dm: spi: zynq_spi: Convert to driver model

This converts the zynq spi driver to use the driver model.

Minimal functional changes like using meaningful name on
structure members wrt mainlined dm spi drivers.
- input_hz -> frequency
- req_hz -> freq
- base -> regs

Signed-off-by: Jagan Teki <jteki@openedev.com>
Acked-by: Simon Glass <sjg@chromium.org>
Cc: Michal Simek <michal.simek@xilinx.com>
Cc: Siva Durga Prasad Paladugu <sivadur@xilinx.com>
Tested-by: Jagan Teki <jteki@openedev.com>
This commit is contained in:
Jagan Teki 2015-06-27 00:51:31 +05:30
parent 5d69df3541
commit b1c82da266
1 changed files with 170 additions and 125 deletions

View File

@ -1,5 +1,6 @@
/*
* (C) Copyright 2013 Inc.
* (C) Copyright 2015 Jagan Teki <jteki@openedev.com>
*
* Xilinx Zynq PS SPI controller driver (master mode only)
*
@ -8,6 +9,8 @@
#include <config.h>
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
@ -44,180 +47,141 @@ struct zynq_spi_regs {
u32 rxdr; /* 0x20 */
};
/* zynq spi slave */
struct zynq_spi_slave {
struct spi_slave slave;
struct zynq_spi_regs *base;
u8 mode;
u8 fifo_depth;
/* zynq spi platform data */
struct zynq_spi_platdata {
struct zynq_spi_regs *regs;
u32 frequency; /* input frequency */
u32 speed_hz;
u32 input_hz;
u32 req_hz;
};
static inline struct zynq_spi_slave *to_zynq_spi_slave(struct spi_slave *slave)
{
return container_of(slave, struct zynq_spi_slave, slave);
}
/* zynq spi priv */
struct zynq_spi_priv {
struct zynq_spi_regs *regs;
u8 mode;
u8 fifo_depth;
u32 freq; /* required frequency */
};
static inline struct zynq_spi_regs *get_zynq_spi_base(int dev)
static inline struct zynq_spi_regs *get_zynq_spi_regs(struct udevice *bus)
{
if (dev)
if (bus->seq)
return (struct zynq_spi_regs *)ZYNQ_SPI_BASEADDR1;
else
return (struct zynq_spi_regs *)ZYNQ_SPI_BASEADDR0;
}
static void zynq_spi_init_hw(struct zynq_spi_slave *zslave)
static int zynq_spi_ofdata_to_platdata(struct udevice *bus)
{
struct zynq_spi_platdata *plat = bus->platdata;
plat->regs = get_zynq_spi_regs(bus);
plat->frequency = 166666700;
plat->speed_hz = plat->frequency / 2;
return 0;
}
static void zynq_spi_init_hw(struct zynq_spi_priv *priv)
{
struct zynq_spi_regs *regs = priv->regs;
u32 confr;
/* Disable SPI */
writel(~ZYNQ_SPI_ENR_SPI_EN_MASK, &zslave->base->enr);
writel(~ZYNQ_SPI_ENR_SPI_EN_MASK, &regs->enr);
/* Disable Interrupts */
writel(ZYNQ_SPI_IXR_ALL_MASK, &zslave->base->idr);
writel(ZYNQ_SPI_IXR_ALL_MASK, &regs->idr);
/* Clear RX FIFO */
while (readl(&zslave->base->isr) &
while (readl(&regs->isr) &
ZYNQ_SPI_IXR_RXNEMPTY_MASK)
readl(&zslave->base->rxdr);
readl(&regs->rxdr);
/* Clear Interrupts */
writel(ZYNQ_SPI_IXR_ALL_MASK, &zslave->base->isr);
writel(ZYNQ_SPI_IXR_ALL_MASK, &regs->isr);
/* Manual slave select and Auto start */
confr = ZYNQ_SPI_CR_MCS_MASK | ZYNQ_SPI_CR_CS_MASK |
ZYNQ_SPI_CR_MSTREN_MASK;
confr &= ~ZYNQ_SPI_CR_MSA_MASK;
writel(confr, &zslave->base->cr);
writel(confr, &regs->cr);
/* Enable SPI */
writel(ZYNQ_SPI_ENR_SPI_EN_MASK, &zslave->base->enr);
writel(ZYNQ_SPI_ENR_SPI_EN_MASK, &regs->enr);
}
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
static int zynq_spi_probe(struct udevice *bus)
{
/* 2 bus with 3 chipselect */
return bus < 2 && cs < 3;
struct zynq_spi_platdata *plat = dev_get_platdata(bus);
struct zynq_spi_priv *priv = dev_get_priv(bus);
priv->regs = plat->regs;
priv->fifo_depth = ZYNQ_SPI_FIFO_DEPTH;
/* init the zynq spi hw */
zynq_spi_init_hw(priv);
return 0;
}
void spi_cs_activate(struct spi_slave *slave)
static void spi_cs_activate(struct udevice *dev, uint cs)
{
struct zynq_spi_slave *zslave = to_zynq_spi_slave(slave);
struct udevice *bus = dev->parent;
struct zynq_spi_priv *priv = dev_get_priv(bus);
struct zynq_spi_regs *regs = priv->regs;
u32 cr;
debug("spi_cs_activate: 0x%08x\n", (u32)slave);
clrbits_le32(&zslave->base->cr, ZYNQ_SPI_CR_CS_MASK);
cr = readl(&zslave->base->cr);
clrbits_le32(&regs->cr, ZYNQ_SPI_CR_CS_MASK);
cr = readl(&regs->cr);
/*
* CS cal logic: CS[13:10]
* xxx0 - cs0
* xx01 - cs1
* x011 - cs2
*/
cr |= (~(0x1 << slave->cs) << 10) & ZYNQ_SPI_CR_CS_MASK;
writel(cr, &zslave->base->cr);
cr |= (~(0x1 << cs) << 10) & ZYNQ_SPI_CR_CS_MASK;
writel(cr, &regs->cr);
}
void spi_cs_deactivate(struct spi_slave *slave)
static void spi_cs_deactivate(struct udevice *dev)
{
struct zynq_spi_slave *zslave = to_zynq_spi_slave(slave);
struct udevice *bus = dev->parent;
struct zynq_spi_priv *priv = dev_get_priv(bus);
struct zynq_spi_regs *regs = priv->regs;
debug("spi_cs_deactivate: 0x%08x\n", (u32)slave);
setbits_le32(&zslave->base->cr, ZYNQ_SPI_CR_CS_MASK);
setbits_le32(&regs->cr, ZYNQ_SPI_CR_CS_MASK);
}
void spi_init()
static int zynq_spi_claim_bus(struct udevice *dev)
{
/* nothing to do */
}
struct udevice *bus = dev->parent;
struct zynq_spi_priv *priv = dev_get_priv(bus);
struct zynq_spi_regs *regs = priv->regs;
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct zynq_spi_slave *zslave;
if (!spi_cs_is_valid(bus, cs))
return NULL;
zslave = spi_alloc_slave(struct zynq_spi_slave, bus, cs);
if (!zslave) {
printf("SPI_error: Fail to allocate zynq_spi_slave\n");
return NULL;
}
zslave->base = get_zynq_spi_base(bus);
zslave->mode = mode;
zslave->fifo_depth = ZYNQ_SPI_FIFO_DEPTH;
zslave->input_hz = 166666700;
zslave->speed_hz = zslave->input_hz / 2;
zslave->req_hz = max_hz;
/* init the zynq spi hw */
zynq_spi_init_hw(zslave);
return &zslave->slave;
}
void spi_free_slave(struct spi_slave *slave)
{
struct zynq_spi_slave *zslave = to_zynq_spi_slave(slave);
debug("spi_free_slave: 0x%08x\n", (u32)slave);
free(zslave);
}
int spi_claim_bus(struct spi_slave *slave)
{
struct zynq_spi_slave *zslave = to_zynq_spi_slave(slave);
u32 confr = 0;
u8 baud_rate_val = 0;
writel(~ZYNQ_SPI_ENR_SPI_EN_MASK, &zslave->base->enr);
/* Set the SPI Clock phase and polarities */
confr = readl(&zslave->base->cr);
confr &= ~(ZYNQ_SPI_CR_CPHA_MASK | ZYNQ_SPI_CR_CPOL_MASK);
if (zslave->mode & SPI_CPHA)
confr |= ZYNQ_SPI_CR_CPHA_MASK;
if (zslave->mode & SPI_CPOL)
confr |= ZYNQ_SPI_CR_CPOL_MASK;
/* Set the clock frequency */
if (zslave->req_hz == 0) {
/* Set baudrate x8, if the req_hz is 0 */
baud_rate_val = 0x2;
} else if (zslave->speed_hz != zslave->req_hz) {
while ((baud_rate_val < 8) &&
((zslave->input_hz /
(2 << baud_rate_val)) > zslave->req_hz))
baud_rate_val++;
zslave->speed_hz = zslave->req_hz / (2 << baud_rate_val);
}
confr &= ~ZYNQ_SPI_CR_BRD_MASK;
confr |= (baud_rate_val << 3);
writel(confr, &zslave->base->cr);
writel(ZYNQ_SPI_ENR_SPI_EN_MASK, &zslave->base->enr);
writel(ZYNQ_SPI_ENR_SPI_EN_MASK, &regs->enr);
return 0;
}
void spi_release_bus(struct spi_slave *slave)
static int zynq_spi_release_bus(struct udevice *dev)
{
struct zynq_spi_slave *zslave = to_zynq_spi_slave(slave);
struct udevice *bus = dev->parent;
struct zynq_spi_priv *priv = dev_get_priv(bus);
struct zynq_spi_regs *regs = priv->regs;
debug("spi_release_bus: 0x%08x\n", (u32)slave);
writel(~ZYNQ_SPI_ENR_SPI_EN_MASK, &zslave->base->enr);
writel(~ZYNQ_SPI_ENR_SPI_EN_MASK, &regs->enr);
return 0;
}
int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
void *din, unsigned long flags)
static int zynq_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct zynq_spi_slave *zslave = to_zynq_spi_slave(slave);
struct udevice *bus = dev->parent;
struct zynq_spi_priv *priv = dev_get_priv(bus);
struct zynq_spi_regs *regs = priv->regs;
struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
u32 len = bitlen / 8;
u32 tx_len = len, rx_len = len, tx_tvl;
const u8 *tx_buf = dout;
@ -225,7 +189,7 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
u32 ts, status;
debug("spi_xfer: bus:%i cs:%i bitlen:%i len:%i flags:%lx\n",
slave->bus, slave->cs, bitlen, len, flags);
bus->seq, slave_plat->cs, bitlen, len, flags);
if (bitlen % 8) {
debug("spi_xfer: Non byte aligned SPI transfer\n");
@ -233,45 +197,126 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
}
if (flags & SPI_XFER_BEGIN)
spi_cs_activate(slave);
spi_cs_activate(dev, slave_plat->cs);
while (rx_len > 0) {
/* Write the data into TX FIFO - tx threshold is fifo_depth */
tx_tvl = 0;
while ((tx_tvl < zslave->fifo_depth) && tx_len) {
while ((tx_tvl < priv->fifo_depth) && tx_len) {
if (tx_buf)
buf = *tx_buf++;
else
buf = 0;
writel(buf, &zslave->base->txdr);
writel(buf, &regs->txdr);
tx_len--;
tx_tvl++;
}
/* Check TX FIFO completion */
ts = get_timer(0);
status = readl(&zslave->base->isr);
status = readl(&regs->isr);
while (!(status & ZYNQ_SPI_IXR_TXOW_MASK)) {
if (get_timer(ts) > CONFIG_SYS_ZYNQ_SPI_WAIT) {
printf("spi_xfer: Timeout! TX FIFO not full\n");
return -1;
}
status = readl(&zslave->base->isr);
status = readl(&regs->isr);
}
/* Read the data from RX FIFO */
status = readl(&zslave->base->isr);
status = readl(&regs->isr);
while (status & ZYNQ_SPI_IXR_RXNEMPTY_MASK) {
buf = readl(&zslave->base->rxdr);
buf = readl(&regs->rxdr);
if (rx_buf)
*rx_buf++ = buf;
status = readl(&zslave->base->isr);
status = readl(&regs->isr);
rx_len--;
}
}
if (flags & SPI_XFER_END)
spi_cs_deactivate(slave);
spi_cs_deactivate(dev);
return 0;
}
static int zynq_spi_set_speed(struct udevice *bus, uint speed)
{
struct zynq_spi_platdata *plat = bus->platdata;
struct zynq_spi_priv *priv = dev_get_priv(bus);
struct zynq_spi_regs *regs = priv->regs;
uint32_t confr;
u8 baud_rate_val = 0;
if (speed > plat->frequency)
speed = plat->frequency;
/* Set the clock frequency */
confr = readl(&regs->cr);
if (speed == 0) {
/* Set baudrate x8, if the freq is 0 */
baud_rate_val = 0x2;
} else if (plat->speed_hz != speed) {
while ((baud_rate_val < 8) &&
((plat->frequency /
(2 << baud_rate_val)) > speed))
baud_rate_val++;
plat->speed_hz = speed / (2 << baud_rate_val);
}
confr &= ~ZYNQ_SPI_CR_BRD_MASK;
confr |= (baud_rate_val << 3);
writel(confr, &regs->cr);
priv->freq = speed;
debug("zynq_spi_set_speed: regs=%p, mode=%d\n", priv->regs, priv->freq);
return 0;
}
static int zynq_spi_set_mode(struct udevice *bus, uint mode)
{
struct zynq_spi_priv *priv = dev_get_priv(bus);
struct zynq_spi_regs *regs = priv->regs;
uint32_t confr;
/* Set the SPI Clock phase and polarities */
confr = readl(&regs->cr);
confr &= ~(ZYNQ_SPI_CR_CPHA_MASK | ZYNQ_SPI_CR_CPOL_MASK);
if (priv->mode & SPI_CPHA)
confr |= ZYNQ_SPI_CR_CPHA_MASK;
if (priv->mode & SPI_CPOL)
confr |= ZYNQ_SPI_CR_CPOL_MASK;
writel(confr, &regs->cr);
priv->mode = mode;
debug("zynq_spi_set_mode: regs=%p, mode=%d\n", priv->regs, priv->mode);
return 0;
}
static const struct dm_spi_ops zynq_spi_ops = {
.claim_bus = zynq_spi_claim_bus,
.release_bus = zynq_spi_release_bus,
.xfer = zynq_spi_xfer,
.set_speed = zynq_spi_set_speed,
.set_mode = zynq_spi_set_mode,
};
static const struct udevice_id zynq_spi_ids[] = {
{ .compatible = "xlnx,zynq-spi" },
{ }
};
U_BOOT_DRIVER(zynq_spi) = {
.name = "zynq_spi",
.id = UCLASS_SPI,
.of_match = zynq_spi_ids,
.ops = &zynq_spi_ops,
.ofdata_to_platdata = zynq_spi_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct zynq_spi_platdata),
.priv_auto_alloc_size = sizeof(struct zynq_spi_priv),
.probe = zynq_spi_probe,
};