<para>
Before <filename>pkg-config</filename> had become widespread, libraries shipped shell
scripts to give information about the libraries and include paths needed
to build software (usually named <filename>LIBNAME-config</filename>).
This class assists any recipe using such scripts.
</para>
<para>
During staging, Bitbake installs such scripts into the
<filename>sysroots/</filename> directory.
BitBake also changes all paths to point into the <filename>sysroots/</filename>
directory so all builds that use the script will use the correct
directories for the cross compiling layout.
</para>
</section>
<section id='ref-classes-debian'>
<title>Debian renaming - <filename>debian.bbclass</filename></title>
<para>
This class renames packages so that they follow the Debian naming
policy (i.e. <filename>eglibc</filename> becomes <filename>libc6</filename>
and <filename>eglibc-devel</filename> becomes <filename>libc6-dev</filename>.
</para>
</section>
<section id='ref-classes-pkgconfig'>
<title>Pkg-config - <filename>pkgconfig.bbclass</filename></title>
<para>
<filename>pkg-config</filename> brought standardization and this class aims to make its
integration smooth for all libraries that make use of it.
</para>
<para>
During staging, Bitbake installs <filename>pkg-config</filename> data into the
<filename>sysroots/</filename> directory.
By making use of sysroot functionality within <filename>pkg-config</filename>,
this class no longer has to manipulate the files.
</para>
</section>
<section id='ref-classes-src-distribute'>
<title>Distribution of sources - <filename>src_distribute_local.bbclass</filename></title>
<para>
Many software licenses require that source files be provided along with the binaries.
To simplify this process, two classes were created:
<filename>src_distribute.bbclass</filename> and
<filename>src_distribute_local.bbclass</filename>.
</para>
<para>
The results of these classes are <filename>tmp/deploy/source/</filename>
subdirs with sources sorted by
<filename><link linkend='var-LICENSE'>LICENSE</link></filename> field.
If recipes list few licenses (or have entries like "Bitstream Vera"),
the source archive is placed in each license directory.
</para>
<para>
This class operates using three modes:
<itemizedlist>
<listitem><para><emphasis>copy:</emphasis> Copies the files to the
distribute directory.</para></listitem>
<listitem><para><emphasis>symlink:</emphasis> Symlinks the files to the
distribute directory.</para></listitem>
<listitem><para><emphasis>move+symlink:</emphasis> Moves the files into
the distribute directory and then symlinks them back.</para></listitem>
</itemizedlist>
</para>
</section>
<section id='ref-classes-perl'>
<title>Perl modules - <filename>cpan.bbclass</filename></title>
<para>
Recipes for Perl modules are simple.
These recipes usually only need to point to the source's archive and then inherit the
proper <filename>.bbclass</filename> file.
Building is split into two methods depending on which method the module authors used.
</para>
<para>
Modules that use old <filename>Makefile.PL</filename>-based build system require
<filename>cpan.bbclass</filename> in their recipes.
</para>
<para>
Modules that use <filename>Build.PL</filename>-based build system require
using <filename>cpan_build.bbclass</filename> in their recipes.
</para>
</section>
<section id='ref-classes-distutils'>
<title>Python extensions - <filename>distutils.bbclass</filename></title>
<para>
Recipes for Python extensions are simple.
These recipes usually only need to point to the source's archive and then inherit
the proper <filename>.bbclass</filename> file.
Building is split into two methods dependling on which method the module authors used.
</para>
<para>
Extensions that use an Autotools-based build system require Autotools and
<filename>distutils</filename>-based <filename>.bbclasse</filename> files in their recipes.
</para>
<para>
Extensions that use <filename>distutils</filename>-based build systems require
<filename>distutils.bbclass</filename> in their recipes.
</para>
</section>
<section id='ref-classes-devshell'>
<title>Developer Shell - <filename>devshell.bbclass</filename></title>
<para>
This class adds the <filename>devshell</filename> task.
Distribution policy dictates whether to include this class as the Yocto Project does.
See the <link
linkend='platdev-appdev-devshell'>Development Within a Development Shell</link> section
for more information about using devshell.
</para>
</section>
<section id='ref-classes-package'>
<title>Packaging - <filename>package*.bbclass</filename></title>
<para>
The packaging classes add support for generating packages from a build's
output.
The core generic functionality is in <filename>package.bbclass</filename>.
The code specific to particular package types is contained in various sub-classes such as
<filename>package_deb.bbclass</filename>, <filename>package_ipk.bbclass</filename>,
and <filename>package_rpm.bbclass</filename>.
Most users will want one or more of these classes.
</para>
<para>
You can control the list of resulting package formats by using the
<filename><link linkend='var-PACKAGE_CLASSES'>PACKAGE_CLASSES</link></filename>
variable defined in the <filename>local.conf</filename> configuration file
found in the Yocto Project file's <filename>conf</filename> directory.
When defining the variable, you can specify one or more package types.
Since images are generated from packages, a packaging class is
needed to enable image generation.
The first class listed in this variable is used for image generation.
</para>
<para>
The package class you choose can affect build-time performance and has space
ramifications.
In general, building a package with RPM takes about thirty percent more time as
compared to using IPK to build the same or similar package.
This comparison takes into account a complete build of the package with all
dependencies previously built.
The reason for this discrepancy is because the RPM package manager creates and
processes more metadata than the IPK package manager.
Consequently, you might consider setting <filename>PACKAGE_CLASSES</filename>
to "package_ipk" if you are building smaller systems.
</para>
<para>
Keep in mind, however, that RPM starts to provide more abilities than IPK due to
the fact that it processes more metadata.
For example, this information includes individual file types, file checksum generation
and evaluation on install, sparse file support, conflict detection and resolution
for multilib systems, ACID style upgrade, and repackaging abilities for rollbacks.
</para>
<para>
Another consideration for packages built using the RPM package manager is space.
For smaller systems, the extra space used for the Berkley Database and the amount
of metadata can affect your ability to do on-device upgrades.
</para>
<para>
You can find additional information on the effects of the package class at these
two Yocto Project mailing list links:
<itemizedlist>
<listitem><para><ulink url='https://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html'>
https://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html</ulink></para></listitem>
<listitem><para><ulink url='https://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html'>
https://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html</ulink></para></listitem>
</itemizedlist>
</para>
</section>
<section id='ref-classes-kernel'>
<title>Building kernels - <filename>kernel.bbclass</filename></title>
<para>
This class handles building Linux kernels.
The class contains code to build all kernel trees.
All needed headers are staged into the
<filename><link linkend='var-STAGING_KERNEL_DIR'>STAGING_KERNEL_DIR</link></filename>
directory to allow out-of-tree module builds using <filename>module.bbclass</filename>.
</para>
<para>
This means that each built kernel module is packaged separately and inter-module
dependencies are created by parsing the <filename>modinfo</filename> output.
If all modules are required, then installing the <filename>kernel-modules</filename>
package installs all packages with modules and various other kernel packages
such as <filename>kernel-vmlinux</filename>.
</para>
<para>
Various other classes are used by the kernel and module classes internally including
<filename>kernel-arch.bbclass</filename>, <filename>module_strip.bbclass</filename>,
<filename>module-base.bbclass</filename>, and <filename>linux-kernel-base.bbclass</filename>.
</para>
</section>
<section id='ref-classes-image'>
<title>Creating images - <filename>image.bbclass</filename> and <filename>rootfs*.bbclass</filename></title>
<para>
These classes add support for creating images in several formats.
First, the root filesystem is created from packages using
one of the <filename>rootfs_*.bbclass</filename>
files (depending on the package format used) and then the image is created.
</para>
<para>
The <filename><link linkend='var-IMAGE_FSTYPES'>IMAGE_FSTYPES</link></filename>
variable controls the types of images to generate.
</para>
<para>
The <filename><link linkend='var-IMAGE_INSTALL'>IMAGE_INSTALL</link></filename>
variable controls the list of packages to install into the image.
</para>
</section>
<section id='ref-classes-sanity'>
<title>Host System sanity checks - <filename>sanity.bbclass</filename></title>
<para>
This class checks to see if prerequisite software is present so that
users can be notified of potential problems that might affect their build.
The class also performs basic user configuration checks from
the <filename>local.conf</filename> configuration file to
prevent common mistakes that cause build failures.
Distribution policy usually whether to include this class as the Yocto Project does.
</para>
</section>
<section id='ref-classes-insane'>
<title>Generated output quality assurance checks - <filename>insane.bbclass</filename></title>
<para>
This class adds a step to the package generation process that sanity checks the
packages generated by the Yocto Project.
A range of checks are performed that check the build's output
for common problems that show up during runtime.
Distribution policy usually dictates whether to include this class as the Yocto Project does.
</para>
<para>
You can configure the sanity checks so that specific test failures either raise a warning or
an error message.
Typically, failures for new tests generate a warning.
Subsequent failures for the same test would then generate an error message
once the metadata is in a known and good condition.
You use the <filename>WARN_QA</filename> variable to specify tests for which you
want to generate a warning message on failure.
You use the <filename>ERROR_QA</filename> variable to specify tests for which you
want to generate an error message on failure.
</para>
<para>
The following list shows the tests you can list with the <filename>WARN_QA</filename>
and <filename>ERROR_QA</filename> variables:
<itemizedlist>
<listitem><para><emphasis><filename>ldflags:</filename></emphasis>
Ensures that the binaries were linked with the
<filename>LDFLAGS</filename> options provided by the build system.
If this test fails, check that the <filename>LDFLAGS</filename> variable
is being passed to the linker command.</para></listitem>
<listitem><para><emphasis><filename>useless-rpaths:</filename></emphasis>
Checks for dynamic library load paths (rpaths) in the binaries that
by default on a standard system are searched by the linker (e.g.
<filename>/lib</filename> and <filename>/usr/lib</filename>).
While these paths will not cause any breakage, they do waste space and
are unnecessary.</para></listitem>
<listitem><para><emphasis><filename>rpaths:</filename></emphasis>
Checks for rpaths in the binaries that contain build system paths such
as <filename>TMPDIR</filename>.
If this test fails, bad <filename>-rpath</filename> options are being
passed to the linker commands and your binaries have potential security
issues.</para></listitem>
<listitem><para><emphasis><filename>dev-so:</filename></emphasis>
Checks that the <filename>.so</filename> symbolic links are in the
<filename>-dev</filename> package and not in any of the other packages.
In general, these symlinks are only useful for development purposes.
Thus, the <filename>-dev</filename> package is the correct location for
them.
Some very rare cases do exist for dynamically loaded modules where
these symlinks are needed instead in the main package.
</para></listitem>
<listitem><para><emphasis><filename>debug-files:</filename></emphasis>
Checks for <filename>.debug</filename> directories in anything but the
<filename>-dbg</filename> package.
The debug files should all be in the <filename>-dbg</filename> package.
Thus, anything packaged elsewhere is incorrect packaging.</para></listitem>
<listitem><para><emphasis><filename>arch:</filename></emphasis>
Checks the Executable and Linkable Format (ELF) type, bit size and endianness
of any binaries to ensure it matches the target architecture.
This test fails if any binaries don't match the type since there would be an
incompatibility.
Sometimes software, like bootloaders, might need to bypass this check.
</para></listitem>
<listitem><para><emphasis><filename>debug-deps:</filename></emphasis>
Checks that <filename>-dbg</filename> packages only depend on other
<filename>-dbg</filename> packages and not on any other types of packages,
which would cause a packaging bug.</para></listitem>
<listitem><para><emphasis><filename>dev-deps:</filename></emphasis>
Checks that <filename>-dev</filename> packages only depend on other
<filename>-dev</filename> packages and not on any other types of packages,
which would be a packaging bug.</para></listitem>
<listitem><para><emphasis><filename>pkgconfig:</filename></emphasis>
Checks <filename>.pc</filename> files for any
<filename>TMPDIR/WORKDIR</filename> paths.
Any <filename>.pc</filename> file containing these paths is incorrect
since <filename>pkg-config</filename> itself adds the correct sysroot prefix
when the files are accessed.</para></listitem>
<listitem><para><emphasis><filename>la:</filename></emphasis>
Checks <filename>.la</filename> files for any <filename>TMPDIR</filename>
paths.
Any <filename>.la</filename> file continaing these paths is incorrect since
<filename>libtool</filename> adds the correct sysroot prefix when using the
files automatically itself.</para></listitem>
<listitem><para><emphasis><filename>desktop:</filename></emphasis>
Runs the <filename>desktop-file-validate</filename> program against any
<filename>.desktop</filename> files to validate their contents against
the specification for <filename>.desktop</filename> files.</para></listitem>
</itemizedlist>
</para>
</section>
<section id='ref-classes-siteinfo'>
<title>Autotools configuration data cache - <filename>siteinfo.bbclass</filename></title>
<para>
Autotools can require tests that must execute on the target hardware.
Since this is not possible in general when cross compiling, site information is
used to provide cached test results so these tests can be skipped over but
still make the correct values available.
The <filename><link linkend='structure-meta-site'>meta/site directory</link></filename>
contains test results sorted into different categories such as architecture, endianness, and
the <filename>libc</filename> used.
Site information provides a list of files containing data relevant to
the current build in the
<filename><link linkend='var-CONFIG_SITE'>CONFIG_SITE</link></filename> variable
that Autotools automatically picks up.
</para>
<para>
The class also provides variables like
<filename><link linkend='var-SITEINFO_ENDIANNESS'>SITEINFO_ENDIANNESS</link></filename>
and <filename><link linkend='var-SITEINFO_BITS'>SITEINFO_BITS</link></filename>
that can be used elsewhere in the metadata.
</para>
<para>
Because this class is included from <filename>base.bbclass</filename>, it is always active.
</para>
</section>
<section id='ref-classes-useradd'>
<title>Adding Users - <filename>useradd.bbclass</filename></title>
<para>
If you have packages that install files that are owned by custom users or groups,
you can use this class to specify those packages and associate the users and groups
with those packages.
The <filename>meta-skeleton/recipes-skeleton/useradd/useradd-example.bb</filename>
recipe in the Yocto Project Files provides a simple exmample that shows how to add three
users and groups to two packages.
See the <filename>useradd-example.bb</filename> for more information on how to
use this class.
</para>
</section>
<section id='ref-classes-others'>
<title>Other Classes</title>
<para>
Thus far, this appendix has discussed only the most useful and important
classes.
However, other classes exist within the <filename>meta/classes</filename> directory
in the Yocto Project file's directory structure.
You can examine the <filename>.bbclass</filename> files directly for more
information.
</para>
</section>
<!-- Undocumented classes are:
allarch.bbclass
binconfig.bbclass
bootimg.bbclass
buildstats.bbclass
ccache.inc
cmake.bbclass
cml1.bbclass
cross.bbclass
cross-canadian.bbclass
deploy.bbclass
distrodata.bbclass
gconf.bbclass
gettext.bbclass
gnome.bbclass
gtk-doc.bbclass
gtk-icon-cache.bbclass
icecc.bbclass
image-mklibs.bbclass
image-prelink.bbclass
image-swab.bbclass
imagetest-dummy.bbclass
imagetest-qemu.bbclass
insserv.bbclass
lib_package.bbclass
license.bbclass
logging.bbclass
meta.bbclass
metadata_scm.bbclass
mirrors.bbclass
multilib*.bbclass
native.bbclass
nativesdk.bbclass
oelint.bbclass
own-mirrors.bbclass
packagedata.bbclass
packagehistory.bbclass
patch.bbclass
perlnative.bbclass
pkg_distribute.bbclass
pkg_metainfo.bbclass
populate_sdk*.bbclass
prserv.bbclass
python-dir.bbclass
qemu.bbclass
qmake*.bbclass
qt4*.bbclass
recipe_sanity.bbclass
relocatable.bbclass
rm_work.bbclass
scons.bbclass
sdl.bbclass
setuptools.bbclass
sip.bbclass
siteconfig.bbclass
sourcepkg.bbclass
sstate.bbclass
staging.bbclass
syslinux.bbclass
task.bbclass
terminal.bbclass
tinderclient.bbclass
toolchain-scripts.bbclass
typecheck.bbclass
utility-tasks.bbclass
utils.bbclass
-->
</appendix>
<!--
vim: expandtab tw=80 ts=4
-->