linux/security/security.c

1896 lines
54 KiB
C
Raw Normal View History

/*
* Security plug functions
*
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
* Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/capability.h>
#include <linux/dcache.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/lsm_hooks.h>
#include <linux/integrity.h>
#include <linux/ima.h>
#include <linux/evm.h>
#include <linux/fsnotify.h>
#include <linux/mman.h>
#include <linux/mount.h>
#include <linux/personality.h>
#include <linux/backing-dev.h>
#include <net/flow.h>
#define MAX_LSM_EVM_XATTR 2
/* Maximum number of letters for an LSM name string */
#define SECURITY_NAME_MAX 10
/* Boot-time LSM user choice */
static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
CONFIG_DEFAULT_SECURITY;
static void __init do_security_initcalls(void)
{
initcall_t *call;
call = __security_initcall_start;
while (call < __security_initcall_end) {
(*call) ();
call++;
}
}
/**
* security_init - initializes the security framework
*
* This should be called early in the kernel initialization sequence.
*/
int __init security_init(void)
{
pr_info("Security Framework initialized\n");
/*
* Load minor LSMs, with the capability module always first.
*/
capability_add_hooks();
yama_add_hooks();
loadpin_add_hooks();
/*
* Load all the remaining security modules.
*/
do_security_initcalls();
return 0;
}
/* Save user chosen LSM */
static int __init choose_lsm(char *str)
{
strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
return 1;
}
__setup("security=", choose_lsm);
/**
* security_module_enable - Load given security module on boot ?
* @module: the name of the module
*
* Each LSM must pass this method before registering its own operations
* to avoid security registration races. This method may also be used
* to check if your LSM is currently loaded during kernel initialization.
*
* Return true if:
* -The passed LSM is the one chosen by user at boot time,
* -or the passed LSM is configured as the default and the user did not
* choose an alternate LSM at boot time.
* Otherwise, return false.
*/
int __init security_module_enable(const char *module)
{
return !strcmp(module, chosen_lsm);
}
/*
* Hook list operation macros.
*
* call_void_hook:
* This is a hook that does not return a value.
*
* call_int_hook:
* This is a hook that returns a value.
*/
#define call_void_hook(FUNC, ...) \
do { \
struct security_hook_list *P; \
\
list_for_each_entry(P, &security_hook_heads.FUNC, list) \
P->hook.FUNC(__VA_ARGS__); \
} while (0)
#define call_int_hook(FUNC, IRC, ...) ({ \
int RC = IRC; \
do { \
struct security_hook_list *P; \
\
list_for_each_entry(P, &security_hook_heads.FUNC, list) { \
RC = P->hook.FUNC(__VA_ARGS__); \
if (RC != 0) \
break; \
} \
} while (0); \
RC; \
})
/* Security operations */
int security_binder_set_context_mgr(struct task_struct *mgr)
{
return call_int_hook(binder_set_context_mgr, 0, mgr);
}
int security_binder_transaction(struct task_struct *from,
struct task_struct *to)
{
return call_int_hook(binder_transaction, 0, from, to);
}
int security_binder_transfer_binder(struct task_struct *from,
struct task_struct *to)
{
return call_int_hook(binder_transfer_binder, 0, from, to);
}
int security_binder_transfer_file(struct task_struct *from,
struct task_struct *to, struct file *file)
{
return call_int_hook(binder_transfer_file, 0, from, to, file);
}
int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
{
return call_int_hook(ptrace_access_check, 0, child, mode);
security: Fix setting of PF_SUPERPRIV by __capable() Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags the target process if that is not the current process and it is trying to change its own flags in a different way at the same time. __capable() is using neither atomic ops nor locking to protect t->flags. This patch removes __capable() and introduces has_capability() that doesn't set PF_SUPERPRIV on the process being queried. This patch further splits security_ptrace() in two: (1) security_ptrace_may_access(). This passes judgement on whether one process may access another only (PTRACE_MODE_ATTACH for ptrace() and PTRACE_MODE_READ for /proc), and takes a pointer to the child process. current is the parent. (2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only, and takes only a pointer to the parent process. current is the child. In Smack and commoncap, this uses has_capability() to determine whether the parent will be permitted to use PTRACE_ATTACH if normal checks fail. This does not set PF_SUPERPRIV. Two of the instances of __capable() actually only act on current, and so have been changed to calls to capable(). Of the places that were using __capable(): (1) The OOM killer calls __capable() thrice when weighing the killability of a process. All of these now use has_capability(). (2) cap_ptrace() and smack_ptrace() were using __capable() to check to see whether the parent was allowed to trace any process. As mentioned above, these have been split. For PTRACE_ATTACH and /proc, capable() is now used, and for PTRACE_TRACEME, has_capability() is used. (3) cap_safe_nice() only ever saw current, so now uses capable(). (4) smack_setprocattr() rejected accesses to tasks other than current just after calling __capable(), so the order of these two tests have been switched and capable() is used instead. (5) In smack_file_send_sigiotask(), we need to allow privileged processes to receive SIGIO on files they're manipulating. (6) In smack_task_wait(), we let a process wait for a privileged process, whether or not the process doing the waiting is privileged. I've tested this with the LTP SELinux and syscalls testscripts. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 10:37:28 +00:00
}
int security_ptrace_traceme(struct task_struct *parent)
{
return call_int_hook(ptrace_traceme, 0, parent);
}
int security_capget(struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
return call_int_hook(capget, 0, target,
effective, inheritable, permitted);
}
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
int security_capset(struct cred *new, const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted)
{
return call_int_hook(capset, 0, new, old,
effective, inheritable, permitted);
}
int security_capable(const struct cred *cred, struct user_namespace *ns,
userns: security: make capabilities relative to the user namespace - Introduce ns_capable to test for a capability in a non-default user namespace. - Teach cap_capable to handle capabilities in a non-default user namespace. The motivation is to get to the unprivileged creation of new namespaces. It looks like this gets us 90% of the way there, with only potential uid confusion issues left. I still need to handle getting all caps after creation but otherwise I think I have a good starter patch that achieves all of your goals. Changelog: 11/05/2010: [serge] add apparmor 12/14/2010: [serge] fix capabilities to created user namespaces Without this, if user serge creates a user_ns, he won't have capabilities to the user_ns he created. THis is because we were first checking whether his effective caps had the caps he needed and returning -EPERM if not, and THEN checking whether he was the creator. Reverse those checks. 12/16/2010: [serge] security_real_capable needs ns argument in !security case 01/11/2011: [serge] add task_ns_capable helper 01/11/2011: [serge] add nsown_capable() helper per Bastian Blank suggestion 02/16/2011: [serge] fix a logic bug: the root user is always creator of init_user_ns, but should not always have capabilities to it! Fix the check in cap_capable(). 02/21/2011: Add the required user_ns parameter to security_capable, fixing a compile failure. 02/23/2011: Convert some macros to functions as per akpm comments. Some couldn't be converted because we can't easily forward-declare them (they are inline if !SECURITY, extern if SECURITY). Add a current_user_ns function so we can use it in capability.h without #including cred.h. Move all forward declarations together to the top of the #ifdef __KERNEL__ section, and use kernel-doc format. 02/23/2011: Per dhowells, clean up comment in cap_capable(). 02/23/2011: Per akpm, remove unreachable 'return -EPERM' in cap_capable. (Original written and signed off by Eric; latest, modified version acked by him) [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: export current_user_ns() for ecryptfs] [serge.hallyn@canonical.com: remove unneeded extra argument in selinux's task_has_capability] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Daniel Lezcano <daniel.lezcano@free.fr> Acked-by: David Howells <dhowells@redhat.com> Cc: James Morris <jmorris@namei.org> Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 23:43:17 +00:00
int cap)
{
return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
}
int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
int cap)
{
return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
}
int security_quotactl(int cmds, int type, int id, struct super_block *sb)
{
return call_int_hook(quotactl, 0, cmds, type, id, sb);
}
int security_quota_on(struct dentry *dentry)
{
return call_int_hook(quota_on, 0, dentry);
}
int security_syslog(int type)
{
return call_int_hook(syslog, 0, type);
}
int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
{
return call_int_hook(settime, 0, ts, tz);
}
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
{
struct security_hook_list *hp;
int cap_sys_admin = 1;
int rc;
/*
* The module will respond with a positive value if
* it thinks the __vm_enough_memory() call should be
* made with the cap_sys_admin set. If all of the modules
* agree that it should be set it will. If any module
* thinks it should not be set it won't.
*/
list_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
rc = hp->hook.vm_enough_memory(mm, pages);
if (rc <= 0) {
cap_sys_admin = 0;
break;
}
}
return __vm_enough_memory(mm, pages, cap_sys_admin);
}
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:24 +00:00
int security_bprm_set_creds(struct linux_binprm *bprm)
{
return call_int_hook(bprm_set_creds, 0, bprm);
}
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:24 +00:00
int security_bprm_check(struct linux_binprm *bprm)
{
int ret;
ret = call_int_hook(bprm_check_security, 0, bprm);
if (ret)
return ret;
return ima_bprm_check(bprm);
}
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:24 +00:00
void security_bprm_committing_creds(struct linux_binprm *bprm)
{
call_void_hook(bprm_committing_creds, bprm);
}
CRED: Make execve() take advantage of copy-on-write credentials Make execve() take advantage of copy-on-write credentials, allowing it to set up the credentials in advance, and then commit the whole lot after the point of no return. This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). The credential bits from struct linux_binprm are, for the most part, replaced with a single credentials pointer (bprm->cred). This means that all the creds can be calculated in advance and then applied at the point of no return with no possibility of failure. I would like to replace bprm->cap_effective with: cap_isclear(bprm->cap_effective) but this seems impossible due to special behaviour for processes of pid 1 (they always retain their parent's capability masks where normally they'd be changed - see cap_bprm_set_creds()). The following sequence of events now happens: (a) At the start of do_execve, the current task's cred_exec_mutex is locked to prevent PTRACE_ATTACH from obsoleting the calculation of creds that we make. (a) prepare_exec_creds() is then called to make a copy of the current task's credentials and prepare it. This copy is then assigned to bprm->cred. This renders security_bprm_alloc() and security_bprm_free() unnecessary, and so they've been removed. (b) The determination of unsafe execution is now performed immediately after (a) rather than later on in the code. The result is stored in bprm->unsafe for future reference. (c) prepare_binprm() is called, possibly multiple times. (i) This applies the result of set[ug]id binaries to the new creds attached to bprm->cred. Personality bit clearance is recorded, but now deferred on the basis that the exec procedure may yet fail. (ii) This then calls the new security_bprm_set_creds(). This should calculate the new LSM and capability credentials into *bprm->cred. This folds together security_bprm_set() and parts of security_bprm_apply_creds() (these two have been removed). Anything that might fail must be done at this point. (iii) bprm->cred_prepared is set to 1. bprm->cred_prepared is 0 on the first pass of the security calculations, and 1 on all subsequent passes. This allows SELinux in (ii) to base its calculations only on the initial script and not on the interpreter. (d) flush_old_exec() is called to commit the task to execution. This performs the following steps with regard to credentials: (i) Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds(). (ii) Clear any bits in current->personality that were deferred from (c.i). (e) install_exec_creds() [compute_creds() as was] is called to install the new credentials. This performs the following steps with regard to credentials: (i) Calls security_bprm_committing_creds() to apply any security requirements, such as flushing unauthorised files in SELinux, that must be done before the credentials are changed. This is made up of bits of security_bprm_apply_creds() and security_bprm_post_apply_creds(), both of which have been removed. This function is not allowed to fail; anything that might fail must have been done in (c.ii). (ii) Calls commit_creds() to apply the new credentials in a single assignment (more or less). Possibly pdeath_signal and dumpable should be part of struct creds. (iii) Unlocks the task's cred_replace_mutex, thus allowing PTRACE_ATTACH to take place. (iv) Clears The bprm->cred pointer as the credentials it was holding are now immutable. (v) Calls security_bprm_committed_creds() to apply any security alterations that must be done after the creds have been changed. SELinux uses this to flush signals and signal handlers. (f) If an error occurs before (d.i), bprm_free() will call abort_creds() to destroy the proposed new credentials and will then unlock cred_replace_mutex. No changes to the credentials will have been made. (2) LSM interface. A number of functions have been changed, added or removed: (*) security_bprm_alloc(), ->bprm_alloc_security() (*) security_bprm_free(), ->bprm_free_security() Removed in favour of preparing new credentials and modifying those. (*) security_bprm_apply_creds(), ->bprm_apply_creds() (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds() Removed; split between security_bprm_set_creds(), security_bprm_committing_creds() and security_bprm_committed_creds(). (*) security_bprm_set(), ->bprm_set_security() Removed; folded into security_bprm_set_creds(). (*) security_bprm_set_creds(), ->bprm_set_creds() New. The new credentials in bprm->creds should be checked and set up as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the second and subsequent calls. (*) security_bprm_committing_creds(), ->bprm_committing_creds() (*) security_bprm_committed_creds(), ->bprm_committed_creds() New. Apply the security effects of the new credentials. This includes closing unauthorised files in SELinux. This function may not fail. When the former is called, the creds haven't yet been applied to the process; when the latter is called, they have. The former may access bprm->cred, the latter may not. (3) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) The bprm_security_struct struct has been removed in favour of using the credentials-under-construction approach. (c) flush_unauthorized_files() now takes a cred pointer and passes it on to inode_has_perm(), file_has_perm() and dentry_open(). Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Serge Hallyn <serue@us.ibm.com> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:24 +00:00
void security_bprm_committed_creds(struct linux_binprm *bprm)
{
call_void_hook(bprm_committed_creds, bprm);
}
int security_bprm_secureexec(struct linux_binprm *bprm)
{
return call_int_hook(bprm_secureexec, 0, bprm);
}
int security_sb_alloc(struct super_block *sb)
{
return call_int_hook(sb_alloc_security, 0, sb);
}
void security_sb_free(struct super_block *sb)
{
call_void_hook(sb_free_security, sb);
}
int security_sb_copy_data(char *orig, char *copy)
{
return call_int_hook(sb_copy_data, 0, orig, copy);
}
EXPORT_SYMBOL(security_sb_copy_data);
int security_sb_remount(struct super_block *sb, void *data)
{
return call_int_hook(sb_remount, 0, sb, data);
}
int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
{
return call_int_hook(sb_kern_mount, 0, sb, flags, data);
}
int security_sb_show_options(struct seq_file *m, struct super_block *sb)
{
return call_int_hook(sb_show_options, 0, m, sb);
}
int security_sb_statfs(struct dentry *dentry)
{
return call_int_hook(sb_statfs, 0, dentry);
}
int security_sb_mount(const char *dev_name, const struct path *path,
const char *type, unsigned long flags, void *data)
{
return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
}
int security_sb_umount(struct vfsmount *mnt, int flags)
{
return call_int_hook(sb_umount, 0, mnt, flags);
}
int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
{
return call_int_hook(sb_pivotroot, 0, old_path, new_path);
}
Security: add get, set, and cloning of superblock security information Adds security_get_sb_mnt_opts, security_set_sb_mnt_opts, and security_clont_sb_mnt_opts to the LSM and to SELinux. This will allow filesystems to directly own and control all of their mount options if they so choose. This interface deals only with option identifiers and strings so it should generic enough for any LSM which may come in the future. Filesystems which pass text mount data around in the kernel (almost all of them) need not currently make use of this interface when dealing with SELinux since it will still parse those strings as it always has. I assume future LSM's would do the same. NFS is the primary FS which does not use text mount data and thus must make use of this interface. An LSM would need to implement these functions only if they had mount time options, such as selinux has context= or fscontext=. If the LSM has no mount time options they could simply not implement and let the dummy ops take care of things. An LSM other than SELinux would need to define new option numbers in security.h and any FS which decides to own there own security options would need to be patched to use this new interface for every possible LSM. This is because it was stated to me very clearly that LSM's should not attempt to understand FS mount data and the burdon to understand security should be in the FS which owns the options. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Stephen D. Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2007-11-30 18:00:35 +00:00
int security_sb_set_mnt_opts(struct super_block *sb,
struct security_mnt_opts *opts,
unsigned long kern_flags,
unsigned long *set_kern_flags)
Security: add get, set, and cloning of superblock security information Adds security_get_sb_mnt_opts, security_set_sb_mnt_opts, and security_clont_sb_mnt_opts to the LSM and to SELinux. This will allow filesystems to directly own and control all of their mount options if they so choose. This interface deals only with option identifiers and strings so it should generic enough for any LSM which may come in the future. Filesystems which pass text mount data around in the kernel (almost all of them) need not currently make use of this interface when dealing with SELinux since it will still parse those strings as it always has. I assume future LSM's would do the same. NFS is the primary FS which does not use text mount data and thus must make use of this interface. An LSM would need to implement these functions only if they had mount time options, such as selinux has context= or fscontext=. If the LSM has no mount time options they could simply not implement and let the dummy ops take care of things. An LSM other than SELinux would need to define new option numbers in security.h and any FS which decides to own there own security options would need to be patched to use this new interface for every possible LSM. This is because it was stated to me very clearly that LSM's should not attempt to understand FS mount data and the burdon to understand security should be in the FS which owns the options. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Stephen D. Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2007-11-30 18:00:35 +00:00
{
return call_int_hook(sb_set_mnt_opts,
opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
opts, kern_flags, set_kern_flags);
Security: add get, set, and cloning of superblock security information Adds security_get_sb_mnt_opts, security_set_sb_mnt_opts, and security_clont_sb_mnt_opts to the LSM and to SELinux. This will allow filesystems to directly own and control all of their mount options if they so choose. This interface deals only with option identifiers and strings so it should generic enough for any LSM which may come in the future. Filesystems which pass text mount data around in the kernel (almost all of them) need not currently make use of this interface when dealing with SELinux since it will still parse those strings as it always has. I assume future LSM's would do the same. NFS is the primary FS which does not use text mount data and thus must make use of this interface. An LSM would need to implement these functions only if they had mount time options, such as selinux has context= or fscontext=. If the LSM has no mount time options they could simply not implement and let the dummy ops take care of things. An LSM other than SELinux would need to define new option numbers in security.h and any FS which decides to own there own security options would need to be patched to use this new interface for every possible LSM. This is because it was stated to me very clearly that LSM's should not attempt to understand FS mount data and the burdon to understand security should be in the FS which owns the options. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Stephen D. Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2007-11-30 18:00:35 +00:00
}
EXPORT_SYMBOL(security_sb_set_mnt_opts);
Security: add get, set, and cloning of superblock security information Adds security_get_sb_mnt_opts, security_set_sb_mnt_opts, and security_clont_sb_mnt_opts to the LSM and to SELinux. This will allow filesystems to directly own and control all of their mount options if they so choose. This interface deals only with option identifiers and strings so it should generic enough for any LSM which may come in the future. Filesystems which pass text mount data around in the kernel (almost all of them) need not currently make use of this interface when dealing with SELinux since it will still parse those strings as it always has. I assume future LSM's would do the same. NFS is the primary FS which does not use text mount data and thus must make use of this interface. An LSM would need to implement these functions only if they had mount time options, such as selinux has context= or fscontext=. If the LSM has no mount time options they could simply not implement and let the dummy ops take care of things. An LSM other than SELinux would need to define new option numbers in security.h and any FS which decides to own there own security options would need to be patched to use this new interface for every possible LSM. This is because it was stated to me very clearly that LSM's should not attempt to understand FS mount data and the burdon to understand security should be in the FS which owns the options. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Stephen D. Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2007-11-30 18:00:35 +00:00
selinux: make security_sb_clone_mnt_opts return an error on context mismatch I had the following problem reported a while back. If you mount the same filesystem twice using NFSv4 with different contexts, then the second context= option is ignored. For instance: # mount server:/export /mnt/test1 # mount server:/export /mnt/test2 -o context=system_u:object_r:tmp_t:s0 # ls -dZ /mnt/test1 drwxrwxrwt. root root system_u:object_r:nfs_t:s0 /mnt/test1 # ls -dZ /mnt/test2 drwxrwxrwt. root root system_u:object_r:nfs_t:s0 /mnt/test2 When we call into SELinux to set the context of a "cloned" superblock, it will currently just bail out when it notices that we're reusing an existing superblock. Since the existing superblock is already set up and presumably in use, we can't go overwriting its context with the one from the "original" sb. Because of this, the second context= option in this case cannot take effect. This patch fixes this by turning security_sb_clone_mnt_opts into an int return operation. When it finds that the "new" superblock that it has been handed is already set up, it checks to see whether the contexts on the old superblock match it. If it does, then it will just return success, otherwise it'll return -EBUSY and emit a printk to tell the admin why the second mount failed. Note that this patch may cause casualties. The NFSv4 code relies on being able to walk down to an export from the pseudoroot. If you mount filesystems that are nested within one another with different contexts, then this patch will make those mounts fail in new and "exciting" ways. For instance, suppose that /export is a separate filesystem on the server: # mount server:/ /mnt/test1 # mount salusa:/export /mnt/test2 -o context=system_u:object_r:tmp_t:s0 mount.nfs: an incorrect mount option was specified ...with the printk in the ring buffer. Because we *might* eventually walk down to /mnt/test1/export, the mount is denied due to this patch. The second mount needs the pseudoroot superblock, but that's already present with the wrong context. OTOH, if we mount these in the reverse order, then both mounts work, because the pseudoroot superblock created when mounting /export is discarded once that mount is done. If we then however try to walk into that directory, the automount fails for the similar reasons: # cd /mnt/test1/scratch/ -bash: cd: /mnt/test1/scratch: Device or resource busy The story I've gotten from the SELinux folks that I've talked to is that this is desirable behavior. In SELinux-land, mounting the same data under different contexts is wrong -- there can be only one. Cc: Steve Dickson <steved@redhat.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Jeff Layton <jlayton@redhat.com> Acked-by: Eric Paris <eparis@redhat.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
2013-04-01 12:14:24 +00:00
int security_sb_clone_mnt_opts(const struct super_block *oldsb,
Security: add get, set, and cloning of superblock security information Adds security_get_sb_mnt_opts, security_set_sb_mnt_opts, and security_clont_sb_mnt_opts to the LSM and to SELinux. This will allow filesystems to directly own and control all of their mount options if they so choose. This interface deals only with option identifiers and strings so it should generic enough for any LSM which may come in the future. Filesystems which pass text mount data around in the kernel (almost all of them) need not currently make use of this interface when dealing with SELinux since it will still parse those strings as it always has. I assume future LSM's would do the same. NFS is the primary FS which does not use text mount data and thus must make use of this interface. An LSM would need to implement these functions only if they had mount time options, such as selinux has context= or fscontext=. If the LSM has no mount time options they could simply not implement and let the dummy ops take care of things. An LSM other than SELinux would need to define new option numbers in security.h and any FS which decides to own there own security options would need to be patched to use this new interface for every possible LSM. This is because it was stated to me very clearly that LSM's should not attempt to understand FS mount data and the burdon to understand security should be in the FS which owns the options. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Stephen D. Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2007-11-30 18:00:35 +00:00
struct super_block *newsb)
{
return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb);
Security: add get, set, and cloning of superblock security information Adds security_get_sb_mnt_opts, security_set_sb_mnt_opts, and security_clont_sb_mnt_opts to the LSM and to SELinux. This will allow filesystems to directly own and control all of their mount options if they so choose. This interface deals only with option identifiers and strings so it should generic enough for any LSM which may come in the future. Filesystems which pass text mount data around in the kernel (almost all of them) need not currently make use of this interface when dealing with SELinux since it will still parse those strings as it always has. I assume future LSM's would do the same. NFS is the primary FS which does not use text mount data and thus must make use of this interface. An LSM would need to implement these functions only if they had mount time options, such as selinux has context= or fscontext=. If the LSM has no mount time options they could simply not implement and let the dummy ops take care of things. An LSM other than SELinux would need to define new option numbers in security.h and any FS which decides to own there own security options would need to be patched to use this new interface for every possible LSM. This is because it was stated to me very clearly that LSM's should not attempt to understand FS mount data and the burdon to understand security should be in the FS which owns the options. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Stephen D. Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2007-11-30 18:00:35 +00:00
}
EXPORT_SYMBOL(security_sb_clone_mnt_opts);
int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
{
return call_int_hook(sb_parse_opts_str, 0, options, opts);
}
EXPORT_SYMBOL(security_sb_parse_opts_str);
Security: add get, set, and cloning of superblock security information Adds security_get_sb_mnt_opts, security_set_sb_mnt_opts, and security_clont_sb_mnt_opts to the LSM and to SELinux. This will allow filesystems to directly own and control all of their mount options if they so choose. This interface deals only with option identifiers and strings so it should generic enough for any LSM which may come in the future. Filesystems which pass text mount data around in the kernel (almost all of them) need not currently make use of this interface when dealing with SELinux since it will still parse those strings as it always has. I assume future LSM's would do the same. NFS is the primary FS which does not use text mount data and thus must make use of this interface. An LSM would need to implement these functions only if they had mount time options, such as selinux has context= or fscontext=. If the LSM has no mount time options they could simply not implement and let the dummy ops take care of things. An LSM other than SELinux would need to define new option numbers in security.h and any FS which decides to own there own security options would need to be patched to use this new interface for every possible LSM. This is because it was stated to me very clearly that LSM's should not attempt to understand FS mount data and the burdon to understand security should be in the FS which owns the options. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Stephen D. Smalley <sds@tycho.nsa.gov> Signed-off-by: James Morris <jmorris@namei.org>
2007-11-30 18:00:35 +00:00
int security_inode_alloc(struct inode *inode)
{
inode->i_security = NULL;
return call_int_hook(inode_alloc_security, 0, inode);
}
void security_inode_free(struct inode *inode)
{
integrity_inode_free(inode);
call_void_hook(inode_free_security, inode);
}
int security_dentry_init_security(struct dentry *dentry, int mode,
struct qstr *name, void **ctx,
u32 *ctxlen)
{
return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
name, ctx, ctxlen);
}
EXPORT_SYMBOL(security_dentry_init_security);
int security_inode_init_security(struct inode *inode, struct inode *dir,
const struct qstr *qstr,
const initxattrs initxattrs, void *fs_data)
{
struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
struct xattr *lsm_xattr, *evm_xattr, *xattr;
int ret;
if (unlikely(IS_PRIVATE(inode)))
return 0;
if (!initxattrs)
return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
dir, qstr, NULL, NULL, NULL);
memset(new_xattrs, 0, sizeof(new_xattrs));
lsm_xattr = new_xattrs;
ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
&lsm_xattr->name,
&lsm_xattr->value,
&lsm_xattr->value_len);
if (ret)
goto out;
evm_xattr = lsm_xattr + 1;
ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
if (ret)
goto out;
ret = initxattrs(inode, new_xattrs, fs_data);
out:
for (xattr = new_xattrs; xattr->value != NULL; xattr++)
kfree(xattr->value);
return (ret == -EOPNOTSUPP) ? 0 : ret;
}
EXPORT_SYMBOL(security_inode_init_security);
int security_old_inode_init_security(struct inode *inode, struct inode *dir,
const struct qstr *qstr, const char **name,
void **value, size_t *len)
{
if (unlikely(IS_PRIVATE(inode)))
return -EOPNOTSUPP;
return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
qstr, name, value, len);