asterisk/res/res_http_websocket.c

1389 lines
41 KiB
C
Raw Normal View History

/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 2012, Digium, Inc.
*
* Joshua Colp <jcolp@digium.com>
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
*
* \brief WebSocket support for the Asterisk internal HTTP server
*
* \author Joshua Colp <jcolp@digium.com>
*/
/*** MODULEINFO
<support_level>extended</support_level>
***/
#include "asterisk.h"
git migration: Refactor the ASTERISK_FILE_VERSION macro Git does not support the ability to replace a token with a version string during check-in. While it does have support for replacing a token on clone, this is somewhat sub-optimal: the token is replaced with the object hash, which is not particularly easy for human consumption. What's more, in practice, the source file version was often not terribly useful. Generally, when triaging bugs, the overall version of Asterisk is far more useful than an individual SVN version of a file. As a result, this patch removes Asterisk's support for showing source file versions. Specifically, it does the following: * Rename ASTERISK_FILE_VERSION macro to ASTERISK_REGISTER_FILE, and remove passing the version in with the macro. Other facilities than 'core show file version' make use of the file names, such as setting a debug level only on a specific file. As such, the act of registering source files with the Asterisk core still has use. The macro rename now reflects the new macro purpose. * main/asterisk: - Refactor the file_version structure to reflect that it no longer tracks a version field. - Remove the "core show file version" CLI command. Without the file version, it is no longer useful. - Remove the ast_file_version_find function. The file version is no longer tracked. - Rename ast_register_file_version/ast_unregister_file_version to ast_register_file/ast_unregister_file, respectively. * main/manager: Remove value from the Version key of the ModuleCheck Action. The actual key itself has not been removed, as doing so would absolutely constitute a backwards incompatible change. However, since the file version is no longer tracked, there is no need to attempt to include it in the Version key. * UPGRADE: Add notes for: - Modification to the ModuleCheck AMI Action - Removal of the "core show file version" CLI command Change-Id: I6cf0ff280e1668bf4957dc21f32a5ff43444a40e
2015-04-12 02:38:22 +00:00
ASTERISK_REGISTER_FILE()
#include "asterisk/module.h"
#include "asterisk/http.h"
#include "asterisk/astobj2.h"
#include "asterisk/strings.h"
#include "asterisk/file.h"
#include "asterisk/unaligned.h"
#include "asterisk/uri.h"
#define AST_API_MODULE
#include "asterisk/http_websocket.h"
/*! \brief GUID used to compute the accept key, defined in the specifications */
#define WEBSOCKET_GUID "258EAFA5-E914-47DA-95CA-C5AB0DC85B11"
/*! \brief Length of a websocket's client key */
#define CLIENT_KEY_SIZE 16
/*! \brief Number of buckets for registered protocols */
#define MAX_PROTOCOL_BUCKETS 7
/*! \brief Size of the pre-determined buffer for WebSocket frames */
#define MAXIMUM_FRAME_SIZE 16384
/*! \brief Default reconstruction size for multi-frame payload reconstruction. If exceeded the next frame will start a
* payload.
*/
#define DEFAULT_RECONSTRUCTION_CEILING 16384
/*! \brief Maximum reconstruction size for multi-frame payload reconstruction. */
#define MAXIMUM_RECONSTRUCTION_CEILING 16384
/*! \brief Maximum size of a websocket frame header
* 1 byte flags and opcode
* 1 byte mask flag + payload len
* 8 bytes max extended length
* 4 bytes optional masking key
* ... payload follows ...
* */
#define MAX_WS_HDR_SZ 14
#define MIN_WS_HDR_SZ 2
/*! \brief Structure definition for session */
struct ast_websocket {
FILE *f; /*!< Pointer to the file instance used for writing and reading */
int fd; /*!< File descriptor for the session, only used for polling */
struct ast_sockaddr address; /*!< Address of the remote client */
enum ast_websocket_opcode opcode; /*!< Cached opcode for multi-frame messages */
size_t payload_len; /*!< Length of the payload */
char *payload; /*!< Pointer to the payload */
size_t reconstruct; /*!< Number of bytes before a reconstructed payload will be returned and a new one started */
res_http_websocket: Close websocket correctly and use careful fwrite When a client takes a long time to process information received from Asterisk, a write operation using fwrite may fail to write all information. This causes the underlying file stream to be in an unknown state, such that the socket must be disconnected. Unfortunately, there are two problems with this in Asterisk's existing websocket code: 1. Periodically, during the read loop, Asterisk must write to the connected websocket to respond to pings. As such, Asterisk maintains a reference to the session during the loop. When ast_http_websocket_write fails, it may cause the session to decrement its ref count, but this in and of itself does not break the read loop. The read loop's write, on the other hand, does not break the loop if it fails. This causes the socket to get in a 'stuck' state, preventing the client from reconnecting to the server. 2. More importantly, however, is that the fwrite in ast_http_websocket_write fails with a large volume of data when the client takes awhile to process the information. When it does fail, it fails writing only a portion of the bytes. With some debugging, it was shown that this was failing in a similar fashion to ASTERISK-12767. Switching this over to ast_careful_fwrite with a long enough timeout solved the problem. Note that this version of the patch, unlike r417310 in Asterisk 11, exposes configuration options beyond just chan_sip's sip.conf. Configuration options to configure the write timeout have also been added to pjsip.conf and ari.conf. #ASTERISK-23917 #close Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/3624/ ........ Merged revisions 417310 from http://svn.asterisk.org/svn/asterisk/branches/11 ........ Merged revisions 417311 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@417317 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2014-06-26 12:21:14 +00:00
int timeout; /*!< The timeout for operations on the socket */
unsigned int secure:1; /*!< Bit to indicate that the transport is secure */
unsigned int closing:1; /*!< Bit to indicate that the session is in the process of being closed */
unsigned int close_sent:1; /*!< Bit to indicate that the session close opcode has been sent and no further data will be sent */
struct websocket_client *client; /*!< Client object when connected as a client websocket */
};
/*! \brief Hashing function for protocols */
static int protocol_hash_fn(const void *obj, const int flags)
{
const struct ast_websocket_protocol *protocol = obj;
const char *name = obj;
return ast_str_case_hash(flags & OBJ_KEY ? name : protocol->name);
}
/*! \brief Comparison function for protocols */
static int protocol_cmp_fn(void *obj, void *arg, int flags)
{
const struct ast_websocket_protocol *protocol1 = obj, *protocol2 = arg;
const char *protocol = arg;
return !strcasecmp(protocol1->name, flags & OBJ_KEY ? protocol : protocol2->name) ? CMP_MATCH | CMP_STOP : 0;
}
/*! \brief Destructor function for protocols */
static void protocol_destroy_fn(void *obj)
{
struct ast_websocket_protocol *protocol = obj;
ast_free(protocol->name);
}
/*! \brief Structure for a WebSocket server */
struct ast_websocket_server {
struct ao2_container *protocols; /*!< Container for registered protocols */
};
optional_api: Fix linking problems between modules that export global symbols With the new work in Asterisk 12, there are some uses of the optional_api that are prone to failure. The details are rather involved, and captured on [the wiki][1]. This patch addresses the issue by removing almost all of the magic from the optional API implementation. Instead of relying on weak symbol resolution, a new optional_api.c module was added to Asterisk core. For modules providing an optional API, the pointer to the implementation function is registered with the core. For modules that use an optional API, a pointer to a stub function, along with a optional_ref function pointer are registered with the core. The optional_ref function pointers is set to the implementation function when it's provided, or the stub function when it's now. Since the implementation no longer relies on magic, it is now supported on all platforms. In the spirit of choice, an OPTIONAL_API flag was added, so we can disable the optional_api if needed (maybe it's buggy on some bizarre platform I haven't tested on) The AST_OPTIONAL_API*() macros themselves remained unchanged, so existing code could remain unchanged. But to help with debugging the optional_api, the patch limits the #include of optional API's to just the modules using the API. This also reduces resource waste maintaining optional_ref pointers that aren't used. Other changes made as a part of this patch: * The stubs for http_websocket that wrap system calls set errno to ENOSYS. * res_http_websocket now properly increments module use count. * In loader.c, the while() wrappers around dlclose() were removed. The while(!dlclose()) is actually an anti-pattern, which can lead to infinite loops if the module you're attempting to unload exports a symbol that was directly linked to. * The special handling of nonoptreq on systems without weak symbol support was removed, since we no longer rely on weak symbols for optional_api. [1]: https://wiki.asterisk.org/wiki/x/wACUAQ (closes issue ASTERISK-22296) Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/2797/ ........ Merged revisions 397989 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@397990 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2013-08-30 13:40:27 +00:00
static void websocket_server_internal_dtor(void *obj)
{
struct ast_websocket_server *server = obj;
ao2_cleanup(server->protocols);
server->protocols = NULL;
}
optional_api: Fix linking problems between modules that export global symbols With the new work in Asterisk 12, there are some uses of the optional_api that are prone to failure. The details are rather involved, and captured on [the wiki][1]. This patch addresses the issue by removing almost all of the magic from the optional API implementation. Instead of relying on weak symbol resolution, a new optional_api.c module was added to Asterisk core. For modules providing an optional API, the pointer to the implementation function is registered with the core. For modules that use an optional API, a pointer to a stub function, along with a optional_ref function pointer are registered with the core. The optional_ref function pointers is set to the implementation function when it's provided, or the stub function when it's now. Since the implementation no longer relies on magic, it is now supported on all platforms. In the spirit of choice, an OPTIONAL_API flag was added, so we can disable the optional_api if needed (maybe it's buggy on some bizarre platform I haven't tested on) The AST_OPTIONAL_API*() macros themselves remained unchanged, so existing code could remain unchanged. But to help with debugging the optional_api, the patch limits the #include of optional API's to just the modules using the API. This also reduces resource waste maintaining optional_ref pointers that aren't used. Other changes made as a part of this patch: * The stubs for http_websocket that wrap system calls set errno to ENOSYS. * res_http_websocket now properly increments module use count. * In loader.c, the while() wrappers around dlclose() were removed. The while(!dlclose()) is actually an anti-pattern, which can lead to infinite loops if the module you're attempting to unload exports a symbol that was directly linked to. * The special handling of nonoptreq on systems without weak symbol support was removed, since we no longer rely on weak symbols for optional_api. [1]: https://wiki.asterisk.org/wiki/x/wACUAQ (closes issue ASTERISK-22296) Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/2797/ ........ Merged revisions 397989 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@397990 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2013-08-30 13:40:27 +00:00
static void websocket_server_dtor(void *obj)
{
websocket_server_internal_dtor(obj);
ast_module_unref(ast_module_info->self);
}
static struct ast_websocket_server *websocket_server_create_impl(void (*dtor)(void *))
{
RAII_VAR(struct ast_websocket_server *, server, NULL, ao2_cleanup);
optional_api: Fix linking problems between modules that export global symbols With the new work in Asterisk 12, there are some uses of the optional_api that are prone to failure. The details are rather involved, and captured on [the wiki][1]. This patch addresses the issue by removing almost all of the magic from the optional API implementation. Instead of relying on weak symbol resolution, a new optional_api.c module was added to Asterisk core. For modules providing an optional API, the pointer to the implementation function is registered with the core. For modules that use an optional API, a pointer to a stub function, along with a optional_ref function pointer are registered with the core. The optional_ref function pointers is set to the implementation function when it's provided, or the stub function when it's now. Since the implementation no longer relies on magic, it is now supported on all platforms. In the spirit of choice, an OPTIONAL_API flag was added, so we can disable the optional_api if needed (maybe it's buggy on some bizarre platform I haven't tested on) The AST_OPTIONAL_API*() macros themselves remained unchanged, so existing code could remain unchanged. But to help with debugging the optional_api, the patch limits the #include of optional API's to just the modules using the API. This also reduces resource waste maintaining optional_ref pointers that aren't used. Other changes made as a part of this patch: * The stubs for http_websocket that wrap system calls set errno to ENOSYS. * res_http_websocket now properly increments module use count. * In loader.c, the while() wrappers around dlclose() were removed. The while(!dlclose()) is actually an anti-pattern, which can lead to infinite loops if the module you're attempting to unload exports a symbol that was directly linked to. * The special handling of nonoptreq on systems without weak symbol support was removed, since we no longer rely on weak symbols for optional_api. [1]: https://wiki.asterisk.org/wiki/x/wACUAQ (closes issue ASTERISK-22296) Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/2797/ ........ Merged revisions 397989 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@397990 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2013-08-30 13:40:27 +00:00
server = ao2_alloc(sizeof(*server), dtor);
if (!server) {
return NULL;
}
server->protocols = ao2_container_alloc(MAX_PROTOCOL_BUCKETS, protocol_hash_fn, protocol_cmp_fn);
if (!server->protocols) {
return NULL;
}
ao2_ref(server, +1);
return server;
}
optional_api: Fix linking problems between modules that export global symbols With the new work in Asterisk 12, there are some uses of the optional_api that are prone to failure. The details are rather involved, and captured on [the wiki][1]. This patch addresses the issue by removing almost all of the magic from the optional API implementation. Instead of relying on weak symbol resolution, a new optional_api.c module was added to Asterisk core. For modules providing an optional API, the pointer to the implementation function is registered with the core. For modules that use an optional API, a pointer to a stub function, along with a optional_ref function pointer are registered with the core. The optional_ref function pointers is set to the implementation function when it's provided, or the stub function when it's now. Since the implementation no longer relies on magic, it is now supported on all platforms. In the spirit of choice, an OPTIONAL_API flag was added, so we can disable the optional_api if needed (maybe it's buggy on some bizarre platform I haven't tested on) The AST_OPTIONAL_API*() macros themselves remained unchanged, so existing code could remain unchanged. But to help with debugging the optional_api, the patch limits the #include of optional API's to just the modules using the API. This also reduces resource waste maintaining optional_ref pointers that aren't used. Other changes made as a part of this patch: * The stubs for http_websocket that wrap system calls set errno to ENOSYS. * res_http_websocket now properly increments module use count. * In loader.c, the while() wrappers around dlclose() were removed. The while(!dlclose()) is actually an anti-pattern, which can lead to infinite loops if the module you're attempting to unload exports a symbol that was directly linked to. * The special handling of nonoptreq on systems without weak symbol support was removed, since we no longer rely on weak symbols for optional_api. [1]: https://wiki.asterisk.org/wiki/x/wACUAQ (closes issue ASTERISK-22296) Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/2797/ ........ Merged revisions 397989 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@397990 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2013-08-30 13:40:27 +00:00
static struct ast_websocket_server *websocket_server_internal_create(void)
{
return websocket_server_create_impl(websocket_server_internal_dtor);
}
struct ast_websocket_server *AST_OPTIONAL_API_NAME(ast_websocket_server_create)(void)
{
ast_module_ref(ast_module_info->self);
return websocket_server_create_impl(websocket_server_dtor);
}
/*! \brief Destructor function for sessions */
static void session_destroy_fn(void *obj)
{
struct ast_websocket *session = obj;
if (session->f) {
ast_websocket_close(session, 0);
fclose(session->f);
ast_verb(2, "WebSocket connection %s '%s' closed\n", session->client ? "to" : "from",
ast_sockaddr_stringify(&session->address));
}
ao2_cleanup(session->client);
ast_free(session->payload);
}
struct ast_websocket_protocol *AST_OPTIONAL_API_NAME(ast_websocket_sub_protocol_alloc)(const char *name)
{
struct ast_websocket_protocol *protocol;
protocol = ao2_alloc(sizeof(*protocol), protocol_destroy_fn);
if (!protocol) {
return NULL;
}
protocol->name = ast_strdup(name);
if (!protocol->name) {
ao2_ref(protocol, -1);
return NULL;
}
protocol->version = AST_WEBSOCKET_PROTOCOL_VERSION;
return protocol;
}
int AST_OPTIONAL_API_NAME(ast_websocket_server_add_protocol)(struct ast_websocket_server *server, const char *name, ast_websocket_callback callback)
{
struct ast_websocket_protocol *protocol;
if (!server->protocols) {
return -1;
}
protocol = ast_websocket_sub_protocol_alloc(name);
if (!protocol) {
ao2_unlock(server->protocols);
return -1;
}
protocol->session_established = callback;
if (ast_websocket_server_add_protocol2(server, protocol)) {
ao2_ref(protocol, -1);
return -1;
}
return 0;
}
int AST_OPTIONAL_API_NAME(ast_websocket_server_add_protocol2)(struct ast_websocket_server *server, struct ast_websocket_protocol *protocol)
{
struct ast_websocket_protocol *existing;
if (!server->protocols) {
return -1;
}
if (protocol->version != AST_WEBSOCKET_PROTOCOL_VERSION) {
ast_log(LOG_WARNING, "WebSocket could not register sub-protocol '%s': "
"expected version '%u', got version '%u'\n",
protocol->name, AST_WEBSOCKET_PROTOCOL_VERSION, protocol->version);
return -1;
}
ao2_lock(server->protocols);
/* Ensure a second protocol handler is not registered for the same protocol */
existing = ao2_find(server->protocols, protocol->name, OBJ_KEY | OBJ_NOLOCK);
if (existing) {
ao2_ref(existing, -1);
ao2_unlock(server->protocols);
return -1;
}
ao2_link_flags(server->protocols, protocol, OBJ_NOLOCK);
ao2_unlock(server->protocols);
ast_verb(2, "WebSocket registered sub-protocol '%s'\n", protocol->name);
ao2_ref(protocol, -1);
return 0;
}
int AST_OPTIONAL_API_NAME(ast_websocket_server_remove_protocol)(struct ast_websocket_server *server, const char *name, ast_websocket_callback callback)
{
struct ast_websocket_protocol *protocol;
if (!(protocol = ao2_find(server->protocols, name, OBJ_KEY))) {
return -1;
}
if (protocol->session_established != callback) {
ao2_ref(protocol, -1);
return -1;
}
ao2_unlink(server->protocols, protocol);
ao2_ref(protocol, -1);
ast_verb(2, "WebSocket unregistered sub-protocol '%s'\n", name);
return 0;
}
/*! \brief Close function for websocket session */
int AST_OPTIONAL_API_NAME(ast_websocket_close)(struct ast_websocket *session, uint16_t reason)
{
char frame[4] = { 0, }; /* The header is 2 bytes and the reason code takes up another 2 bytes */
int res;
if (session->close_sent) {
return 0;
}
frame[0] = AST_WEBSOCKET_OPCODE_CLOSE | 0x80;
frame[1] = 2; /* The reason code is always 2 bytes */
/* If no reason has been specified assume 1000 which is normal closure */
put_unaligned_uint16(&frame[2], htons(reason ? reason : 1000));
session->closing = 1;
session->close_sent = 1;
ao2_lock(session);
res_http_websocket: Close websocket correctly and use careful fwrite When a client takes a long time to process information received from Asterisk, a write operation using fwrite may fail to write all information. This causes the underlying file stream to be in an unknown state, such that the socket must be disconnected. Unfortunately, there are two problems with this in Asterisk's existing websocket code: 1. Periodically, during the read loop, Asterisk must write to the connected websocket to respond to pings. As such, Asterisk maintains a reference to the session during the loop. When ast_http_websocket_write fails, it may cause the session to decrement its ref count, but this in and of itself does not break the read loop. The read loop's write, on the other hand, does not break the loop if it fails. This causes the socket to get in a 'stuck' state, preventing the client from reconnecting to the server. 2. More importantly, however, is that the fwrite in ast_http_websocket_write fails with a large volume of data when the client takes awhile to process the information. When it does fail, it fails writing only a portion of the bytes. With some debugging, it was shown that this was failing in a similar fashion to ASTERISK-12767. Switching this over to ast_careful_fwrite with a long enough timeout solved the problem. Note that this version of the patch, unlike r417310 in Asterisk 11, exposes configuration options beyond just chan_sip's sip.conf. Configuration options to configure the write timeout have also been added to pjsip.conf and ari.conf. #ASTERISK-23917 #close Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/3624/ ........ Merged revisions 417310 from http://svn.asterisk.org/svn/asterisk/branches/11 ........ Merged revisions 417311 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@417317 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2014-06-26 12:21:14 +00:00
res = ast_careful_fwrite(session->f, session->fd, frame, 4, session->timeout);
ao2_unlock(session);
return res;
}
/*! \brief Write function for websocket traffic */
int AST_OPTIONAL_API_NAME(ast_websocket_write)(struct ast_websocket *session, enum ast_websocket_opcode opcode, char *payload, uint64_t actual_length)
{
size_t header_size = 2; /* The minimum size of a websocket frame is 2 bytes */
char *frame;
uint64_t length;
if (actual_length < 126) {
length = actual_length;
} else if (actual_length < (1 << 16)) {
length = 126;
/* We need an additional 2 bytes to store the extended length */
header_size += 2;
} else {
length = 127;
/* We need an additional 8 bytes to store the really really extended length */
header_size += 8;
}
frame = ast_alloca(header_size);
memset(frame, 0, header_size);
frame[0] = opcode | 0x80;
frame[1] = length;
/* Use the additional available bytes to store the length */
if (length == 126) {
put_unaligned_uint16(&frame[2], htons(actual_length));
} else if (length == 127) {
put_unaligned_uint64(&frame[2], htonl(actual_length));
}
ao2_lock(session);
if (session->closing) {
ao2_unlock(session);
return -1;
}
res_http_websocket: Close websocket correctly and use careful fwrite When a client takes a long time to process information received from Asterisk, a write operation using fwrite may fail to write all information. This causes the underlying file stream to be in an unknown state, such that the socket must be disconnected. Unfortunately, there are two problems with this in Asterisk's existing websocket code: 1. Periodically, during the read loop, Asterisk must write to the connected websocket to respond to pings. As such, Asterisk maintains a reference to the session during the loop. When ast_http_websocket_write fails, it may cause the session to decrement its ref count, but this in and of itself does not break the read loop. The read loop's write, on the other hand, does not break the loop if it fails. This causes the socket to get in a 'stuck' state, preventing the client from reconnecting to the server. 2. More importantly, however, is that the fwrite in ast_http_websocket_write fails with a large volume of data when the client takes awhile to process the information. When it does fail, it fails writing only a portion of the bytes. With some debugging, it was shown that this was failing in a similar fashion to ASTERISK-12767. Switching this over to ast_careful_fwrite with a long enough timeout solved the problem. Note that this version of the patch, unlike r417310 in Asterisk 11, exposes configuration options beyond just chan_sip's sip.conf. Configuration options to configure the write timeout have also been added to pjsip.conf and ari.conf. #ASTERISK-23917 #close Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/3624/ ........ Merged revisions 417310 from http://svn.asterisk.org/svn/asterisk/branches/11 ........ Merged revisions 417311 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@417317 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2014-06-26 12:21:14 +00:00
if (ast_careful_fwrite(session->f, session->fd, frame, header_size, session->timeout)) {
ao2_unlock(session);
/* 1011 - server terminating connection due to not being able to fulfill the request */
ast_websocket_close(session, 1011);
return -1;
}
res_http_websocket: Close websocket correctly and use careful fwrite When a client takes a long time to process information received from Asterisk, a write operation using fwrite may fail to write all information. This causes the underlying file stream to be in an unknown state, such that the socket must be disconnected. Unfortunately, there are two problems with this in Asterisk's existing websocket code: 1. Periodically, during the read loop, Asterisk must write to the connected websocket to respond to pings. As such, Asterisk maintains a reference to the session during the loop. When ast_http_websocket_write fails, it may cause the session to decrement its ref count, but this in and of itself does not break the read loop. The read loop's write, on the other hand, does not break the loop if it fails. This causes the socket to get in a 'stuck' state, preventing the client from reconnecting to the server. 2. More importantly, however, is that the fwrite in ast_http_websocket_write fails with a large volume of data when the client takes awhile to process the information. When it does fail, it fails writing only a portion of the bytes. With some debugging, it was shown that this was failing in a similar fashion to ASTERISK-12767. Switching this over to ast_careful_fwrite with a long enough timeout solved the problem. Note that this version of the patch, unlike r417310 in Asterisk 11, exposes configuration options beyond just chan_sip's sip.conf. Configuration options to configure the write timeout have also been added to pjsip.conf and ari.conf. #ASTERISK-23917 #close Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/3624/ ........ Merged revisions 417310 from http://svn.asterisk.org/svn/asterisk/branches/11 ........ Merged revisions 417311 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@417317 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2014-06-26 12:21:14 +00:00
if (ast_careful_fwrite(session->f, session->fd, payload, actual_length, session->timeout)) {
ao2_unlock(session);
/* 1011 - server terminating connection due to not being able to fulfill the request */
ast_websocket_close(session, 1011);
return -1;
}
fflush(session->f);
ao2_unlock(session);
return 0;
}
void AST_OPTIONAL_API_NAME(ast_websocket_reconstruct_enable)(struct ast_websocket *session, size_t bytes)
{
session->reconstruct = MIN(bytes, MAXIMUM_RECONSTRUCTION_CEILING);
}
void AST_OPTIONAL_API_NAME(ast_websocket_reconstruct_disable)(struct ast_websocket *session)
{
session->reconstruct = 0;
}
void AST_OPTIONAL_API_NAME(ast_websocket_ref)(struct ast_websocket *session)
{
ao2_ref(session, +1);
}
void AST_OPTIONAL_API_NAME(ast_websocket_unref)(struct ast_websocket *session)
{
ao2_cleanup(session);
}
int AST_OPTIONAL_API_NAME(ast_websocket_fd)(struct ast_websocket *session)
{
return session->closing ? -1 : session->fd;
}
struct ast_sockaddr * AST_OPTIONAL_API_NAME(ast_websocket_remote_address)(struct ast_websocket *session)
{
return &session->address;
}
int AST_OPTIONAL_API_NAME(ast_websocket_is_secure)(struct ast_websocket *session)
{
return session->secure;
}
int AST_OPTIONAL_API_NAME(ast_websocket_set_nonblock)(struct ast_websocket *session)
{
int flags;
if ((flags = fcntl(session->fd, F_GETFL)) == -1) {
return -1;
}
flags |= O_NONBLOCK;
if ((flags = fcntl(session->fd, F_SETFL, flags)) == -1) {
return -1;
}
return 0;
}
res_http_websocket: Close websocket correctly and use careful fwrite When a client takes a long time to process information received from Asterisk, a write operation using fwrite may fail to write all information. This causes the underlying file stream to be in an unknown state, such that the socket must be disconnected. Unfortunately, there are two problems with this in Asterisk's existing websocket code: 1. Periodically, during the read loop, Asterisk must write to the connected websocket to respond to pings. As such, Asterisk maintains a reference to the session during the loop. When ast_http_websocket_write fails, it may cause the session to decrement its ref count, but this in and of itself does not break the read loop. The read loop's write, on the other hand, does not break the loop if it fails. This causes the socket to get in a 'stuck' state, preventing the client from reconnecting to the server. 2. More importantly, however, is that the fwrite in ast_http_websocket_write fails with a large volume of data when the client takes awhile to process the information. When it does fail, it fails writing only a portion of the bytes. With some debugging, it was shown that this was failing in a similar fashion to ASTERISK-12767. Switching this over to ast_careful_fwrite with a long enough timeout solved the problem. Note that this version of the patch, unlike r417310 in Asterisk 11, exposes configuration options beyond just chan_sip's sip.conf. Configuration options to configure the write timeout have also been added to pjsip.conf and ari.conf. #ASTERISK-23917 #close Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/3624/ ........ Merged revisions 417310 from http://svn.asterisk.org/svn/asterisk/branches/11 ........ Merged revisions 417311 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@417317 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2014-06-26 12:21:14 +00:00
int AST_OPTIONAL_API_NAME(ast_websocket_set_timeout)(struct ast_websocket *session, int timeout)
{
session->timeout = timeout;
return 0;
}
/* MAINTENANCE WARNING on ast_websocket_read()!
*
* We have to keep in mind during this function that the fact that session->fd seems ready
* (via poll) does not necessarily mean we have application data ready, because in the case
* of an SSL socket, there is some encryption data overhead that needs to be read from the
* TCP socket, so poll() may say there are bytes to be read, but whether it is just 1 byte
* or N bytes we do not know that, and we do not know how many of those bytes (if any) are
* for application data (for us) and not just for the SSL protocol consumption
*
* There used to be a couple of nasty bugs here that were fixed in last refactoring but I
* want to document them so the constraints are clear and we do not re-introduce them:
*
* - This function would incorrectly assume that fread() would necessarily return more than
* 1 byte of data, just because a websocket frame is always >= 2 bytes, but the thing
* is we're dealing with a TCP bitstream here, we could read just one byte and that's normal.
* The problem before was that if just one byte was read, the function bailed out and returned
* an error, effectively dropping the first byte of a websocket frame header!
*
* - Another subtle bug was that it would just read up to MAX_WS_HDR_SZ (14 bytes) via fread()
* then assume that executing poll() would tell you if there is more to read, but since
* we're dealing with a buffered stream (session->f is a FILE*), poll would say there is
* nothing else to read (in the real tcp socket session->fd) and we would get stuck here
* without processing the rest of the data in session->f internal buffers until another packet
* came on the network to unblock us!
*
* Note during the header parsing stage we try to read in small chunks just what we need, this
* is buffered data anyways, no expensive syscall required most of the time ...
*/
static inline int ws_safe_read(struct ast_websocket *session, char *buf, int len, enum ast_websocket_opcode *opcode)
{
size_t rlen;
int xlen = len;
char *rbuf = buf;
int sanity = 10;
for (;;) {
clearerr(session->f);
rlen = fread(rbuf, 1, xlen, session->f);
if (!rlen) {
if (feof(session->f)) {
ast_log(LOG_WARNING, "Web socket closed abruptly\n");
*opcode = AST_WEBSOCKET_OPCODE_CLOSE;
session->closing = 1;
return -1;
}
if (ferror(session->f) && errno != EAGAIN) {
ast_log(LOG_ERROR, "Error reading from web socket: %s\n", strerror(errno));
*opcode = AST_WEBSOCKET_OPCODE_CLOSE;
session->closing = 1;
return -1;
}
if (!--sanity) {
ast_log(LOG_WARNING, "Websocket seems unresponsive, disconnecting ...\n");
*opcode = AST_WEBSOCKET_OPCODE_CLOSE;
session->closing = 1;
return -1;
}
}
xlen = xlen - rlen;
rbuf = rbuf + rlen;
if (!xlen) {
break;
}
if (ast_wait_for_input(session->fd, 1000) < 0) {
ast_log(LOG_ERROR, "ast_wait_for_input returned err: %s\n", strerror(errno));
*opcode = AST_WEBSOCKET_OPCODE_CLOSE;
session->closing = 1;
return -1;
}
}
return 0;
}
int AST_OPTIONAL_API_NAME(ast_websocket_read)(struct ast_websocket *session, char **payload, uint64_t *payload_len, enum ast_websocket_opcode *opcode, int *fragmented)
{
char buf[MAXIMUM_FRAME_SIZE] = "";
int fin = 0;
int mask_present = 0;
char *mask = NULL, *new_payload = NULL;
size_t options_len = 0, frame_size = 0;
*payload = NULL;
*payload_len = 0;
*fragmented = 0;
if (ws_safe_read(session, &buf[0], MIN_WS_HDR_SZ, opcode)) {
return 0;
}
frame_size += MIN_WS_HDR_SZ;
/* ok, now we have the first 2 bytes, so we know some flags, opcode and payload length (or whether payload length extension will be required) */
*opcode = buf[0] & 0xf;
*payload_len = buf[1] & 0x7f;
if (*opcode == AST_WEBSOCKET_OPCODE_TEXT || *opcode == AST_WEBSOCKET_OPCODE_BINARY || *opcode == AST_WEBSOCKET_OPCODE_CONTINUATION ||
*opcode == AST_WEBSOCKET_OPCODE_PING || *opcode == AST_WEBSOCKET_OPCODE_PONG) {
fin = (buf[0] >> 7) & 1;
mask_present = (buf[1] >> 7) & 1;
/* Based on the mask flag and payload length, determine how much more we need to read before start parsing the rest of the header */
options_len += mask_present ? 4 : 0;
options_len += (*payload_len == 126) ? 2 : (*payload_len == 127) ? 8 : 0;
if (options_len) {
/* read the rest of the header options */
if (ws_safe_read(session, &buf[frame_size], options_len, opcode)) {
return 0;
}
frame_size += options_len;
}
if (*payload_len == 126) {
/* Grab the 2-byte payload length */
*payload_len = ntohs(get_unaligned_uint16(&buf[2]));
mask = &buf[4];
} else if (*payload_len == 127) {
/* Grab the 8-byte payload length */
*payload_len = ntohl(get_unaligned_uint64(&buf[2]));
mask = &buf[10];
} else {
/* Just set the mask after the small 2-byte header */
mask = &buf[2];
}
/* Now read the rest of the payload */
*payload = &buf[frame_size]; /* payload will start here, at the end of the options, if any */
frame_size = frame_size + (*payload_len); /* final frame size is header + optional headers + payload data */
if (frame_size > MAXIMUM_FRAME_SIZE) {
ast_log(LOG_WARNING, "Cannot fit huge websocket frame of %zu bytes\n", frame_size);
/* The frame won't fit :-( */
ast_websocket_close(session, 1009);
return -1;
}
if (ws_safe_read(session, *payload, *payload_len, opcode)) {
return 0;
}
/* If a mask is present unmask the payload */
if (mask_present) {
unsigned int pos;
for (pos = 0; pos < *payload_len; pos++) {
(*payload)[pos] ^= mask[pos % 4];
}
}
/* Per the RFC for PING we need to send back an opcode with the application data as received */
res_http_websocket: Close websocket correctly and use careful fwrite When a client takes a long time to process information received from Asterisk, a write operation using fwrite may fail to write all information. This causes the underlying file stream to be in an unknown state, such that the socket must be disconnected. Unfortunately, there are two problems with this in Asterisk's existing websocket code: 1. Periodically, during the read loop, Asterisk must write to the connected websocket to respond to pings. As such, Asterisk maintains a reference to the session during the loop. When ast_http_websocket_write fails, it may cause the session to decrement its ref count, but this in and of itself does not break the read loop. The read loop's write, on the other hand, does not break the loop if it fails. This causes the socket to get in a 'stuck' state, preventing the client from reconnecting to the server. 2. More importantly, however, is that the fwrite in ast_http_websocket_write fails with a large volume of data when the client takes awhile to process the information. When it does fail, it fails writing only a portion of the bytes. With some debugging, it was shown that this was failing in a similar fashion to ASTERISK-12767. Switching this over to ast_careful_fwrite with a long enough timeout solved the problem. Note that this version of the patch, unlike r417310 in Asterisk 11, exposes configuration options beyond just chan_sip's sip.conf. Configuration options to configure the write timeout have also been added to pjsip.conf and ari.conf. #ASTERISK-23917 #close Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/3624/ ........ Merged revisions 417310 from http://svn.asterisk.org/svn/asterisk/branches/11 ........ Merged revisions 417311 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@417317 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2014-06-26 12:21:14 +00:00
if ((*opcode == AST_WEBSOCKET_OPCODE_PING) && (ast_websocket_write(session, AST_WEBSOCKET_OPCODE_PONG, *payload, *payload_len))) {
*payload_len = 0;
ast_websocket_close(session, 1009);
return 0;
}
if (*payload_len) {
if (!(new_payload = ast_realloc(session->payload, (session->payload_len + *payload_len)))) {
ast_log(LOG_WARNING, "Failed allocation: %p, %zu, %"PRIu64"\n",
session->payload, session->payload_len, *payload_len);
*payload_len = 0;
ast_websocket_close(session, 1009);
return 0;
}
session->payload = new_payload;
memcpy((session->payload + session->payload_len), (*payload), (*payload_len));
session->payload_len += *payload_len;
} else if (!session->payload_len && session->payload) {
ast_free(session->payload);
session->payload = NULL;
}
if (!fin && session->reconstruct && (session->payload_len < session->reconstruct)) {
/* If this is not a final message we need to defer returning it until later */
if (*opcode != AST_WEBSOCKET_OPCODE_CONTINUATION) {
session->opcode = *opcode;
}
*opcode = AST_WEBSOCKET_OPCODE_CONTINUATION;
*payload_len = 0;
*payload = NULL;
} else {
if (*opcode == AST_WEBSOCKET_OPCODE_CONTINUATION) {
if (!fin) {
/* If this was not actually the final message tell the user it is fragmented so they can deal with it accordingly */
*fragmented = 1;
} else {
/* Final frame in multi-frame so push up the actual opcode */
*opcode = session->opcode;
}
}
*payload_len = session->payload_len;
*payload = session->payload;
session->payload_len = 0;
}
} else if (*opcode == AST_WEBSOCKET_OPCODE_CLOSE) {
/* Make the payload available so the user can look at the reason code if they so desire */
if ((*payload_len) && (new_payload = ast_realloc(session->payload, *payload_len))) {
if (ws_safe_read(session, &buf[frame_size], (*payload_len), opcode)) {
return 0;
}
session->payload = new_payload;
memcpy(session->payload, &buf[frame_size], *payload_len);
*payload = session->payload;
frame_size += (*payload_len);
}
session->closing = 1;
} else {
ast_log(LOG_WARNING, "WebSocket unknown opcode %u\n", *opcode);
/* We received an opcode that we don't understand, the RFC states that 1003 is for a type of data that can't be accepted... opcodes
* fit that, I think. */
ast_websocket_close(session, 1003);
}
return 0;
}
/*!
* \brief If the server has exactly one configured protocol, return it.
*/
static struct ast_websocket_protocol *one_protocol(
struct ast_websocket_server *server)
{
SCOPED_AO2LOCK(lock, server->protocols);
if (ao2_container_count(server->protocols) != 1) {
return NULL;
}
return ao2_callback(server->protocols, OBJ_NOLOCK, NULL, NULL);
}
static char *websocket_combine_key(const char *key, char *res, int res_size)
{
char *combined;
unsigned combined_length = strlen(key) + strlen(WEBSOCKET_GUID) + 1;
uint8_t sha[20];
combined = ast_alloca(combined_length);
snprintf(combined, combined_length, "%s%s", key, WEBSOCKET_GUID);
ast_sha1_hash_uint(sha, combined);
ast_base64encode(res, (const unsigned char*)sha, 20, res_size);
return res;
}
static void websocket_bad_request(struct ast_tcptls_session_instance *ser)
{
struct ast_str *http_header = ast_str_create(64);
if (!http_header) {
ast_http_request_close_on_completion(ser);
ast_http_error(ser, 500, "Server Error", "Out of memory");
return;
}
ast_str_set(&http_header, 0, "Sec-WebSocket-Version: 7, 8, 13\r\n");
ast_http_send(ser, AST_HTTP_UNKNOWN, 400, "Bad Request", http_header, NULL, 0, 0);
}
optional_api: Fix linking problems between modules that export global symbols With the new work in Asterisk 12, there are some uses of the optional_api that are prone to failure. The details are rather involved, and captured on [the wiki][1]. This patch addresses the issue by removing almost all of the magic from the optional API implementation. Instead of relying on weak symbol resolution, a new optional_api.c module was added to Asterisk core. For modules providing an optional API, the pointer to the implementation function is registered with the core. For modules that use an optional API, a pointer to a stub function, along with a optional_ref function pointer are registered with the core. The optional_ref function pointers is set to the implementation function when it's provided, or the stub function when it's now. Since the implementation no longer relies on magic, it is now supported on all platforms. In the spirit of choice, an OPTIONAL_API flag was added, so we can disable the optional_api if needed (maybe it's buggy on some bizarre platform I haven't tested on) The AST_OPTIONAL_API*() macros themselves remained unchanged, so existing code could remain unchanged. But to help with debugging the optional_api, the patch limits the #include of optional API's to just the modules using the API. This also reduces resource waste maintaining optional_ref pointers that aren't used. Other changes made as a part of this patch: * The stubs for http_websocket that wrap system calls set errno to ENOSYS. * res_http_websocket now properly increments module use count. * In loader.c, the while() wrappers around dlclose() were removed. The while(!dlclose()) is actually an anti-pattern, which can lead to infinite loops if the module you're attempting to unload exports a symbol that was directly linked to. * The special handling of nonoptreq on systems without weak symbol support was removed, since we no longer rely on weak symbols for optional_api. [1]: https://wiki.asterisk.org/wiki/x/wACUAQ (closes issue ASTERISK-22296) Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/2797/ ........ Merged revisions 397989 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@397990 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2013-08-30 13:40:27 +00:00
int AST_OPTIONAL_API_NAME(ast_websocket_uri_cb)(struct ast_tcptls_session_instance *ser, const struct ast_http_uri *urih, const char *uri, enum ast_http_method method, struct ast_variable *get_vars, struct ast_variable *headers)
{
struct ast_variable *v;
char *upgrade = NULL, *key = NULL, *key1 = NULL, *key2 = NULL, *protos = NULL, *requested_protocols = NULL, *protocol = NULL;
int version = 0, flags = 1;
struct ast_websocket_protocol *protocol_handler = NULL;
struct ast_websocket *session;
struct ast_websocket_server *server;
optional_api: Fix linking problems between modules that export global symbols With the new work in Asterisk 12, there are some uses of the optional_api that are prone to failure. The details are rather involved, and captured on [the wiki][1]. This patch addresses the issue by removing almost all of the magic from the optional API implementation. Instead of relying on weak symbol resolution, a new optional_api.c module was added to Asterisk core. For modules providing an optional API, the pointer to the implementation function is registered with the core. For modules that use an optional API, a pointer to a stub function, along with a optional_ref function pointer are registered with the core. The optional_ref function pointers is set to the implementation function when it's provided, or the stub function when it's now. Since the implementation no longer relies on magic, it is now supported on all platforms. In the spirit of choice, an OPTIONAL_API flag was added, so we can disable the optional_api if needed (maybe it's buggy on some bizarre platform I haven't tested on) The AST_OPTIONAL_API*() macros themselves remained unchanged, so existing code could remain unchanged. But to help with debugging the optional_api, the patch limits the #include of optional API's to just the modules using the API. This also reduces resource waste maintaining optional_ref pointers that aren't used. Other changes made as a part of this patch: * The stubs for http_websocket that wrap system calls set errno to ENOSYS. * res_http_websocket now properly increments module use count. * In loader.c, the while() wrappers around dlclose() were removed. The while(!dlclose()) is actually an anti-pattern, which can lead to infinite loops if the module you're attempting to unload exports a symbol that was directly linked to. * The special handling of nonoptreq on systems without weak symbol support was removed, since we no longer rely on weak symbols for optional_api. [1]: https://wiki.asterisk.org/wiki/x/wACUAQ (closes issue ASTERISK-22296) Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/2797/ ........ Merged revisions 397989 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@397990 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2013-08-30 13:40:27 +00:00
SCOPED_MODULE_USE(ast_module_info->self);
/* Upgrade requests are only permitted on GET methods */
if (method != AST_HTTP_GET) {
ast_http_error(ser, 501, "Not Implemented", "Attempt to use unimplemented / unsupported method");
return 0;
}
server = urih->data;
/* Get the minimum headers required to satisfy our needs */
for (v = headers; v; v = v->next) {
if (!strcasecmp(v->name, "Upgrade")) {
upgrade = ast_strip(ast_strdupa(v->value));
} else if (!strcasecmp(v->name, "Sec-WebSocket-Key")) {
key = ast_strip(ast_strdupa(v->value));
} else if (!strcasecmp(v->name, "Sec-WebSocket-Key1")) {
key1 = ast_strip(ast_strdupa(v->value));
} else if (!strcasecmp(v->name, "Sec-WebSocket-Key2")) {
key2 = ast_strip(ast_strdupa(v->value));
} else if (!strcasecmp(v->name, "Sec-WebSocket-Protocol")) {
requested_protocols = ast_strip(ast_strdupa(v->value));
protos = ast_strdupa(requested_protocols);
} else if (!strcasecmp(v->name, "Sec-WebSocket-Version")) {
if (sscanf(v->value, "%30d", &version) != 1) {
version = 0;
}
}
}
/* If this is not a websocket upgrade abort */
if (!upgrade || strcasecmp(upgrade, "websocket")) {
ast_log(LOG_WARNING, "WebSocket connection from '%s' could not be accepted - did not request WebSocket\n",
ast_sockaddr_stringify(&ser->remote_address));
ast_http_error(ser, 426, "Upgrade Required", NULL);
return 0;
} else if (ast_strlen_zero(requested_protocols)) {
/* If there's only a single protocol registered, and the
* client doesn't specify what protocol it's using, go ahead
* and accept the connection */
protocol_handler = one_protocol(server);
if (!protocol_handler) {
/* Multiple registered subprotocols; client must specify */
ast_log(LOG_WARNING, "WebSocket connection from '%s' could not be accepted - no protocols requested\n",
ast_sockaddr_stringify(&ser->remote_address));
websocket_bad_request(ser);
return 0;
}
} else if (key1 && key2) {
/* Specification defined in http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76 and
* http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-00 -- not currently supported*/
ast_log(LOG_WARNING, "WebSocket connection from '%s' could not be accepted - unsupported version '00/76' chosen\n",
ast_sockaddr_stringify(&ser->remote_address));
websocket_bad_request(ser);
return 0;
}
/* Iterate through the requested protocols trying to find one that we have a handler for */
while (!protocol_handler && (protocol = strsep(&requested_protocols, ","))) {
protocol_handler = ao2_find(server->protocols, ast_strip(protocol), OBJ_KEY);
}
/* If no protocol handler exists bump this back to the requester */
if (!protocol_handler) {
ast_log(LOG_WARNING, "WebSocket connection from '%s' could not be accepted - no protocols out of '%s' supported\n",
ast_sockaddr_stringify(&ser->remote_address), protos);
websocket_bad_request(ser);
return 0;
}
/* Determine how to respond depending on the version */
if (version == 7 || version == 8 || version == 13) {
char base64[64];
if (!key || strlen(key) + strlen(WEBSOCKET_GUID) + 1 > 8192) { /* no stack overflows please */
websocket_bad_request(ser);
ao2_ref(protocol_handler, -1);
return 0;
}
if (ast_http_body_discard(ser)) {
websocket_bad_request(ser);
ao2_ref(protocol_handler, -1);
return 0;
}
if (!(session = ao2_alloc(sizeof(*session), session_destroy_fn))) {
ast_log(LOG_WARNING, "WebSocket connection from '%s' could not be accepted\n",
ast_sockaddr_stringify(&ser->remote_address));
websocket_bad_request(ser);
ao2_ref(protocol_handler, -1);
return 0;
}
res_http_websocket: Close websocket correctly and use careful fwrite When a client takes a long time to process information received from Asterisk, a write operation using fwrite may fail to write all information. This causes the underlying file stream to be in an unknown state, such that the socket must be disconnected. Unfortunately, there are two problems with this in Asterisk's existing websocket code: 1. Periodically, during the read loop, Asterisk must write to the connected websocket to respond to pings. As such, Asterisk maintains a reference to the session during the loop. When ast_http_websocket_write fails, it may cause the session to decrement its ref count, but this in and of itself does not break the read loop. The read loop's write, on the other hand, does not break the loop if it fails. This causes the socket to get in a 'stuck' state, preventing the client from reconnecting to the server. 2. More importantly, however, is that the fwrite in ast_http_websocket_write fails with a large volume of data when the client takes awhile to process the information. When it does fail, it fails writing only a portion of the bytes. With some debugging, it was shown that this was failing in a similar fashion to ASTERISK-12767. Switching this over to ast_careful_fwrite with a long enough timeout solved the problem. Note that this version of the patch, unlike r417310 in Asterisk 11, exposes configuration options beyond just chan_sip's sip.conf. Configuration options to configure the write timeout have also been added to pjsip.conf and ari.conf. #ASTERISK-23917 #close Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/3624/ ........ Merged revisions 417310 from http://svn.asterisk.org/svn/asterisk/branches/11 ........ Merged revisions 417311 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@417317 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2014-06-26 12:21:14 +00:00
session->timeout = AST_DEFAULT_WEBSOCKET_WRITE_TIMEOUT;
if (protocol_handler->session_attempted
&& protocol_handler->session_attempted(ser, get_vars, headers)) {
ast_debug(3, "WebSocket connection from '%s' rejected by protocol handler '%s'\n",
ast_sockaddr_stringify(&ser->remote_address), protocol_handler->name);
ao2_ref(protocol_handler, -1);
return 0;
}
/* RFC 6455, Section 4.1:
*
* 6. If the response includes a |Sec-WebSocket-Protocol| header
* field and this header field indicates the use of a
* subprotocol that was not present in the client's handshake
* (the server has indicated a subprotocol not requested by
* the client), the client MUST _Fail the WebSocket
* Connection_.
*/
if (protocol) {
fprintf(ser->f, "HTTP/1.1 101 Switching Protocols\r\n"
"Upgrade: %s\r\n"
"Connection: Upgrade\r\n"
"Sec-WebSocket-Accept: %s\r\n"
"Sec-WebSocket-Protocol: %s\r\n\r\n",
upgrade,
websocket_combine_key(key, base64, sizeof(base64)),
protocol);
} else {
fprintf(ser->f, "HTTP/1.1 101 Switching Protocols\r\n"
"Upgrade: %s\r\n"
"Connection: Upgrade\r\n"
"Sec-WebSocket-Accept: %s\r\n\r\n",
upgrade,
websocket_combine_key(key, base64, sizeof(base64)));
}
fflush(ser->f);
} else {
/* Specification defined in http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-75 or completely unknown */
ast_log(LOG_WARNING, "WebSocket connection from '%s' could not be accepted - unsupported version '%d' chosen\n",
ast_sockaddr_stringify(&ser->remote_address), version ? version : 75);
websocket_bad_request(ser);
ao2_ref(protocol_handler, -1);
return 0;
}
/* Enable keepalive on all sessions so the underlying user does not have to */
if (setsockopt(ser->fd, SOL_SOCKET, SO_KEEPALIVE, &flags, sizeof(flags))) {
ast_log(LOG_WARNING, "WebSocket connection from '%s' could not be accepted - failed to enable keepalive\n",
ast_sockaddr_stringify(&ser->remote_address));
websocket_bad_request(ser);
ao2_ref(session, -1);
ao2_ref(protocol_handler, -1);
return 0;
}
ast_verb(2, "WebSocket connection from '%s' for protocol '%s' accepted using version '%d'\n", ast_sockaddr_stringify(&ser->remote_address), protocol ? : "", version);
/* Populate the session with all the needed details */
session->f = ser->f;
session->fd = ser->fd;
ast_sockaddr_copy(&session->address, &ser->remote_address);
session->opcode = -1;
session->reconstruct = DEFAULT_RECONSTRUCTION_CEILING;
session->secure = ser->ssl ? 1 : 0;
/* Give up ownership of the socket and pass it to the protocol handler */
ast_tcptls_stream_set_exclusive_input(ser->stream_cookie, 0);
protocol_handler->session_established(session, get_vars, headers);
ao2_ref(protocol_handler, -1);
AST-2014-007: Fix DOS by consuming the number of allowed HTTP connections. Simply establishing a TCP connection and never sending anything to the configured HTTP port in http.conf will tie up a HTTP connection. Since there is a maximum number of open HTTP sessions allowed at a time you can block legitimate connections. A similar problem exists if a HTTP request is started but never finished. * Added http.conf session_inactivity timer option to close HTTP connections that aren't doing anything. Defaults to 30000 ms. * Removed the undocumented manager.conf block-sockets option. It interferes with TCP/TLS inactivity timeouts. * AMI and SIP TLS connections now have better authentication timeout protection. Though I didn't remove the bizzare TLS timeout polling code from chan_sip. * chan_sip can now handle SSL certificate renegotiations in the middle of a session. It couldn't do that before because the socket was non-blocking and the SSL calls were not restarted as documented by the OpenSSL documentation. * Fixed an off nominal leak of the ssl struct in handle_tcptls_connection() if the FILE stream failed to open and the SSL certificate negotiations failed. The patch creates a custom FILE stream handler to give the created FILE streams inactivity timeout and timeout after a specific moment in time capability. This approach eliminates the need for code using the FILE stream to be redesigned to deal with the timeouts. This patch indirectly fixes most of ASTERISK-18345 by fixing the usage of the SSL_read/SSL_write operations. ASTERISK-23673 #close Reported by: Richard Mudgett ........ Merged revisions 415841 from http://svn.asterisk.org/svn/asterisk/branches/1.8 ........ Merged revisions 415854 from http://svn.asterisk.org/svn/asterisk/branches/11 ........ Merged revisions 415896 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@415907 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2014-06-12 17:00:08 +00:00
/*
* By dropping the FILE* and fd from the session the connection
* won't get closed when the HTTP server cleans up because we
* passed the connection to the protocol handler.
*/
ser->f = NULL;
AST-2014-007: Fix DOS by consuming the number of allowed HTTP connections. Simply establishing a TCP connection and never sending anything to the configured HTTP port in http.conf will tie up a HTTP connection. Since there is a maximum number of open HTTP sessions allowed at a time you can block legitimate connections. A similar problem exists if a HTTP request is started but never finished. * Added http.conf session_inactivity timer option to close HTTP connections that aren't doing anything. Defaults to 30000 ms. * Removed the undocumented manager.conf block-sockets option. It interferes with TCP/TLS inactivity timeouts. * AMI and SIP TLS connections now have better authentication timeout protection. Though I didn't remove the bizzare TLS timeout polling code from chan_sip. * chan_sip can now handle SSL certificate renegotiations in the middle of a session. It couldn't do that before because the socket was non-blocking and the SSL calls were not restarted as documented by the OpenSSL documentation. * Fixed an off nominal leak of the ssl struct in handle_tcptls_connection() if the FILE stream failed to open and the SSL certificate negotiations failed. The patch creates a custom FILE stream handler to give the created FILE streams inactivity timeout and timeout after a specific moment in time capability. This approach eliminates the need for code using the FILE stream to be redesigned to deal with the timeouts. This patch indirectly fixes most of ASTERISK-18345 by fixing the usage of the SSL_read/SSL_write operations. ASTERISK-23673 #close Reported by: Richard Mudgett ........ Merged revisions 415841 from http://svn.asterisk.org/svn/asterisk/branches/1.8 ........ Merged revisions 415854 from http://svn.asterisk.org/svn/asterisk/branches/11 ........ Merged revisions 415896 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@415907 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2014-06-12 17:00:08 +00:00
ser->fd = -1;
return 0;
}
static struct ast_http_uri websocketuri = {
optional_api: Fix linking problems between modules that export global symbols With the new work in Asterisk 12, there are some uses of the optional_api that are prone to failure. The details are rather involved, and captured on [the wiki][1]. This patch addresses the issue by removing almost all of the magic from the optional API implementation. Instead of relying on weak symbol resolution, a new optional_api.c module was added to Asterisk core. For modules providing an optional API, the pointer to the implementation function is registered with the core. For modules that use an optional API, a pointer to a stub function, along with a optional_ref function pointer are registered with the core. The optional_ref function pointers is set to the implementation function when it's provided, or the stub function when it's now. Since the implementation no longer relies on magic, it is now supported on all platforms. In the spirit of choice, an OPTIONAL_API flag was added, so we can disable the optional_api if needed (maybe it's buggy on some bizarre platform I haven't tested on) The AST_OPTIONAL_API*() macros themselves remained unchanged, so existing code could remain unchanged. But to help with debugging the optional_api, the patch limits the #include of optional API's to just the modules using the API. This also reduces resource waste maintaining optional_ref pointers that aren't used. Other changes made as a part of this patch: * The stubs for http_websocket that wrap system calls set errno to ENOSYS. * res_http_websocket now properly increments module use count. * In loader.c, the while() wrappers around dlclose() were removed. The while(!dlclose()) is actually an anti-pattern, which can lead to infinite loops if the module you're attempting to unload exports a symbol that was directly linked to. * The special handling of nonoptreq on systems without weak symbol support was removed, since we no longer rely on weak symbols for optional_api. [1]: https://wiki.asterisk.org/wiki/x/wACUAQ (closes issue ASTERISK-22296) Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/2797/ ........ Merged revisions 397989 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@397990 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2013-08-30 13:40:27 +00:00
.callback = AST_OPTIONAL_API_NAME(ast_websocket_uri_cb),
.description = "Asterisk HTTP WebSocket",
.uri = "ws",
.has_subtree = 0,
.data = NULL,
.key = __FILE__,
};
/*! \brief Simple echo implementation which echoes received text and binary frames */
static void websocket_echo_callback(struct ast_websocket *session, struct ast_variable *parameters, struct ast_variable *headers)
{
int flags, res;
ast_debug(1, "Entering WebSocket echo loop\n");
if ((flags = fcntl(ast_websocket_fd(session), F_GETFL)) == -1) {
goto end;
}
flags |= O_NONBLOCK;
if (fcntl(ast_websocket_fd(session), F_SETFL, flags) == -1) {
goto end;
}
while ((res = ast_wait_for_input(ast_websocket_fd(session), -1)) > 0) {
char *payload;
uint64_t payload_len;
enum ast_websocket_opcode opcode;
int fragmented;
if (ast_websocket_read(session, &payload, &payload_len, &opcode, &fragmented)) {
/* We err on the side of caution and terminate the session if any error occurs */
ast_log(LOG_WARNING, "Read failure during WebSocket echo loop\n");
break;
}
if (opcode == AST_WEBSOCKET_OPCODE_TEXT || opcode == AST_WEBSOCKET_OPCODE_BINARY) {
ast_websocket_write(session, opcode, payload, payload_len);
} else if (opcode == AST_WEBSOCKET_OPCODE_CLOSE) {
break;
} else {
ast_debug(1, "Ignored WebSocket opcode %u\n", opcode);
}
}
end:
ast_debug(1, "Exiting WebSocket echo loop\n");
ast_websocket_unref(session);
}
optional_api: Fix linking problems between modules that export global symbols With the new work in Asterisk 12, there are some uses of the optional_api that are prone to failure. The details are rather involved, and captured on [the wiki][1]. This patch addresses the issue by removing almost all of the magic from the optional API implementation. Instead of relying on weak symbol resolution, a new optional_api.c module was added to Asterisk core. For modules providing an optional API, the pointer to the implementation function is registered with the core. For modules that use an optional API, a pointer to a stub function, along with a optional_ref function pointer are registered with the core. The optional_ref function pointers is set to the implementation function when it's provided, or the stub function when it's now. Since the implementation no longer relies on magic, it is now supported on all platforms. In the spirit of choice, an OPTIONAL_API flag was added, so we can disable the optional_api if needed (maybe it's buggy on some bizarre platform I haven't tested on) The AST_OPTIONAL_API*() macros themselves remained unchanged, so existing code could remain unchanged. But to help with debugging the optional_api, the patch limits the #include of optional API's to just the modules using the API. This also reduces resource waste maintaining optional_ref pointers that aren't used. Other changes made as a part of this patch: * The stubs for http_websocket that wrap system calls set errno to ENOSYS. * res_http_websocket now properly increments module use count. * In loader.c, the while() wrappers around dlclose() were removed. The while(!dlclose()) is actually an anti-pattern, which can lead to infinite loops if the module you're attempting to unload exports a symbol that was directly linked to. * The special handling of nonoptreq on systems without weak symbol support was removed, since we no longer rely on weak symbols for optional_api. [1]: https://wiki.asterisk.org/wiki/x/wACUAQ (closes issue ASTERISK-22296) Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/2797/ ........ Merged revisions 397989 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@397990 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2013-08-30 13:40:27 +00:00
static int websocket_add_protocol_internal(const char *name, ast_websocket_callback callback)
{
struct ast_websocket_server *ws_server = websocketuri.data;
if (!ws_server) {
return -1;
}
return ast_websocket_server_add_protocol(ws_server, name, callback);
}
optional_api: Fix linking problems between modules that export global symbols With the new work in Asterisk 12, there are some uses of the optional_api that are prone to failure. The details are rather involved, and captured on [the wiki][1]. This patch addresses the issue by removing almost all of the magic from the optional API implementation. Instead of relying on weak symbol resolution, a new optional_api.c module was added to Asterisk core. For modules providing an optional API, the pointer to the implementation function is registered with the core. For modules that use an optional API, a pointer to a stub function, along with a optional_ref function pointer are registered with the core. The optional_ref function pointers is set to the implementation function when it's provided, or the stub function when it's now. Since the implementation no longer relies on magic, it is now supported on all platforms. In the spirit of choice, an OPTIONAL_API flag was added, so we can disable the optional_api if needed (maybe it's buggy on some bizarre platform I haven't tested on) The AST_OPTIONAL_API*() macros themselves remained unchanged, so existing code could remain unchanged. But to help with debugging the optional_api, the patch limits the #include of optional API's to just the modules using the API. This also reduces resource waste maintaining optional_ref pointers that aren't used. Other changes made as a part of this patch: * The stubs for http_websocket that wrap system calls set errno to ENOSYS. * res_http_websocket now properly increments module use count. * In loader.c, the while() wrappers around dlclose() were removed. The while(!dlclose()) is actually an anti-pattern, which can lead to infinite loops if the module you're attempting to unload exports a symbol that was directly linked to. * The special handling of nonoptreq on systems without weak symbol support was removed, since we no longer rely on weak symbols for optional_api. [1]: https://wiki.asterisk.org/wiki/x/wACUAQ (closes issue ASTERISK-22296) Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/2797/ ........ Merged revisions 397989 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@397990 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2013-08-30 13:40:27 +00:00
int AST_OPTIONAL_API_NAME(ast_websocket_add_protocol)(const char *name, ast_websocket_callback callback)
{
int res = websocket_add_protocol_internal(name, callback);
if (res == 0) {
ast_module_ref(ast_module_info->self);
}
return res;
}
int AST_OPTIONAL_API_NAME(ast_websocket_add_protocol2)(struct ast_websocket_protocol *protocol)
{
struct ast_websocket_server *ws_server = websocketuri.data;
if (!ws_server) {
return -1;
}
if (ast_websocket_server_add_protocol2(ws_server, protocol)) {
return -1;
}
ast_module_ref(ast_module_info->self);
return 0;
}
optional_api: Fix linking problems between modules that export global symbols With the new work in Asterisk 12, there are some uses of the optional_api that are prone to failure. The details are rather involved, and captured on [the wiki][1]. This patch addresses the issue by removing almost all of the magic from the optional API implementation. Instead of relying on weak symbol resolution, a new optional_api.c module was added to Asterisk core. For modules providing an optional API, the pointer to the implementation function is registered with the core. For modules that use an optional API, a pointer to a stub function, along with a optional_ref function pointer are registered with the core. The optional_ref function pointers is set to the implementation function when it's provided, or the stub function when it's now. Since the implementation no longer relies on magic, it is now supported on all platforms. In the spirit of choice, an OPTIONAL_API flag was added, so we can disable the optional_api if needed (maybe it's buggy on some bizarre platform I haven't tested on) The AST_OPTIONAL_API*() macros themselves remained unchanged, so existing code could remain unchanged. But to help with debugging the optional_api, the patch limits the #include of optional API's to just the modules using the API. This also reduces resource waste maintaining optional_ref pointers that aren't used. Other changes made as a part of this patch: * The stubs for http_websocket that wrap system calls set errno to ENOSYS. * res_http_websocket now properly increments module use count. * In loader.c, the while() wrappers around dlclose() were removed. The while(!dlclose()) is actually an anti-pattern, which can lead to infinite loops if the module you're attempting to unload exports a symbol that was directly linked to. * The special handling of nonoptreq on systems without weak symbol support was removed, since we no longer rely on weak symbols for optional_api. [1]: https://wiki.asterisk.org/wiki/x/wACUAQ (closes issue ASTERISK-22296) Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/2797/ ........ Merged revisions 397989 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@397990 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2013-08-30 13:40:27 +00:00
static int websocket_remove_protocol_internal(const char *name, ast_websocket_callback callback)
{
struct ast_websocket_server *ws_server = websocketuri.data;
if (!ws_server) {
return -1;
}
return ast_websocket_server_remove_protocol(ws_server, name, callback);
}
optional_api: Fix linking problems between modules that export global symbols With the new work in Asterisk 12, there are some uses of the optional_api that are prone to failure. The details are rather involved, and captured on [the wiki][1]. This patch addresses the issue by removing almost all of the magic from the optional API implementation. Instead of relying on weak symbol resolution, a new optional_api.c module was added to Asterisk core. For modules providing an optional API, the pointer to the implementation function is registered with the core. For modules that use an optional API, a pointer to a stub function, along with a optional_ref function pointer are registered with the core. The optional_ref function pointers is set to the implementation function when it's provided, or the stub function when it's now. Since the implementation no longer relies on magic, it is now supported on all platforms. In the spirit of choice, an OPTIONAL_API flag was added, so we can disable the optional_api if needed (maybe it's buggy on some bizarre platform I haven't tested on) The AST_OPTIONAL_API*() macros themselves remained unchanged, so existing code could remain unchanged. But to help with debugging the optional_api, the patch limits the #include of optional API's to just the modules using the API. This also reduces resource waste maintaining optional_ref pointers that aren't used. Other changes made as a part of this patch: * The stubs for http_websocket that wrap system calls set errno to ENOSYS. * res_http_websocket now properly increments module use count. * In loader.c, the while() wrappers around dlclose() were removed. The while(!dlclose()) is actually an anti-pattern, which can lead to infinite loops if the module you're attempting to unload exports a symbol that was directly linked to. * The special handling of nonoptreq on systems without weak symbol support was removed, since we no longer rely on weak symbols for optional_api. [1]: https://wiki.asterisk.org/wiki/x/wACUAQ (closes issue ASTERISK-22296) Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/2797/ ........ Merged revisions 397989 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@397990 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2013-08-30 13:40:27 +00:00
int AST_OPTIONAL_API_NAME(ast_websocket_remove_protocol)(const char *name, ast_websocket_callback callback)
{
int res = websocket_remove_protocol_internal(name, callback);
if (res == 0) {
ast_module_unref(ast_module_info->self);
}
return res;
}
/*! \brief Parse the given uri into a path and remote address.
*
* Expected uri form: [ws[s]]://<host>[:port][/<path>]
*
* The returned host will contain the address and optional port while
* path will contain everything after the address/port if included.
*/
static int websocket_client_parse_uri(const char *uri, char **host, struct ast_str **path)
{
struct ast_uri *parsed_uri = ast_uri_parse_websocket(uri);
if (!parsed_uri) {
return -1;
}
*host = ast_uri_make_host_with_port(parsed_uri);
if (ast_uri_path(parsed_uri) || ast_uri_query(parsed_uri)) {
*path = ast_str_create(64);
if (!*path) {
ao2_ref(parsed_uri, -1);
return -1;
}
if (ast_uri_path(parsed_uri)) {
ast_str_set(path, 0, "%s", ast_uri_path(parsed_uri));
}
if (ast_uri_query(parsed_uri)) {
ast_str_append(path, 0, "?%s", ast_uri_query(parsed_uri));
}
}
ao2_ref(parsed_uri, -1);
return 0;
}
static void websocket_client_args_destroy(void *obj)
{
struct ast_tcptls_session_args *args = obj;
if (args->tls_cfg) {
ast_free(args->tls_cfg->certfile);
ast_free(args->tls_cfg->pvtfile);
ast_free(args->tls_cfg->cipher);
ast_free(args->tls_cfg->cafile);
ast_free(args->tls_cfg->capath);
ast_ssl_teardown(args->tls_cfg);
}
ast_free(args->tls_cfg);
}
static struct ast_tcptls_session_args *websocket_client_args_create(
const char *host, struct ast_tls_config *tls_cfg,
enum ast_websocket_result *result)
{
struct ast_sockaddr *addr;
struct ast_tcptls_session_args *args = ao2_alloc(
sizeof(*args), websocket_client_args_destroy);
if (!args) {
*result = WS_ALLOCATE_ERROR;
return NULL;
}
args->accept_fd = -1;
args->tls_cfg = tls_cfg;
args->name = "websocket client";
if (!ast_sockaddr_resolve(&addr, host, 0, 0)) {
ast_log(LOG_ERROR, "Unable to resolve address %s\n",
host);
ao2_ref(args, -1);
*result = WS_URI_RESOLVE_ERROR;
return NULL;
}
ast_sockaddr_copy(&args->remote_address, addr);
ast_free(addr);
return args;
}
static char *websocket_client_create_key(void)
{
static int encoded_size = CLIENT_KEY_SIZE * 2 * sizeof(char) + 1;
/* key is randomly selected 16-byte base64 encoded value */
unsigned char key[CLIENT_KEY_SIZE + sizeof(long) - 1];
char *encoded = ast_malloc(encoded_size);
long i = 0;
if (!encoded) {
ast_log(LOG_ERROR, "Unable to allocate client websocket key\n");
return NULL;
}
while (i < CLIENT_KEY_SIZE) {
long num = ast_random();
memcpy(key + i, &num, sizeof(long));
i += sizeof(long);
}
ast_base64encode(encoded, key, CLIENT_KEY_SIZE, encoded_size);
return encoded;
}
struct websocket_client {
/*! host portion of client uri */
char *host;
/*! path for logical websocket connection */
struct ast_str *resource_name;
/*! unique key used during server handshaking */
char *key;
/*! container for registered protocols */
char *protocols;
/*! the protocol accepted by the server */
char *accept_protocol;
/*! websocket protocol version */
int version;
/*! tcptls connection arguments */
struct ast_tcptls_session_args *args;
/*! tcptls connection instance */
struct ast_tcptls_session_instance *ser;
};
static void websocket_client_destroy(void *obj)
{
struct websocket_client *client = obj;
ao2_cleanup(client->ser);
ao2_cleanup(client->args);
ast_free(client->accept_protocol);
ast_free(client->protocols);
ast_free(client->key);
ast_free(client->resource_name);
ast_free(client->host);
}
static struct ast_websocket * websocket_client_create(
const char *uri, const char *protocols, struct ast_tls_config *tls_cfg,
enum ast_websocket_result *result)
{
struct ast_websocket *ws = ao2_alloc(sizeof(*ws), session_destroy_fn);
if (!ws) {
ast_log(LOG_ERROR, "Unable to allocate websocket\n");
*result = WS_ALLOCATE_ERROR;
return NULL;
}
if (!(ws->client = ao2_alloc(
sizeof(*ws->client), websocket_client_destroy))) {
ast_log(LOG_ERROR, "Unable to allocate websocket client\n");
*result = WS_ALLOCATE_ERROR;
return NULL;
}
if (!(ws->client->key = websocket_client_create_key())) {
ao2_ref(ws, -1);
*result = WS_KEY_ERROR;
return NULL;
}
if (websocket_client_parse_uri(
uri, &ws->client->host, &ws->client->resource_name)) {
ao2_ref(ws, -1);
*result = WS_URI_PARSE_ERROR;
return NULL;
}
if (!(ws->client->args = websocket_client_args_create(
ws->client->host, tls_cfg, result))) {
ao2_ref(ws, -1);
return NULL;
}
ws->client->protocols = ast_strdup(protocols);
ws->client->version = 13;
ws->opcode = -1;
ws->reconstruct = DEFAULT_RECONSTRUCTION_CEILING;
return ws;
}
const char * AST_OPTIONAL_API_NAME(
ast_websocket_client_accept_protocol)(struct ast_websocket *ws)
{
return ws->client->accept_protocol;
}
static enum ast_websocket_result websocket_client_handle_response_code(
struct websocket_client *client, int response_code)
{
if (response_code <= 0) {
return WS_INVALID_RESPONSE;
}
switch (response_code) {
case 101:
return 0;
case 400:
ast_log(LOG_ERROR, "Received response 400 - Bad Request "
"- from %s\n", client->host);
return WS_BAD_REQUEST;
case 404:
ast_log(LOG_ERROR, "Received response 404 - Request URL not "
"found - from %s\n", client->host);
return WS_URL_NOT_FOUND;
}
ast_log(LOG_ERROR, "Invalid HTTP response code %d from %s\n",
response_code, client->host);
return WS_INVALID_RESPONSE;
}
static enum ast_websocket_result websocket_client_handshake_get_response(
struct websocket_client *client)
{
enum ast_websocket_result res;
char buf[4096];
char base64[64];
int has_upgrade = 0;
int has_connection = 0;
int has_accept = 0;
int has_protocol = 0;
if (!fgets(buf, sizeof(buf), client->ser->f)) {
ast_log(LOG_ERROR, "Unable to retrieve HTTP status line.");
return WS_BAD_STATUS;
}
if ((res = websocket_client_handle_response_code(client,
ast_http_response_status_line(
buf, "HTTP/1.1", 101))) != WS_OK) {
return res;
}
/* Ignoring line folding - assuming header field values are contained
within a single line */
while (fgets(buf, sizeof(buf), client->ser->f)) {
char *name, *value;
int parsed = ast_http_header_parse(buf, &name, &value);
if (parsed < 0) {
break;
}
if (parsed > 0) {
continue;
}
if (!has_upgrade &&
(has_upgrade = ast_http_header_match(
name, "upgrade", value, "websocket")) < 0) {
return WS_HEADER_MISMATCH;
} else if (!has_connection &&
(has_connection = ast_http_header_match(
name, "connection", value, "upgrade")) < 0) {
return WS_HEADER_MISMATCH;
} else if (!has_accept &&
(has_accept = ast_http_header_match(
name, "sec-websocket-accept", value,
websocket_combine_key(
client->key, base64, sizeof(base64)))) < 0) {
return WS_HEADER_MISMATCH;
} else if (!has_protocol &&
(has_protocol = ast_http_header_match_in(
name, "sec-websocket-protocol", value, client->protocols))) {
if (has_protocol < 0) {
return WS_HEADER_MISMATCH;
}
client->accept_protocol = ast_strdup(value);
} else if (!strcasecmp(name, "sec-websocket-extensions")) {
ast_log(LOG_ERROR, "Extensions received, but not "
"supported by client\n");
return WS_NOT_SUPPORTED;
}
}
return has_upgrade && has_connection && has_accept ?
WS_OK : WS_HEADER_MISSING;
}
static enum ast_websocket_result websocket_client_handshake(
struct websocket_client *client)
{
char protocols[100] = "";
if (!ast_strlen_zero(client->protocols)) {
sprintf(protocols, "Sec-WebSocket-Protocol: %s\r\n",
client->protocols);
}
if (fprintf(client->ser->f,
"GET /%s HTTP/1.1\r\n"
"Sec-WebSocket-Version: %d\r\n"
"Upgrade: websocket\r\n"
"Connection: Upgrade\r\n"
"Host: %s\r\n"
"Sec-WebSocket-Key: %s\r\n"
"%s\r\n",
client->resource_name ? ast_str_buffer(client->resource_name) : "",
client->version,
client->host,
client->key,
protocols) < 0) {
ast_log(LOG_ERROR, "Failed to send handshake.\n");
return WS_WRITE_ERROR;
}
/* wait for a response before doing anything else */
return websocket_client_handshake_get_response(client);
}
static enum ast_websocket_result websocket_client_connect(struct ast_websocket *ws)
{
enum ast_websocket_result res;
/* create and connect the client - note client_start
releases the session instance on failure */
if (!(ws->client->ser = ast_tcptls_client_start(
ast_tcptls_client_create(ws->client->args)))) {
return WS_CLIENT_START_ERROR;
}
if ((res = websocket_client_handshake(ws->client)) != WS_OK) {
ao2_ref(ws->client->ser, -1);
ws->client->ser = NULL;
return res;
}
ws->f = ws->client->ser->f;
ws->fd = ws->client->ser->fd;
ws->secure = ws->client->ser->ssl ? 1 : 0;
ast_sockaddr_copy(&ws->address, &ws->client->ser->remote_address);
return WS_OK;
}
struct ast_websocket *AST_OPTIONAL_API_NAME(ast_websocket_client_create)
(const char *uri, const char *protocols, struct ast_tls_config *tls_cfg,
enum ast_websocket_result *result)
{
struct ast_websocket *ws = websocket_client_create(
uri, protocols, tls_cfg, result);
if (!ws) {
return NULL;
}
if ((*result = websocket_client_connect(ws)) != WS_OK) {
ao2_ref(ws, -1);
return NULL;
}
return ws;
}
int AST_OPTIONAL_API_NAME(ast_websocket_read_string)
(struct ast_websocket *ws, char **buf)
{
char *payload;
uint64_t payload_len;
enum ast_websocket_opcode opcode;
int fragmented = 1;
while (fragmented) {
if (ast_websocket_read(ws, &payload, &payload_len,
&opcode, &fragmented)) {
ast_log(LOG_ERROR, "Client WebSocket string read - "
"error reading string data\n");
return -1;
}
if (opcode == AST_WEBSOCKET_OPCODE_CONTINUATION) {
continue;
}
if (opcode == AST_WEBSOCKET_OPCODE_CLOSE) {
return -1;
}
if (opcode != AST_WEBSOCKET_OPCODE_TEXT) {
ast_log(LOG_ERROR, "Client WebSocket string read - "
"non string data received\n");
return -1;
}
}
if (!(*buf = ast_malloc(payload_len + 1))) {
return -1;
}
ast_copy_string(*buf, payload, payload_len + 1);
return payload_len + 1;
}
int AST_OPTIONAL_API_NAME(ast_websocket_write_string)
(struct ast_websocket *ws, const char *buf)
{
return ast_websocket_write(ws, AST_WEBSOCKET_OPCODE_TEXT,
(char *)buf, strlen(buf));
}
static int load_module(void)
{
optional_api: Fix linking problems between modules that export global symbols With the new work in Asterisk 12, there are some uses of the optional_api that are prone to failure. The details are rather involved, and captured on [the wiki][1]. This patch addresses the issue by removing almost all of the magic from the optional API implementation. Instead of relying on weak symbol resolution, a new optional_api.c module was added to Asterisk core. For modules providing an optional API, the pointer to the implementation function is registered with the core. For modules that use an optional API, a pointer to a stub function, along with a optional_ref function pointer are registered with the core. The optional_ref function pointers is set to the implementation function when it's provided, or the stub function when it's now. Since the implementation no longer relies on magic, it is now supported on all platforms. In the spirit of choice, an OPTIONAL_API flag was added, so we can disable the optional_api if needed (maybe it's buggy on some bizarre platform I haven't tested on) The AST_OPTIONAL_API*() macros themselves remained unchanged, so existing code could remain unchanged. But to help with debugging the optional_api, the patch limits the #include of optional API's to just the modules using the API. This also reduces resource waste maintaining optional_ref pointers that aren't used. Other changes made as a part of this patch: * The stubs for http_websocket that wrap system calls set errno to ENOSYS. * res_http_websocket now properly increments module use count. * In loader.c, the while() wrappers around dlclose() were removed. The while(!dlclose()) is actually an anti-pattern, which can lead to infinite loops if the module you're attempting to unload exports a symbol that was directly linked to. * The special handling of nonoptreq on systems without weak symbol support was removed, since we no longer rely on weak symbols for optional_api. [1]: https://wiki.asterisk.org/wiki/x/wACUAQ (closes issue ASTERISK-22296) Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/2797/ ........ Merged revisions 397989 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@397990 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2013-08-30 13:40:27 +00:00
websocketuri.data = websocket_server_internal_create();
if (!websocketuri.data) {
return AST_MODULE_LOAD_FAILURE;
}
ast_http_uri_link(&websocketuri);
optional_api: Fix linking problems between modules that export global symbols With the new work in Asterisk 12, there are some uses of the optional_api that are prone to failure. The details are rather involved, and captured on [the wiki][1]. This patch addresses the issue by removing almost all of the magic from the optional API implementation. Instead of relying on weak symbol resolution, a new optional_api.c module was added to Asterisk core. For modules providing an optional API, the pointer to the implementation function is registered with the core. For modules that use an optional API, a pointer to a stub function, along with a optional_ref function pointer are registered with the core. The optional_ref function pointers is set to the implementation function when it's provided, or the stub function when it's now. Since the implementation no longer relies on magic, it is now supported on all platforms. In the spirit of choice, an OPTIONAL_API flag was added, so we can disable the optional_api if needed (maybe it's buggy on some bizarre platform I haven't tested on) The AST_OPTIONAL_API*() macros themselves remained unchanged, so existing code could remain unchanged. But to help with debugging the optional_api, the patch limits the #include of optional API's to just the modules using the API. This also reduces resource waste maintaining optional_ref pointers that aren't used. Other changes made as a part of this patch: * The stubs for http_websocket that wrap system calls set errno to ENOSYS. * res_http_websocket now properly increments module use count. * In loader.c, the while() wrappers around dlclose() were removed. The while(!dlclose()) is actually an anti-pattern, which can lead to infinite loops if the module you're attempting to unload exports a symbol that was directly linked to. * The special handling of nonoptreq on systems without weak symbol support was removed, since we no longer rely on weak symbols for optional_api. [1]: https://wiki.asterisk.org/wiki/x/wACUAQ (closes issue ASTERISK-22296) Reported by: Matt Jordan Review: https://reviewboard.asterisk.org/r/2797/ ........ Merged revisions 397989 from http://svn.asterisk.org/svn/asterisk/branches/12 git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@397990 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2013-08-30 13:40:27 +00:00
websocket_add_protocol_internal("echo", websocket_echo_callback);
return 0;
}
static int unload_module(void)
{
websocket_remove_protocol_internal("echo", websocket_echo_callback);
ast_http_uri_unlink(&websocketuri);
ao2_ref(websocketuri.data, -1);
websocketuri.data = NULL;
return 0;
}
AST_MODULE_INFO(ASTERISK_GPL_KEY, AST_MODFLAG_GLOBAL_SYMBOLS | AST_MODFLAG_LOAD_ORDER, "HTTP WebSocket Support",
.support_level = AST_MODULE_SUPPORT_EXTENDED,
.load = load_module,
.unload = unload_module,
.load_pri = AST_MODPRI_CHANNEL_DEPEND,
);