sf: Remove unneeded flash drivers files

Now the common probing is handled in spi_flash_probe.c
hence removed the unneeded flash drivers.

Signed-off-by: Jagannadha Sutradharudu Teki <jaganna@xilinx.com>
This commit is contained in:
Jagannadha Sutradharudu Teki 2013-08-29 19:28:09 +05:30
parent af1679bc30
commit 6af8dc3ebc
10 changed files with 0 additions and 1508 deletions

View File

@ -18,14 +18,6 @@ ifdef CONFIG_CMD_SF
COBJS-y += spi_flash.o
endif
COBJS-$(CONFIG_SPI_FLASH) += spi_flash_probe.o spi_flash_ops.o
COBJS-$(CONFIG_SPI_FLASH_ATMEL) += atmel.o
COBJS-$(CONFIG_SPI_FLASH_EON) += eon.o
COBJS-$(CONFIG_SPI_FLASH_GIGADEVICE) += gigadevice.o
COBJS-$(CONFIG_SPI_FLASH_MACRONIX) += macronix.o
COBJS-$(CONFIG_SPI_FLASH_SPANSION) += spansion.o
COBJS-$(CONFIG_SPI_FLASH_SST) += sst.o
COBJS-$(CONFIG_SPI_FLASH_STMICRO) += stmicro.o
COBJS-$(CONFIG_SPI_FLASH_WINBOND) += winbond.o
COBJS-$(CONFIG_SPI_FRAM_RAMTRON) += ramtron.o
COBJS-$(CONFIG_SPI_M95XXX) += eeprom_m95xxx.o

View File

@ -1,544 +0,0 @@
/*
* Atmel SPI DataFlash support
*
* Copyright (C) 2008 Atmel Corporation
* Licensed under the GPL-2 or later.
*/
#include <common.h>
#include <malloc.h>
#include <spi_flash.h>
#include "spi_flash_internal.h"
/* AT45-specific commands */
#define CMD_AT45_READ_STATUS 0xd7
#define CMD_AT45_ERASE_PAGE 0x81
#define CMD_AT45_LOAD_PROG_BUF1 0x82
#define CMD_AT45_LOAD_BUF1 0x84
#define CMD_AT45_LOAD_PROG_BUF2 0x85
#define CMD_AT45_LOAD_BUF2 0x87
#define CMD_AT45_PROG_BUF1 0x88
#define CMD_AT45_PROG_BUF2 0x89
/* AT45 status register bits */
#define AT45_STATUS_P2_PAGE_SIZE (1 << 0)
#define AT45_STATUS_READY (1 << 7)
/* DataFlash family IDs, as obtained from the second idcode byte */
#define DF_FAMILY_AT26F 0
#define DF_FAMILY_AT45 1
#define DF_FAMILY_AT26DF 2 /* AT25DF and AT26DF */
struct atmel_spi_flash_params {
u8 idcode1;
/* Log2 of page size in power-of-two mode */
u8 l2_page_size;
u8 pages_per_block;
u8 blocks_per_sector;
u8 nr_sectors;
const char *name;
};
/* spi_flash needs to be first so upper layers can free() it */
struct atmel_spi_flash {
struct spi_flash flash;
const struct atmel_spi_flash_params *params;
};
static inline struct atmel_spi_flash *
to_atmel_spi_flash(struct spi_flash *flash)
{
return container_of(flash, struct atmel_spi_flash, flash);
}
static const struct atmel_spi_flash_params atmel_spi_flash_table[] = {
{
.idcode1 = 0x22,
.l2_page_size = 8,
.pages_per_block = 8,
.blocks_per_sector = 16,
.nr_sectors = 4,
.name = "AT45DB011D",
},
{
.idcode1 = 0x23,
.l2_page_size = 8,
.pages_per_block = 8,
.blocks_per_sector = 16,
.nr_sectors = 8,
.name = "AT45DB021D",
},
{
.idcode1 = 0x24,
.l2_page_size = 8,
.pages_per_block = 8,
.blocks_per_sector = 32,
.nr_sectors = 8,
.name = "AT45DB041D",
},
{
.idcode1 = 0x25,
.l2_page_size = 8,
.pages_per_block = 8,
.blocks_per_sector = 32,
.nr_sectors = 16,
.name = "AT45DB081D",
},
{
.idcode1 = 0x26,
.l2_page_size = 9,
.pages_per_block = 8,
.blocks_per_sector = 32,
.nr_sectors = 16,
.name = "AT45DB161D",
},
{
.idcode1 = 0x27,
.l2_page_size = 9,
.pages_per_block = 8,
.blocks_per_sector = 64,
.nr_sectors = 64,
.name = "AT45DB321D",
},
{
.idcode1 = 0x28,
.l2_page_size = 10,
.pages_per_block = 8,
.blocks_per_sector = 32,
.nr_sectors = 32,
.name = "AT45DB642D",
},
{
.idcode1 = 0x47,
.l2_page_size = 8,
.pages_per_block = 16,
.blocks_per_sector = 16,
.nr_sectors = 64,
.name = "AT25DF321",
},
};
static int at45_wait_ready(struct spi_flash *flash, unsigned long timeout)
{
struct spi_slave *spi = flash->spi;
unsigned long timebase;
int ret;
u8 cmd = CMD_AT45_READ_STATUS;
u8 status;
timebase = get_timer(0);
ret = spi_xfer(spi, 8, &cmd, NULL, SPI_XFER_BEGIN);
if (ret)
return -1;
do {
ret = spi_xfer(spi, 8, NULL, &status, 0);
if (ret)
return -1;
if (status & AT45_STATUS_READY)
break;
} while (get_timer(timebase) < timeout);
/* Deactivate CS */
spi_xfer(spi, 0, NULL, NULL, SPI_XFER_END);
if (status & AT45_STATUS_READY)
return 0;
/* Timed out */
return -1;
}
/*
* Assemble the address part of a command for AT45 devices in
* non-power-of-two page size mode.
*/
static void at45_build_address(struct atmel_spi_flash *asf, u8 *cmd, u32 offset)
{
unsigned long page_addr;
unsigned long byte_addr;
unsigned long page_size;
unsigned int page_shift;
/*
* The "extra" space per page is the power-of-two page size
* divided by 32.
*/
page_shift = asf->params->l2_page_size;
page_size = (1 << page_shift) + (1 << (page_shift - 5));
page_shift++;
page_addr = offset / page_size;
byte_addr = offset % page_size;
cmd[0] = page_addr >> (16 - page_shift);
cmd[1] = page_addr << (page_shift - 8) | (byte_addr >> 8);
cmd[2] = byte_addr;
}
static int dataflash_read_fast_at45(struct spi_flash *flash,
u32 offset, size_t len, void *buf)
{
struct atmel_spi_flash *asf = to_atmel_spi_flash(flash);
u8 cmd[5];
cmd[0] = CMD_READ_ARRAY_FAST;
at45_build_address(asf, cmd + 1, offset);
cmd[4] = 0x00;
return spi_flash_read_common(flash, cmd, sizeof(cmd), buf, len);
}
/*
* TODO: the two write funcs (_p2/_at45) should get unified ...
*/
static int dataflash_write_p2(struct spi_flash *flash,
u32 offset, size_t len, const void *buf)
{
struct atmel_spi_flash *asf = to_atmel_spi_flash(flash);
unsigned long page_size;
u32 addr = offset;
size_t chunk_len;
size_t actual;
int ret;
u8 cmd[4];
/*
* TODO: This function currently uses only page buffer #1. We can
* speed this up by using both buffers and loading one buffer while
* the other is being programmed into main memory.
*/
page_size = (1 << asf->params->l2_page_size);
ret = spi_claim_bus(flash->spi);
if (ret) {
debug("SF: Unable to claim SPI bus\n");
return ret;
}
for (actual = 0; actual < len; actual += chunk_len) {
chunk_len = min(len - actual, page_size - (addr % page_size));
/* Use the same address bits for both commands */
cmd[0] = CMD_AT45_LOAD_BUF1;
cmd[1] = addr >> 16;
cmd[2] = addr >> 8;
cmd[3] = addr;
ret = spi_flash_cmd_write(flash->spi, cmd, 4,
buf + actual, chunk_len);
if (ret < 0) {
debug("SF: Loading AT45 buffer failed\n");
goto out;
}
cmd[0] = CMD_AT45_PROG_BUF1;
ret = spi_flash_cmd_write(flash->spi, cmd, 4, NULL, 0);
if (ret < 0) {
debug("SF: AT45 page programming failed\n");
goto out;
}
ret = at45_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT);
if (ret < 0) {
debug("SF: AT45 page programming timed out\n");
goto out;
}
addr += chunk_len;
}
debug("SF: AT45: Successfully programmed %zu bytes @ 0x%x\n",
len, offset);
ret = 0;
out:
spi_release_bus(flash->spi);
return ret;
}
static int dataflash_write_at45(struct spi_flash *flash,
u32 offset, size_t len, const void *buf)
{
struct atmel_spi_flash *asf = to_atmel_spi_flash(flash);
unsigned long page_addr;
unsigned long byte_addr;
unsigned long page_size;
unsigned int page_shift;
size_t chunk_len;
size_t actual;
int ret;
u8 cmd[4];
/*
* TODO: This function currently uses only page buffer #1. We can
* speed this up by using both buffers and loading one buffer while
* the other is being programmed into main memory.
*/
page_shift = asf->params->l2_page_size;
page_size = (1 << page_shift) + (1 << (page_shift - 5));
page_shift++;
page_addr = offset / page_size;
byte_addr = offset % page_size;
ret = spi_claim_bus(flash->spi);
if (ret) {
debug("SF: Unable to claim SPI bus\n");
return ret;
}
for (actual = 0; actual < len; actual += chunk_len) {
chunk_len = min(len - actual, page_size - byte_addr);
/* Use the same address bits for both commands */
cmd[0] = CMD_AT45_LOAD_BUF1;
cmd[1] = page_addr >> (16 - page_shift);
cmd[2] = page_addr << (page_shift - 8) | (byte_addr >> 8);
cmd[3] = byte_addr;
ret = spi_flash_cmd_write(flash->spi, cmd, 4,
buf + actual, chunk_len);
if (ret < 0) {
debug("SF: Loading AT45 buffer failed\n");
goto out;
}
cmd[0] = CMD_AT45_PROG_BUF1;
ret = spi_flash_cmd_write(flash->spi, cmd, 4, NULL, 0);
if (ret < 0) {
debug("SF: AT45 page programming failed\n");
goto out;
}
ret = at45_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT);
if (ret < 0) {
debug("SF: AT45 page programming timed out\n");
goto out;
}
page_addr++;
byte_addr = 0;
}
debug("SF: AT45: Successfully programmed %zu bytes @ 0x%x\n",
len, offset);
ret = 0;
out:
spi_release_bus(flash->spi);
return ret;
}
/*
* TODO: the two erase funcs (_p2/_at45) should get unified ...
*/
static int dataflash_erase_p2(struct spi_flash *flash, u32 offset, size_t len)
{
struct atmel_spi_flash *asf = to_atmel_spi_flash(flash);
unsigned long page_size;
size_t actual;
int ret;
u8 cmd[4];
/*
* TODO: This function currently uses page erase only. We can
* probably speed things up by using block and/or sector erase
* when possible.
*/
page_size = (1 << asf->params->l2_page_size);
if (offset % page_size || len % page_size) {
debug("SF: Erase offset/length not multiple of page size\n");
return -1;
}
cmd[0] = CMD_AT45_ERASE_PAGE;
cmd[3] = 0x00;
ret = spi_claim_bus(flash->spi);
if (ret) {
debug("SF: Unable to claim SPI bus\n");
return ret;
}
for (actual = 0; actual < len; actual += page_size) {
cmd[1] = offset >> 16;
cmd[2] = offset >> 8;
ret = spi_flash_cmd_write(flash->spi, cmd, 4, NULL, 0);
if (ret < 0) {
debug("SF: AT45 page erase failed\n");
goto out;
}
ret = at45_wait_ready(flash, SPI_FLASH_PAGE_ERASE_TIMEOUT);
if (ret < 0) {
debug("SF: AT45 page erase timed out\n");
goto out;
}
offset += page_size;
}
debug("SF: AT45: Successfully erased %zu bytes @ 0x%x\n",
len, offset);
ret = 0;
out:
spi_release_bus(flash->spi);
return ret;
}
static int dataflash_erase_at45(struct spi_flash *flash, u32 offset, size_t len)
{
struct atmel_spi_flash *asf = to_atmel_spi_flash(flash);
unsigned long page_addr;
unsigned long page_size;
unsigned int page_shift;
size_t actual;
int ret;
u8 cmd[4];
/*
* TODO: This function currently uses page erase only. We can
* probably speed things up by using block and/or sector erase
* when possible.
*/
page_shift = asf->params->l2_page_size;
page_size = (1 << page_shift) + (1 << (page_shift - 5));
page_shift++;
page_addr = offset / page_size;
if (offset % page_size || len % page_size) {
debug("SF: Erase offset/length not multiple of page size\n");
return -1;
}
cmd[0] = CMD_AT45_ERASE_PAGE;
cmd[3] = 0x00;
ret = spi_claim_bus(flash->spi);
if (ret) {
debug("SF: Unable to claim SPI bus\n");
return ret;
}
for (actual = 0; actual < len; actual += page_size) {
cmd[1] = page_addr >> (16 - page_shift);
cmd[2] = page_addr << (page_shift - 8);
ret = spi_flash_cmd_write(flash->spi, cmd, 4, NULL, 0);
if (ret < 0) {
debug("SF: AT45 page erase failed\n");
goto out;
}
ret = at45_wait_ready(flash, SPI_FLASH_PAGE_ERASE_TIMEOUT);
if (ret < 0) {
debug("SF: AT45 page erase timed out\n");
goto out;
}
page_addr++;
}
debug("SF: AT45: Successfully erased %zu bytes @ 0x%x\n",
len, offset);
ret = 0;
out:
spi_release_bus(flash->spi);
return ret;
}
struct spi_flash *spi_flash_probe_atmel(struct spi_slave *spi, u8 *idcode)
{
const struct atmel_spi_flash_params *params;
unsigned page_size;
unsigned int family;
struct atmel_spi_flash *asf;
unsigned int i;
int ret;
u8 status;
for (i = 0; i < ARRAY_SIZE(atmel_spi_flash_table); i++) {
params = &atmel_spi_flash_table[i];
if (params->idcode1 == idcode[1])
break;
}
if (i == ARRAY_SIZE(atmel_spi_flash_table)) {
debug("SF: Unsupported DataFlash ID %02x\n",
idcode[1]);
return NULL;
}
asf = spi_flash_alloc(struct atmel_spi_flash, spi, params->name);
if (!asf) {
debug("SF: Failed to allocate memory\n");
return NULL;
}
asf->params = params;
/* Assuming power-of-two page size initially. */
page_size = 1 << params->l2_page_size;
family = idcode[1] >> 5;
switch (family) {
case DF_FAMILY_AT45:
/*
* AT45 chips have configurable page size. The status
* register indicates which configuration is active.
*/
ret = spi_flash_cmd(spi, CMD_AT45_READ_STATUS, &status, 1);
if (ret)
goto err;
debug("SF: AT45 status register: %02x\n", status);
if (!(status & AT45_STATUS_P2_PAGE_SIZE)) {
asf->flash.read = dataflash_read_fast_at45;
asf->flash.write = dataflash_write_at45;
asf->flash.erase = dataflash_erase_at45;
page_size += 1 << (params->l2_page_size - 5);
} else {
asf->flash.write = dataflash_write_p2;
asf->flash.erase = dataflash_erase_p2;
}
asf->flash.page_size = page_size;
asf->flash.sector_size = page_size;
break;
case DF_FAMILY_AT26F:
case DF_FAMILY_AT26DF:
asf->flash.page_size = page_size;
asf->flash.sector_size = 4096;
/* clear SPRL# bit for locked flash */
spi_flash_cmd_write_status(&asf->flash, 0);
break;
default:
debug("SF: Unsupported DataFlash family %u\n", family);
goto err;
}
asf->flash.size = page_size * params->pages_per_block
* params->blocks_per_sector
* params->nr_sectors;
return &asf->flash;
err:
free(asf);
return NULL;
}

View File

@ -1,60 +0,0 @@
/*
* (C) Copyright 2010, ucRobotics Inc.
* Author: Chong Huang <chuang@ucrobotics.com>
* Licensed under the GPL-2 or later.
*/
#include <common.h>
#include <malloc.h>
#include <spi_flash.h>
#include "spi_flash_internal.h"
struct eon_spi_flash_params {
u8 idcode1;
u16 nr_sectors;
const char *name;
};
static const struct eon_spi_flash_params eon_spi_flash_table[] = {
{
.idcode1 = 0x16,
.nr_sectors = 1024,
.name = "EN25Q32B",
},
{
.idcode1 = 0x18,
.nr_sectors = 4096,
.name = "EN25Q128",
},
};
struct spi_flash *spi_flash_probe_eon(struct spi_slave *spi, u8 *idcode)
{
const struct eon_spi_flash_params *params;
struct spi_flash *flash;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(eon_spi_flash_table); ++i) {
params = &eon_spi_flash_table[i];
if (params->idcode1 == idcode[2])
break;
}
if (i == ARRAY_SIZE(eon_spi_flash_table)) {
debug("SF: Unsupported EON ID %02x\n", idcode[1]);
return NULL;
}
flash = spi_flash_alloc_base(spi, params->name);
if (!flash) {
debug("SF: Failed to allocate memory\n");
return NULL;
}
flash->page_size = 256;
flash->sector_size = 256 * 16 * 16;
flash->size = 256 * 16 * params->nr_sectors;
return flash;
}

View File

@ -1,65 +0,0 @@
/*
* Gigadevice SPI flash driver
* Copyright 2013, Samsung Electronics Co., Ltd.
* Author: Banajit Goswami <banajit.g@samsung.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <spi_flash.h>
#include "spi_flash_internal.h"
struct gigadevice_spi_flash_params {
uint16_t id;
uint16_t nr_blocks;
const char *name;
};
static const struct gigadevice_spi_flash_params gigadevice_spi_flash_table[] = {
{
.id = 0x6016,
.nr_blocks = 64,
.name = "GD25LQ",
},
{
.id = 0x4017,
.nr_blocks = 128,
.name = "GD25Q64B",
},
};
struct spi_flash *spi_flash_probe_gigadevice(struct spi_slave *spi, u8 *idcode)
{
const struct gigadevice_spi_flash_params *params;
struct spi_flash *flash;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(gigadevice_spi_flash_table); i++) {
params = &gigadevice_spi_flash_table[i];
if (params->id == ((idcode[1] << 8) | idcode[2]))
break;
}
if (i == ARRAY_SIZE(gigadevice_spi_flash_table)) {
debug("SF: Unsupported Gigadevice ID %02x%02x\n",
idcode[1], idcode[2]);
return NULL;
}
flash = spi_flash_alloc_base(spi, params->name);
if (!flash) {
debug("SF: Failed to allocate memory\n");
return NULL;
}
/* page_size */
flash->page_size = 256;
/* sector_size = page_size * pages_per_sector */
flash->sector_size = flash->page_size * 16;
/* size = sector_size * sector_per_block * number of blocks */
flash->size = flash->sector_size * 16 * params->nr_blocks;
return flash;
}

View File

@ -1,98 +0,0 @@
/*
* Copyright 2009(C) Marvell International Ltd. and its affiliates
* Prafulla Wadaskar <prafulla@marvell.com>
*
* Based on drivers/mtd/spi/stmicro.c
*
* Copyright 2008, Network Appliance Inc.
* Jason McMullan <mcmullan@netapp.com>
*
* Copyright (C) 2004-2007 Freescale Semiconductor, Inc.
* TsiChung Liew (Tsi-Chung.Liew@freescale.com)
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <spi_flash.h>
#include "spi_flash_internal.h"
struct macronix_spi_flash_params {
u16 idcode;
u16 nr_blocks;
const char *name;
};
static const struct macronix_spi_flash_params macronix_spi_flash_table[] = {
{
.idcode = 0x2013,
.nr_blocks = 8,
.name = "MX25L4005",
},
{
.idcode = 0x2014,
.nr_blocks = 16,
.name = "MX25L8005",
},
{
.idcode = 0x2015,
.nr_blocks = 32,
.name = "MX25L1605D",
},
{
.idcode = 0x2016,
.nr_blocks = 64,
.name = "MX25L3205D",
},
{
.idcode = 0x2017,
.nr_blocks = 128,
.name = "MX25L6405D",
},
{
.idcode = 0x2018,
.nr_blocks = 256,
.name = "MX25L12805D",
},
{
.idcode = 0x2618,
.nr_blocks = 256,
.name = "MX25L12855E",
},
};
struct spi_flash *spi_flash_probe_macronix(struct spi_slave *spi, u8 *idcode)
{
const struct macronix_spi_flash_params *params;
struct spi_flash *flash;
unsigned int i;
u16 id = idcode[2] | idcode[1] << 8;
for (i = 0; i < ARRAY_SIZE(macronix_spi_flash_table); i++) {
params = &macronix_spi_flash_table[i];
if (params->idcode == id)
break;
}
if (i == ARRAY_SIZE(macronix_spi_flash_table)) {
debug("SF: Unsupported Macronix ID %04x\n", id);
return NULL;
}
flash = spi_flash_alloc_base(spi, params->name);
if (!flash) {
debug("SF: Failed to allocate memory\n");
return NULL;
}
flash->page_size = 256;
flash->sector_size = 256 * 16 * 16;
flash->size = flash->sector_size * params->nr_blocks;
/* Clear BP# bits for read-only flash */
spi_flash_cmd_write_status(flash, 0);
return flash;
}

View File

@ -1,141 +0,0 @@
/*
* Copyright (C) 2009 Freescale Semiconductor, Inc.
*
* Author: Mingkai Hu (Mingkai.hu@freescale.com)
* Based on stmicro.c by Wolfgang Denk (wd@denx.de),
* TsiChung Liew (Tsi-Chung.Liew@freescale.com),
* and Jason McMullan (mcmullan@netapp.com)
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <spi_flash.h>
#include "spi_flash_internal.h"
struct spansion_spi_flash_params {
u16 idcode1;
u16 idcode2;
u16 pages_per_sector;
u16 nr_sectors;
const char *name;
};
static const struct spansion_spi_flash_params spansion_spi_flash_table[] = {
{
.idcode1 = 0x0213,
.idcode2 = 0,
.pages_per_sector = 256,
.nr_sectors = 16,
.name = "S25FL008A",
},
{
.idcode1 = 0x0214,
.idcode2 = 0,
.pages_per_sector = 256,
.nr_sectors = 32,
.name = "S25FL016A",
},
{
.idcode1 = 0x0215,
.idcode2 = 0,
.pages_per_sector = 256,
.nr_sectors = 64,
.name = "S25FL032A",
},
{
.idcode1 = 0x0216,
.idcode2 = 0,
.pages_per_sector = 256,
.nr_sectors = 128,
.name = "S25FL064A",
},
{
.idcode1 = 0x2018,
.idcode2 = 0x0301,
.pages_per_sector = 256,
.nr_sectors = 256,
.name = "S25FL128P_64K",
},
{
.idcode1 = 0x2018,
.idcode2 = 0x0300,
.pages_per_sector = 1024,
.nr_sectors = 64,
.name = "S25FL128P_256K",
},
{
.idcode1 = 0x0215,
.idcode2 = 0x4d00,
.pages_per_sector = 256,
.nr_sectors = 64,
.name = "S25FL032P",
},
{
.idcode1 = 0x0216,
.idcode2 = 0x4d00,
.pages_per_sector = 256,
.nr_sectors = 128,
.name = "S25FL064P",
},
{
.idcode1 = 0x2018,
.idcode2 = 0x4d01,
.pages_per_sector = 256,
.nr_sectors = 256,
.name = "S25FL129P_64K/S25FL128S_64K",
},
{
.idcode1 = 0x0219,
.idcode2 = 0x4d01,
.pages_per_sector = 256,
.nr_sectors = 512,
.name = "S25FL256S_64K",
},
{
.idcode1 = 0x0220,
.idcode2 = 0x4d01,
.pages_per_sector = 256,
.nr_sectors = 1024,
.name = "S25FL512S_64K",
},
};
struct spi_flash *spi_flash_probe_spansion(struct spi_slave *spi, u8 *idcode)
{
const struct spansion_spi_flash_params *params;
struct spi_flash *flash;
unsigned int i;
unsigned short jedec, ext_jedec;
jedec = idcode[1] << 8 | idcode[2];
ext_jedec = idcode[3] << 8 | idcode[4];
for (i = 0; i < ARRAY_SIZE(spansion_spi_flash_table); i++) {
params = &spansion_spi_flash_table[i];
if (params->idcode1 == jedec) {
if (params->idcode2 == ext_jedec)
break;
}
}
if (i == ARRAY_SIZE(spansion_spi_flash_table)) {
debug("SF: Unsupported SPANSION ID %04x %04x\n",
jedec, ext_jedec);
return NULL;
}
flash = spi_flash_alloc_base(spi, params->name);
if (!flash) {
debug("SF: Failed to allocate memory\n");
return NULL;
}
flash->page_size = 256;
flash->sector_size = 256 * params->pages_per_sector;
flash->size = flash->sector_size * params->nr_sectors;
return flash;
}

View File

@ -124,14 +124,3 @@ int spi_flash_cmd_wait_ready(struct spi_flash *flash, unsigned long timeout);
/* Erase sectors. */
int spi_flash_cmd_erase(struct spi_flash *flash, u32 offset, size_t len);
/* Manufacturer-specific probe functions */
struct spi_flash *spi_flash_probe_spansion(struct spi_slave *spi, u8 *idcode);
struct spi_flash *spi_flash_probe_atmel(struct spi_slave *spi, u8 *idcode);
struct spi_flash *spi_flash_probe_eon(struct spi_slave *spi, u8 *idcode);
struct spi_flash *spi_flash_probe_macronix(struct spi_slave *spi, u8 *idcode);
struct spi_flash *spi_flash_probe_sst(struct spi_slave *spi, u8 *idcode);
struct spi_flash *spi_flash_probe_stmicro(struct spi_slave *spi, u8 *idcode);
struct spi_flash *spi_flash_probe_winbond(struct spi_slave *spi, u8 *idcode);
struct spi_flash *spi_fram_probe_ramtron(struct spi_slave *spi, u8 *idcode);
struct spi_flash *spi_flash_probe_gigadevice(struct spi_slave *spi, u8 *idcode);

View File

@ -1,238 +0,0 @@
/*
* Driver for SST serial flashes
*
* (C) Copyright 2000-2002
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
* Copyright 2008, Network Appliance Inc.
* Jason McMullan <mcmullan@netapp.com>
* Copyright (C) 2004-2007 Freescale Semiconductor, Inc.
* TsiChung Liew (Tsi-Chung.Liew@freescale.com)
* Copyright (c) 2008-2009 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#include <common.h>
#include <malloc.h>
#include <spi_flash.h>
#include "spi_flash_internal.h"
#define CMD_SST_BP 0x02 /* Byte Program */
#define CMD_SST_AAI_WP 0xAD /* Auto Address Incr Word Program */
#define SST_SR_WIP (1 << 0) /* Write-in-Progress */
#define SST_SR_WEL (1 << 1) /* Write enable */
#define SST_SR_BP0 (1 << 2) /* Block Protection 0 */
#define SST_SR_BP1 (1 << 3) /* Block Protection 1 */
#define SST_SR_BP2 (1 << 4) /* Block Protection 2 */
#define SST_SR_AAI (1 << 6) /* Addressing mode */
#define SST_SR_BPL (1 << 7) /* BP bits lock */
#define SST_FEAT_WP (1 << 0) /* Supports AAI word program */
#define SST_FEAT_MBP (1 << 1) /* Supports multibyte program */
struct sst_spi_flash_params {
u8 idcode1;
u8 flags;
u16 nr_sectors;
const char *name;
};
struct sst_spi_flash {
struct spi_flash flash;
const struct sst_spi_flash_params *params;
};
static const struct sst_spi_flash_params sst_spi_flash_table[] = {
{
.idcode1 = 0x8d,
.flags = SST_FEAT_WP,
.nr_sectors = 128,
.name = "SST25VF040B",
},
{
.idcode1 = 0x8e,
.flags = SST_FEAT_WP,
.nr_sectors = 256,
.name = "SST25VF080B",
},
{
.idcode1 = 0x41,
.flags = SST_FEAT_WP,
.nr_sectors = 512,
.name = "SST25VF016B",
},
{
.idcode1 = 0x4a,
.flags = SST_FEAT_WP,
.nr_sectors = 1024,
.name = "SST25VF032B",
},
{
.idcode1 = 0x4b,
.flags = SST_FEAT_MBP,
.nr_sectors = 2048,
.name = "SST25VF064C",
},
{
.idcode1 = 0x01,
.flags = SST_FEAT_WP,
.nr_sectors = 16,
.name = "SST25WF512",
},
{
.idcode1 = 0x02,
.flags = SST_FEAT_WP,
.nr_sectors = 32,
.name = "SST25WF010",
},
{
.idcode1 = 0x03,
.flags = SST_FEAT_WP,
.nr_sectors = 64,
.name = "SST25WF020",
},
{
.idcode1 = 0x04,
.flags = SST_FEAT_WP,
.nr_sectors = 128,
.name = "SST25WF040",
},
{
.idcode1 = 0x05,
.flags = SST_FEAT_WP,
.nr_sectors = 256,
.name = "SST25WF080",
},
};
static int
sst_byte_write(struct spi_flash *flash, u32 offset, const void *buf)
{
int ret;
u8 cmd[4] = {
CMD_SST_BP,
offset >> 16,
offset >> 8,
offset,
};
debug("BP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n",
spi_w8r8(flash->spi, CMD_READ_STATUS), buf, cmd[0], offset);
ret = spi_flash_cmd_write_enable(flash);
if (ret)
return ret;
ret = spi_flash_cmd_write(flash->spi, cmd, sizeof(cmd), buf, 1);
if (ret)
return ret;
return spi_flash_cmd_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT);
}
static int
sst_write_wp(struct spi_flash *flash, u32 offset, size_t len, const void *buf)
{
size_t actual, cmd_len;
int ret;
u8 cmd[4];
ret = spi_claim_bus(flash->spi);
if (ret) {
debug("SF: Unable to claim SPI bus\n");
return ret;
}
/* If the data is not word aligned, write out leading single byte */
actual = offset % 2;
if (actual) {
ret = sst_byte_write(flash, offset, buf);
if (ret)
goto done;
}
offset += actual;
ret = spi_flash_cmd_write_enable(flash);
if (ret)
goto done;
cmd_len = 4;
cmd[0] = CMD_SST_AAI_WP;
cmd[1] = offset >> 16;
cmd[2] = offset >> 8;
cmd[3] = offset;
for (; actual < len - 1; actual += 2) {
debug("WP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n",
spi_w8r8(flash->spi, CMD_READ_STATUS), buf + actual,
cmd[0], offset);
ret = spi_flash_cmd_write(flash->spi, cmd, cmd_len,
buf + actual, 2);
if (ret) {
debug("SF: sst word program failed\n");
break;
}
ret = spi_flash_cmd_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT);
if (ret)
break;
cmd_len = 1;
offset += 2;
}
if (!ret)
ret = spi_flash_cmd_write_disable(flash);
/* If there is a single trailing byte, write it out */
if (!ret && actual != len)
ret = sst_byte_write(flash, offset, buf + actual);
done:
debug("SF: sst: program %s %zu bytes @ 0x%zx\n",
ret ? "failure" : "success", len, offset - actual);
spi_release_bus(flash->spi);
return ret;
}
struct spi_flash *
spi_flash_probe_sst(struct spi_slave *spi, u8 *idcode)
{
const struct sst_spi_flash_params *params;
struct sst_spi_flash *stm;
size_t i;
for (i = 0; i < ARRAY_SIZE(sst_spi_flash_table); ++i) {
params = &sst_spi_flash_table[i];
if (params->idcode1 == idcode[2])
break;
}
if (i == ARRAY_SIZE(sst_spi_flash_table)) {
debug("SF: Unsupported SST ID %02x\n", idcode[1]);
return NULL;
}
stm = spi_flash_alloc(struct sst_spi_flash, spi, params->name);
if (!stm) {
debug("SF: Failed to allocate memory\n");
return NULL;
}
stm->params = params;
if (stm->params->flags & SST_FEAT_WP)
stm->flash.write = sst_write_wp;
stm->flash.page_size = 256;
stm->flash.sector_size = 4096;
stm->flash.size = stm->flash.sector_size * params->nr_sectors;
/* Flash powers up read-only, so clear BP# bits */
spi_flash_cmd_write_status(&stm->flash, 0);
return &stm->flash;
}

View File

@ -1,202 +0,0 @@
/*
* (C) Copyright 2000-2002
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* Copyright 2008, Network Appliance Inc.
* Jason McMullan <mcmullan@netapp.com>
*
* Copyright (C) 2004-2007 Freescale Semiconductor, Inc.
* TsiChung Liew (Tsi-Chung.Liew@freescale.com)
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <spi_flash.h>
#include "spi_flash_internal.h"
/* M25Pxx-specific commands */
#define CMD_M25PXX_RES 0xab /* Release from DP, and Read Signature */
struct stmicro_spi_flash_params {
u16 id;
u16 pages_per_sector;
u16 nr_sectors;
const char *name;
};
static const struct stmicro_spi_flash_params stmicro_spi_flash_table[] = {
{
.id = 0x2011,
.pages_per_sector = 128,
.nr_sectors = 4,
.name = "M25P10",
},
{
.id = 0x2015,
.pages_per_sector = 256,
.nr_sectors = 32,
.name = "M25P16",
},
{
.id = 0x2012,
.pages_per_sector = 256,
.nr_sectors = 4,
.name = "M25P20",
},
{
.id = 0x2016,
.pages_per_sector = 256,
.nr_sectors = 64,
.name = "M25P32",
},
{
.id = 0x2013,
.pages_per_sector = 256,
.nr_sectors = 8,
.name = "M25P40",
},
{
.id = 0x2017,
.pages_per_sector = 256,
.nr_sectors = 128,
.name = "M25P64",
},
{
.id = 0x2014,
.pages_per_sector = 256,
.nr_sectors = 16,
.name = "M25P80",
},
{
.id = 0x2018,
.pages_per_sector = 1024,
.nr_sectors = 64,
.name = "M25P128",
},
{
.id = 0xba16,
.pages_per_sector = 256,
.nr_sectors = 64,
.name = "N25Q32",
},
{
.id = 0xbb16,
.pages_per_sector = 256,
.nr_sectors = 64,
.name = "N25Q32A",
},
{
.id = 0xba17,
.pages_per_sector = 256,
.nr_sectors = 128,
.name = "N25Q064",
},
{
.id = 0xbb17,
.pages_per_sector = 256,
.nr_sectors = 128,
.name = "N25Q64A",
},
{
.id = 0xba18,
.pages_per_sector = 256,
.nr_sectors = 256,
.name = "N25Q128",
},
{
.id = 0xbb18,
.pages_per_sector = 256,
.nr_sectors = 256,
.name = "N25Q128A",
},
{
.id = 0xba19,
.pages_per_sector = 256,
.nr_sectors = 512,
.name = "N25Q256",
},
{
.id = 0xbb19,
.pages_per_sector = 256,
.nr_sectors = 512,
.name = "N25Q256A",
},
{
.id = 0xba20,
.pages_per_sector = 256,
.nr_sectors = 1024,
.name = "N25Q512",
},
{
.id = 0xbb20,
.pages_per_sector = 256,
.nr_sectors = 1024,
.name = "N25Q512A",
},
{
.id = 0xba21,
.pages_per_sector = 256,
.nr_sectors = 2048,
.name = "N25Q1024",
},
{
.id = 0xbb21,
.pages_per_sector = 256,
.nr_sectors = 2048,
.name = "N25Q1024A",
},
};
struct spi_flash *spi_flash_probe_stmicro(struct spi_slave *spi, u8 *idcode)
{
const struct stmicro_spi_flash_params *params;
struct spi_flash *flash;
unsigned int i;
u16 id;
if (idcode[0] == 0xff) {
i = spi_flash_cmd(spi, CMD_M25PXX_RES,
idcode, 4);
if (i)
return NULL;
if ((idcode[3] & 0xf0) == 0x10) {
idcode[0] = 0x20;
idcode[1] = 0x20;
idcode[2] = idcode[3] + 1;
} else {
return NULL;
}
}
id = ((idcode[1] << 8) | idcode[2]);
for (i = 0; i < ARRAY_SIZE(stmicro_spi_flash_table); i++) {
params = &stmicro_spi_flash_table[i];
if (params->id == id)
break;
}
if (i == ARRAY_SIZE(stmicro_spi_flash_table)) {
debug("SF: Unsupported STMicro ID %04x\n", id);
return NULL;
}
flash = spi_flash_alloc_base(spi, params->name);
if (!flash) {
debug("SF: Failed to allocate memory\n");
return NULL;
}
flash->page_size = 256;
flash->sector_size = 256 * params->pages_per_sector;
flash->size = flash->sector_size * params->nr_sectors;
/* for >= 512MiB flashes, use flag status instead of read_status */
if (flash->size >= 0x4000000)
flash->poll_cmd = CMD_FLAG_STATUS;
return flash;
}

View File

@ -1,141 +0,0 @@
/*
* Copyright 2008, Network Appliance Inc.
* Author: Jason McMullan <mcmullan <at> netapp.com>
* Licensed under the GPL-2 or later.
*/
#include <common.h>
#include <malloc.h>
#include <spi_flash.h>
#include "spi_flash_internal.h"
struct winbond_spi_flash_params {
uint16_t id;
uint16_t nr_blocks;
const char *name;
};
static const struct winbond_spi_flash_params winbond_spi_flash_table[] = {
{
.id = 0x2014,
.nr_blocks = 16,
.name = "W25P80",
},
{
.id = 0x2015,
.nr_blocks = 32,
.name = "W25P16",
},
{
.id = 0x2016,
.nr_blocks = 64,
.name = "W25P32",
},
{
.id = 0x3013,
.nr_blocks = 8,
.name = "W25X40",
},
{
.id = 0x3015,
.nr_blocks = 32,
.name = "W25X16",
},
{
.id = 0x3016,
.nr_blocks = 64,
.name = "W25X32",
},
{
.id = 0x3017,
.nr_blocks = 128,
.name = "W25X64",
},
{
.id = 0x4014,
.nr_blocks = 16,
.name = "W25Q80BL/W25Q80BV",
},
{
.id = 0x4015,
.nr_blocks = 32,
.name = "W25Q16CL/W25Q16DV",
},
{
.id = 0x4016,
.nr_blocks = 64,
.name = "W25Q32BV/W25Q32FV_SPI",
},
{
.id = 0x4017,
.nr_blocks = 128,
.name = "W25Q64CV/W25Q64FV_SPI",
},
{
.id = 0x4018,
.nr_blocks = 256,
.name = "W25Q128BV/W25Q128FV_SPI",
},
{
.id = 0x4019,
.nr_blocks = 512,
.name = "W25Q256",
},
{
.id = 0x5014,
.nr_blocks = 16,
.name = "W25Q80BW",
},
{
.id = 0x6015,
.nr_blocks = 32,
.name = "W25Q16DW",
},
{
.id = 0x6016,
.nr_blocks = 64,
.name = "W25Q32DW/W25Q32FV_QPI",
},
{
.id = 0x6017,
.nr_blocks = 128,
.name = "W25Q64DW/W25Q64FV_QPI",
},
{
.id = 0x6018,
.nr_blocks = 256,
.name = "W25Q128FW/W25Q128FV_QPI",
},
};
struct spi_flash *spi_flash_probe_winbond(struct spi_slave *spi, u8 *idcode)
{
const struct winbond_spi_flash_params *params;
struct spi_flash *flash;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(winbond_spi_flash_table); i++) {
params = &winbond_spi_flash_table[i];
if (params->id == ((idcode[1] << 8) | idcode[2]))
break;
}
if (i == ARRAY_SIZE(winbond_spi_flash_table)) {
debug("SF: Unsupported Winbond ID %02x%02x\n",
idcode[1], idcode[2]);
return NULL;
}
flash = spi_flash_alloc_base(spi, params->name);
if (!flash) {
debug("SF: Failed to allocate memory\n");
return NULL;
}
flash->page_size = 256;
flash->sector_size = (idcode[1] == 0x20) ? 65536 : 4096;
flash->size = 4096 * 16 * params->nr_blocks;
return flash;
}