asterisk/tests/test_threadpool.c

1844 lines
42 KiB
C

/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 2012-2013, Digium, Inc.
*
* Mark Michelson <mmichelson@digium.com>
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*!
* \file
* \brief threadpool unit tests
*
* \author Mark Michelson <mmichelson@digium.com>
*
*/
/*** MODULEINFO
<depend>TEST_FRAMEWORK</depend>
<support_level>core</support_level>
***/
#include "asterisk.h"
#include "asterisk/astobj2.h"
#include "asterisk/lock.h"
#include "asterisk/logger.h"
#include "asterisk/module.h"
#include "asterisk/taskprocessor.h"
#include "asterisk/test.h"
#include "asterisk/threadpool.h"
struct test_listener_data {
int num_active;
int num_idle;
int task_pushed;
int num_tasks;
int empty_notice;
int was_empty;
ast_mutex_t lock;
ast_cond_t cond;
};
static struct test_listener_data *test_alloc(void)
{
struct test_listener_data *tld = ast_calloc(1, sizeof(*tld));
if (!tld) {
return NULL;
}
ast_mutex_init(&tld->lock);
ast_cond_init(&tld->cond, NULL);
return tld;
}
static void test_state_changed(struct ast_threadpool *pool,
struct ast_threadpool_listener *listener,
int active_threads,
int idle_threads)
{
struct test_listener_data *tld = ast_threadpool_listener_get_user_data(listener);
SCOPED_MUTEX(lock, &tld->lock);
tld->num_active = active_threads;
tld->num_idle = idle_threads;
ast_log(LOG_NOTICE, "Thread state: %d active, %d idle\n", tld->num_active, tld->num_idle);
ast_cond_signal(&tld->cond);
}
static void test_task_pushed(struct ast_threadpool *pool,
struct ast_threadpool_listener *listener,
int was_empty)
{
struct test_listener_data *tld = ast_threadpool_listener_get_user_data(listener);
SCOPED_MUTEX(lock, &tld->lock);
tld->task_pushed = 1;
++tld->num_tasks;
tld->was_empty = was_empty;
ast_cond_signal(&tld->cond);
}
static void test_emptied(struct ast_threadpool *pool,
struct ast_threadpool_listener *listener)
{
struct test_listener_data *tld = ast_threadpool_listener_get_user_data(listener);
SCOPED_MUTEX(lock, &tld->lock);
tld->empty_notice = 1;
ast_cond_signal(&tld->cond);
}
static void test_shutdown(struct ast_threadpool_listener *listener)
{
struct test_listener_data *tld = ast_threadpool_listener_get_user_data(listener);
ast_cond_destroy(&tld->cond);
ast_mutex_destroy(&tld->lock);
}
static const struct ast_threadpool_listener_callbacks test_callbacks = {
.state_changed = test_state_changed,
.task_pushed = test_task_pushed,
.emptied = test_emptied,
.shutdown = test_shutdown,
};
struct simple_task_data {
int task_executed;
ast_mutex_t lock;
ast_cond_t cond;
};
static struct simple_task_data *simple_task_data_alloc(void)
{
struct simple_task_data *std = ast_calloc(1, sizeof(*std));
if (!std) {
return NULL;
}
ast_mutex_init(&std->lock);
ast_cond_init(&std->cond, NULL);
return std;
}
static void simple_task_data_free(struct simple_task_data *std)
{
if (!std) {
return;
}
ast_mutex_destroy(&std->lock);
ast_cond_destroy(&std->cond);
ast_free(std);
}
static int simple_task(void *data)
{
struct simple_task_data *std = data;
SCOPED_MUTEX(lock, &std->lock);
std->task_executed = 1;
ast_cond_signal(&std->cond);
return 0;
}
static enum ast_test_result_state wait_until_thread_state(struct ast_test *test, struct test_listener_data *tld, int num_active, int num_idle)
{
struct timeval start = ast_tvnow();
struct timespec end = {
.tv_sec = start.tv_sec + 5,
.tv_nsec = start.tv_usec * 1000
};
enum ast_test_result_state res = AST_TEST_PASS;
SCOPED_MUTEX(lock, &tld->lock);
while (!(tld->num_active == num_active && tld->num_idle == num_idle)) {
if (ast_cond_timedwait(&tld->cond, &tld->lock, &end) == ETIMEDOUT) {
break;
}
}
if (tld->num_active != num_active && tld->num_idle != num_idle) {
ast_test_status_update(test, "Number of active threads and idle threads not what was expected.\n");
ast_test_status_update(test, "Expected %d active threads but got %d\n", num_active, tld->num_active);
ast_test_status_update(test, "Expected %d idle threads but got %d\n", num_idle, tld->num_idle);
res = AST_TEST_FAIL;
}
return res;
}
static void wait_for_task_pushed(struct ast_threadpool_listener *listener)
{
struct test_listener_data *tld = ast_threadpool_listener_get_user_data(listener);
struct timeval start = ast_tvnow();
struct timespec end = {
.tv_sec = start.tv_sec + 5,
.tv_nsec = start.tv_usec * 1000
};
SCOPED_MUTEX(lock, &tld->lock);
while (!tld->task_pushed) {
if (ast_cond_timedwait(&tld->cond, lock, &end) == ETIMEDOUT) {
break;
}
}
}
static enum ast_test_result_state wait_for_completion(struct ast_test *test, struct simple_task_data *std)
{
struct timeval start = ast_tvnow();
struct timespec end = {
.tv_sec = start.tv_sec + 5,
.tv_nsec = start.tv_usec * 1000
};
enum ast_test_result_state res = AST_TEST_PASS;
SCOPED_MUTEX(lock, &std->lock);
while (!std->task_executed) {
if (ast_cond_timedwait(&std->cond, lock, &end) == ETIMEDOUT) {
break;
}
}
if (!std->task_executed) {
ast_test_status_update(test, "Task execution did not occur\n");
res = AST_TEST_FAIL;
}
return res;
}
static enum ast_test_result_state wait_for_empty_notice(struct ast_test *test, struct test_listener_data *tld)
{
struct timeval start = ast_tvnow();
struct timespec end = {
.tv_sec = start.tv_sec + 5,
.tv_nsec = start.tv_usec * 1000
};
enum ast_test_result_state res = AST_TEST_PASS;
SCOPED_MUTEX(lock, &tld->lock);
while (!tld->empty_notice) {
if (ast_cond_timedwait(&tld->cond, lock, &end) == ETIMEDOUT) {
break;
}
}
if (!tld->empty_notice) {
ast_test_status_update(test, "Test listener not notified that threadpool is empty\n");
res = AST_TEST_FAIL;
}
return res;
}
static enum ast_test_result_state listener_check(
struct ast_test *test,
struct ast_threadpool_listener *listener,
int task_pushed,
int was_empty,
int num_tasks,
int num_active,
int num_idle,
int empty_notice)
{
struct test_listener_data *tld = ast_threadpool_listener_get_user_data(listener);
enum ast_test_result_state res = AST_TEST_PASS;
if (tld->task_pushed != task_pushed) {
ast_test_status_update(test, "Expected task %sto be pushed, but it was%s\n",
task_pushed ? "" : "not ", tld->task_pushed ? "" : " not");
res = AST_TEST_FAIL;
}
if (tld->was_empty != was_empty) {
ast_test_status_update(test, "Expected %sto be empty, but it was%s\n",
was_empty ? "" : "not ", tld->was_empty ? "" : " not");
res = AST_TEST_FAIL;
}
if (tld->num_tasks!= num_tasks) {
ast_test_status_update(test, "Expected %d tasks to be pushed, but got %d\n",
num_tasks, tld->num_tasks);
res = AST_TEST_FAIL;
}
if (tld->num_active != num_active) {
ast_test_status_update(test, "Expected %d active threads, but got %d\n",
num_active, tld->num_active);
res = AST_TEST_FAIL;
}
if (tld->num_idle != num_idle) {
ast_test_status_update(test, "Expected %d idle threads, but got %d\n",
num_idle, tld->num_idle);
res = AST_TEST_FAIL;
}
if (tld->empty_notice != empty_notice) {
ast_test_status_update(test, "Expected %s empty notice, but got %s\n",
was_empty ? "an" : "no", tld->task_pushed ? "one" : "none");
res = AST_TEST_FAIL;
}
return res;
}
AST_TEST_DEFINE(threadpool_push)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
struct simple_task_data *std = NULL;
struct test_listener_data *tld = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 0,
.initial_size = 0,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "push";
info->category = "/main/threadpool/";
info->summary = "Test task";
info->description =
"Basic threadpool test";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
std = simple_task_data_alloc();
if (!std) {
goto end;
}
if (ast_threadpool_push(pool, simple_task, std)) {
goto end;
}
wait_for_task_pushed(listener);
res = listener_check(test, listener, 1, 1, 1, 0, 0, 0);
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
simple_task_data_free(std);
ast_free(tld);
return res;
}
AST_TEST_DEFINE(threadpool_initial_threads)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct test_listener_data *tld = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 0,
.initial_size = 3,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "initial_threads";
info->category = "/main/threadpool/";
info->summary = "Test threadpool initialization state";
info->description =
"Ensure that a threadpool created with a specific size contains the\n"
"proper number of idle threads.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
res = wait_until_thread_state(test, tld, 0, 3);
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
ast_free(tld);
return res;
}
AST_TEST_DEFINE(threadpool_thread_creation)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct test_listener_data *tld = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 0,
.initial_size = 0,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "thread_creation";
info->category = "/main/threadpool/";
info->summary = "Test threadpool thread creation";
info->description =
"Ensure that threads can be added to a threadpool";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
/* Now let's create a thread. It should start active, then go
* idle immediately
*/
ast_threadpool_set_size(pool, 1);
res = wait_until_thread_state(test, tld, 0, 1);
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
ast_free(tld);
return res;
}
AST_TEST_DEFINE(threadpool_thread_destruction)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct test_listener_data *tld = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 0,
.initial_size = 0,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "thread_destruction";
info->category = "/main/threadpool/";
info->summary = "Test threadpool thread destruction";
info->description =
"Ensure that threads are properly destroyed in a threadpool";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
ast_threadpool_set_size(pool, 3);
res = wait_until_thread_state(test, tld, 0, 3);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 0, 0, 0, 0, 3, 0);
if (res == AST_TEST_FAIL) {
goto end;
}
ast_threadpool_set_size(pool, 2);
res = wait_until_thread_state(test, tld, 0, 2);
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
ast_free(tld);
return res;
}
AST_TEST_DEFINE(threadpool_thread_timeout)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct test_listener_data *tld = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 2,
.auto_increment = 0,
.initial_size = 0,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "thread_timeout";
info->category = "/main/threadpool/";
info->summary = "Test threadpool thread timeout";
info->description =
"Ensure that a thread with a two second timeout dies as expected.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
ast_threadpool_set_size(pool, 1);
res = wait_until_thread_state(test, tld, 0, 1);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 0, 0, 0, 0, 1, 0);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_until_thread_state(test, tld, 0, 0);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 0, 0, 0, 0, 0, 0);
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
ast_free(tld);
return res;
}
AST_TEST_DEFINE(threadpool_thread_timeout_thrash)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct test_listener_data *tld = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 1,
.auto_increment = 1,
.initial_size = 0,
.max_size = 1,
};
int iteration;
switch (cmd) {
case TEST_INIT:
info->name = "thread_timeout_thrash";
info->category = "/main/threadpool/";
info->summary = "Thrash threadpool thread timeout";
info->description =
"Repeatedly queue a task when a threadpool thread should timeout.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
ast_threadpool_set_size(pool, 1);
for (iteration = 0; iteration < 30; ++iteration) {
struct simple_task_data *std = NULL;
struct timeval start = ast_tvnow();
struct timespec end = {
.tv_sec = start.tv_sec + options.idle_timeout,
.tv_nsec = start.tv_usec * 1000
};
std = simple_task_data_alloc();
if (!std) {
goto end;
}
/* Wait until the threadpool thread should timeout due to being idle */
ast_mutex_lock(&tld->lock);
while (ast_cond_timedwait(&tld->cond, &tld->lock, &end) != ETIMEDOUT) {
/* This purposely left empty as we want to loop waiting for a time out */
}
ast_mutex_unlock(&tld->lock);
if (ast_threadpool_push(pool, simple_task, std)) {
res = AST_TEST_FAIL;
} else {
res = wait_for_completion(test, std);
}
simple_task_data_free(std);
if (res == AST_TEST_FAIL) {
goto end;
}
}
res = wait_until_thread_state(test, tld, 0, 0);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 1, 1, 30, 0, 0, 1);
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
ast_free(tld);
return res;
}
AST_TEST_DEFINE(threadpool_one_task_one_thread)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
struct simple_task_data *std = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct test_listener_data *tld = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 0,
.initial_size = 0,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "one_task_one_thread";
info->category = "/main/threadpool/";
info->summary = "Test a single task with a single thread";
info->description =
"Push a task into an empty threadpool, then add a thread to the pool.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
std = simple_task_data_alloc();
if (!std) {
goto end;
}
if (ast_threadpool_push(pool, simple_task, std)) {
goto end;
}
ast_threadpool_set_size(pool, 1);
/* Threads added to the pool are active when they start,
* so the newly-created thread should immediately execute
* the waiting task.
*/
res = wait_for_completion(test, std);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_for_empty_notice(test, tld);
if (res == AST_TEST_FAIL) {
goto end;
}
/* After completing the task, the thread should go idle */
res = wait_until_thread_state(test, tld, 0, 1);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 1, 1, 1, 0, 1, 1);
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
simple_task_data_free(std);
ast_free(tld);
return res;
}
AST_TEST_DEFINE(threadpool_one_thread_one_task)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
struct simple_task_data *std = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct test_listener_data *tld = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 0,
.initial_size = 0,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "one_thread_one_task";
info->category = "/main/threadpool/";
info->summary = "Test a single thread with a single task";
info->description =
"Add a thread to the pool and then push a task to it.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
std = simple_task_data_alloc();
if (!std) {
goto end;
}
ast_threadpool_set_size(pool, 1);
res = wait_until_thread_state(test, tld, 0, 1);
if (res == AST_TEST_FAIL) {
goto end;
}
if (ast_threadpool_push(pool, simple_task, std)) {
res = AST_TEST_FAIL;
goto end;
}
res = wait_for_completion(test, std);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_for_empty_notice(test, tld);
if (res == AST_TEST_FAIL) {
goto end;
}
/* After completing the task, the thread should go idle */
res = wait_until_thread_state(test, tld, 0, 1);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 1, 1, 1, 0, 1, 1);
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
simple_task_data_free(std);
ast_free(tld);
return res;
}
AST_TEST_DEFINE(threadpool_one_thread_multiple_tasks)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
struct simple_task_data *std1 = NULL;
struct simple_task_data *std2 = NULL;
struct simple_task_data *std3 = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct test_listener_data *tld = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 0,
.initial_size = 0,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "one_thread_multiple_tasks";
info->category = "/main/threadpool/";
info->summary = "Test a single thread with multiple tasks";
info->description =
"Add a thread to the pool and then push three tasks to it.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
std1 = simple_task_data_alloc();
std2 = simple_task_data_alloc();
std3 = simple_task_data_alloc();
if (!std1 || !std2 || !std3) {
goto end;
}
ast_threadpool_set_size(pool, 1);
res = wait_until_thread_state(test, tld, 0, 1);
if (res == AST_TEST_FAIL) {
goto end;
}
res = AST_TEST_FAIL;
if (ast_threadpool_push(pool, simple_task, std1)) {
goto end;
}
if (ast_threadpool_push(pool, simple_task, std2)) {
goto end;
}
if (ast_threadpool_push(pool, simple_task, std3)) {
goto end;
}
res = wait_for_completion(test, std1);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_for_completion(test, std2);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_for_completion(test, std3);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_for_empty_notice(test, tld);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_until_thread_state(test, tld, 0, 1);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 1, 0, 3, 0, 1, 1);
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
simple_task_data_free(std1);
simple_task_data_free(std2);
simple_task_data_free(std3);
ast_free(tld);
return res;
}
static enum ast_test_result_state wait_until_thread_state_task_pushed(struct ast_test *test,
struct test_listener_data *tld, int num_active, int num_idle, int num_tasks)
{
enum ast_test_result_state res = AST_TEST_PASS;
struct timeval start;
struct timespec end;
res = wait_until_thread_state(test, tld, num_active, num_idle);
if (res == AST_TEST_FAIL) {
return res;
}
start = ast_tvnow();
end.tv_sec = start.tv_sec + 5;
end.tv_nsec = start.tv_usec * 1000;
ast_mutex_lock(&tld->lock);
while (tld->num_tasks != num_tasks) {
if (ast_cond_timedwait(&tld->cond, &tld->lock, &end) == ETIMEDOUT) {
break;
}
}
if (tld->num_tasks != num_tasks) {
ast_test_status_update(test, "Number of tasks pushed %d does not match expected %d\n",
tld->num_tasks, num_tasks);
res = AST_TEST_FAIL;
}
ast_mutex_unlock(&tld->lock);
return res;
}
AST_TEST_DEFINE(threadpool_auto_increment)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
struct simple_task_data *std1 = NULL;
struct simple_task_data *std2 = NULL;
struct simple_task_data *std3 = NULL;
struct simple_task_data *std4 = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct test_listener_data *tld = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 3,
.initial_size = 0,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "auto_increment";
info->category = "/main/threadpool/";
info->summary = "Test that the threadpool grows as tasks are added";
info->description =
"Create an empty threadpool and push a task to it. Once the task is\n"
"pushed, the threadpool should add three threads and be able to\n"
"handle the task. The threads should then go idle";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
std1 = simple_task_data_alloc();
std2 = simple_task_data_alloc();
std3 = simple_task_data_alloc();
std4 = simple_task_data_alloc();
if (!std1 || !std2 || !std3 || !std4) {
goto end;
}
if (ast_threadpool_push(pool, simple_task, std1)) {
goto end;
}
/* Pushing the task should result in the threadpool growing
* by three threads. This will allow the task to actually execute
*/
res = wait_for_completion(test, std1);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_for_empty_notice(test, tld);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_until_thread_state(test, tld, 0, 3);
if (res == AST_TEST_FAIL) {
goto end;
}
/* Now push three tasks into the pool and ensure the pool does not
* grow.
*/
res = AST_TEST_FAIL;
if (ast_threadpool_push(pool, simple_task, std2)) {
goto end;
}
if (ast_threadpool_push(pool, simple_task, std3)) {
goto end;
}
if (ast_threadpool_push(pool, simple_task, std4)) {
goto end;
}
res = wait_for_completion(test, std2);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_for_completion(test, std3);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_for_completion(test, std4);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_for_empty_notice(test, tld);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_until_thread_state_task_pushed(test, tld, 0, 3, 4);
if (res == AST_TEST_FAIL) {
goto end;
}
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
simple_task_data_free(std1);
simple_task_data_free(std2);
simple_task_data_free(std3);
simple_task_data_free(std4);
ast_free(tld);
return res;
}
AST_TEST_DEFINE(threadpool_max_size)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
struct simple_task_data *std = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct test_listener_data *tld = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 3,
.initial_size = 0,
.max_size = 2,
};
switch (cmd) {
case TEST_INIT:
info->name = "max_size";
info->category = "/main/threadpool/";
info->summary = "Test that the threadpool does not exceed its maximum size restriction";
info->description =
"Create an empty threadpool and push a task to it. Once the task is\n"
"pushed, the threadpool should attempt to grow by three threads, but the\n"
"pool's restrictions should only allow two threads to be added.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
std = simple_task_data_alloc();
if (!std) {
goto end;
}
if (ast_threadpool_push(pool, simple_task, std)) {
goto end;
}
res = wait_for_completion(test, std);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_until_thread_state(test, tld, 0, 2);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 1, 1, 1, 0, 2, 1);
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
simple_task_data_free(std);
ast_free(tld);
return res;
}
AST_TEST_DEFINE(threadpool_reactivation)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
struct simple_task_data *std1 = NULL;
struct simple_task_data *std2 = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct test_listener_data *tld = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 0,
.initial_size = 0,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "reactivation";
info->category = "/main/threadpool/";
info->summary = "Test that a threadpool reactivates when work is added";
info->description =
"Push a task into a threadpool. Make sure the task executes and the\n"
"thread goes idle. Then push a second task and ensure that the thread\n"
"awakens and executes the second task.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
std1 = simple_task_data_alloc();
std2 = simple_task_data_alloc();
if (!std1 || !std2) {
goto end;
}
if (ast_threadpool_push(pool, simple_task, std1)) {
goto end;
}
ast_threadpool_set_size(pool, 1);
res = wait_for_completion(test, std1);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_for_empty_notice(test, tld);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_until_thread_state(test, tld, 0, 1);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 1, 1, 1, 0, 1, 1);
if (res == AST_TEST_FAIL) {
goto end;
}
/* Now make sure the threadpool reactivates when we add a second task */
if (ast_threadpool_push(pool, simple_task, std2)) {
res = AST_TEST_FAIL;
goto end;
}
res = wait_for_completion(test, std2);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_for_empty_notice(test, tld);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_until_thread_state(test, tld, 0, 1);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 1, 1, 2, 0, 1, 1);
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
simple_task_data_free(std1);
simple_task_data_free(std2);
ast_free(tld);
return res;
}
struct complex_task_data {
int task_started;
int task_executed;
int continue_task;
ast_mutex_t lock;
ast_cond_t stall_cond;
ast_cond_t notify_cond;
};
static struct complex_task_data *complex_task_data_alloc(void)
{
struct complex_task_data *ctd = ast_calloc(1, sizeof(*ctd));
if (!ctd) {
return NULL;
}
ast_mutex_init(&ctd->lock);
ast_cond_init(&ctd->stall_cond, NULL);
ast_cond_init(&ctd->notify_cond, NULL);
return ctd;
}
static void complex_task_data_free(struct complex_task_data *ctd)
{
if (!ctd) {
return;
}
ast_mutex_destroy(&ctd->lock);
ast_cond_destroy(&ctd->stall_cond);
ast_cond_destroy(&ctd->notify_cond);
ast_free(ctd);
}
static int complex_task(void *data)
{
struct complex_task_data *ctd = data;
SCOPED_MUTEX(lock, &ctd->lock);
/* Notify that we started */
ctd->task_started = 1;
ast_cond_signal(&ctd->notify_cond);
while (!ctd->continue_task) {
ast_cond_wait(&ctd->stall_cond, lock);
}
/* We got poked. Finish up */
ctd->task_executed = 1;
ast_cond_signal(&ctd->notify_cond);
return 0;
}
static void poke_worker(struct complex_task_data *ctd)
{
SCOPED_MUTEX(lock, &ctd->lock);
ctd->continue_task = 1;
ast_cond_signal(&ctd->stall_cond);
}
static int wait_for_complex_start(struct complex_task_data *ctd)
{
struct timeval start = ast_tvnow();
struct timespec end = {
.tv_sec = start.tv_sec + 5,
.tv_nsec = start.tv_usec * 1000
};
SCOPED_MUTEX(lock, &ctd->lock);
while (!ctd->task_started) {
if (ast_cond_timedwait(&ctd->notify_cond, lock, &end) == ETIMEDOUT) {
break;
}
}
return ctd->task_started;
}
static int has_complex_started(struct complex_task_data *ctd)
{
struct timeval start = ast_tvnow();
struct timespec end = {
.tv_sec = start.tv_sec + 1,
.tv_nsec = start.tv_usec * 1000
};
SCOPED_MUTEX(lock, &ctd->lock);
while (!ctd->task_started) {
if (ast_cond_timedwait(&ctd->notify_cond, lock, &end) == ETIMEDOUT) {
break;
}
}
return ctd->task_started;
}
static enum ast_test_result_state wait_for_complex_completion(struct complex_task_data *ctd)
{
struct timeval start = ast_tvnow();
struct timespec end = {
.tv_sec = start.tv_sec + 5,
.tv_nsec = start.tv_usec * 1000
};
enum ast_test_result_state res = AST_TEST_PASS;
SCOPED_MUTEX(lock, &ctd->lock);
while (!ctd->task_executed) {
if (ast_cond_timedwait(&ctd->notify_cond, lock, &end) == ETIMEDOUT) {
break;
}
}
if (!ctd->task_executed) {
res = AST_TEST_FAIL;
}
return res;
}
AST_TEST_DEFINE(threadpool_task_distribution)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
struct complex_task_data *ctd1 = NULL;
struct complex_task_data *ctd2 = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct test_listener_data *tld = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 0,
.initial_size = 0,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "task_distribution";
info->category = "/main/threadpool/";
info->summary = "Test that tasks are evenly distributed to threads";
info->description =
"Push two tasks into a threadpool. Ensure that each is handled by\n"
"a separate thread";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
ctd1 = complex_task_data_alloc();
ctd2 = complex_task_data_alloc();
if (!ctd1 || !ctd2) {
goto end;
}
if (ast_threadpool_push(pool, complex_task, ctd1)) {
goto end;
}
if (ast_threadpool_push(pool, complex_task, ctd2)) {
goto end;
}
ast_threadpool_set_size(pool, 2);
res = wait_until_thread_state(test, tld, 2, 0);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 1, 0, 2, 2, 0, 0);
if (res == AST_TEST_FAIL) {
goto end;
}
/* The tasks are stalled until we poke them */
poke_worker(ctd1);
poke_worker(ctd2);
res = wait_for_complex_completion(ctd1);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_for_complex_completion(ctd2);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_until_thread_state(test, tld, 0, 2);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 1, 0, 2, 0, 2, 1);
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
complex_task_data_free(ctd1);
complex_task_data_free(ctd2);
ast_free(tld);
return res;
}
AST_TEST_DEFINE(threadpool_more_destruction)
{
struct ast_threadpool *pool = NULL;
struct ast_threadpool_listener *listener = NULL;
struct complex_task_data *ctd1 = NULL;
struct complex_task_data *ctd2 = NULL;
enum ast_test_result_state res = AST_TEST_FAIL;
struct test_listener_data *tld = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 0,
.initial_size = 0,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "more_destruction";
info->category = "/main/threadpool/";
info->summary = "Test that threads are destroyed as expected";
info->description =
"Push two tasks into a threadpool. Set the threadpool size to 4\n"
"Ensure that there are 2 active and 2 idle threads. Then shrink the\n"
"threadpool down to 1 thread. Ensure that the thread leftover is active\n"
"and ensure that both tasks complete.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
tld = test_alloc();
if (!tld) {
return AST_TEST_FAIL;
}
listener = ast_threadpool_listener_alloc(&test_callbacks, tld);
if (!listener) {
goto end;
}
pool = ast_threadpool_create(info->name, listener, &options);
if (!pool) {
goto end;
}
ctd1 = complex_task_data_alloc();
ctd2 = complex_task_data_alloc();
if (!ctd1 || !ctd2) {
goto end;
}
if (ast_threadpool_push(pool, complex_task, ctd1)) {
goto end;
}
if (ast_threadpool_push(pool, complex_task, ctd2)) {
goto end;
}
ast_threadpool_set_size(pool, 4);
res = wait_until_thread_state(test, tld, 2, 2);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 1, 0, 2, 2, 2, 0);
if (res == AST_TEST_FAIL) {
goto end;
}
ast_threadpool_set_size(pool, 1);
/* Shrinking the threadpool should kill off the two idle threads
* and one of the active threads.
*/
res = wait_until_thread_state(test, tld, 1, 0);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 1, 0, 2, 1, 0, 0);
if (res == AST_TEST_FAIL) {
goto end;
}
/* The tasks are stalled until we poke them */
poke_worker(ctd1);
poke_worker(ctd2);
res = wait_for_complex_completion(ctd1);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_for_complex_completion(ctd2);
if (res == AST_TEST_FAIL) {
goto end;
}
res = wait_until_thread_state(test, tld, 0, 1);
if (res == AST_TEST_FAIL) {
goto end;
}
res = listener_check(test, listener, 1, 0, 2, 0, 1, 1);
end:
ast_threadpool_shutdown(pool);
ao2_cleanup(listener);
complex_task_data_free(ctd1);
complex_task_data_free(ctd2);
ast_free(tld);
return res;
}
AST_TEST_DEFINE(threadpool_serializer)
{
int started = 0;
int finished = 0;
enum ast_test_result_state res = AST_TEST_FAIL;
struct ast_threadpool *pool = NULL;
struct ast_taskprocessor *uut = NULL;
struct complex_task_data *data1 = NULL;
struct complex_task_data *data2 = NULL;
struct complex_task_data *data3 = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 0,
.initial_size = 2,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "threadpool_serializer";
info->category = "/main/threadpool/";
info->summary = "Test that serializers";
info->description =
"Ensures that tasks enqueued to a serialize execute in sequence.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
pool = ast_threadpool_create("threadpool_serializer", NULL, &options);
if (!pool) {
ast_test_status_update(test, "Could not create threadpool\n");
goto end;
}
uut = ast_threadpool_serializer("ser1", pool);
data1 = complex_task_data_alloc();
data2 = complex_task_data_alloc();
data3 = complex_task_data_alloc();
if (!uut || !data1 || !data2 || !data3) {
ast_test_status_update(test, "Allocation failed\n");
goto end;
}
/* This should start right away */
if (ast_taskprocessor_push(uut, complex_task, data1)) {
ast_test_status_update(test, "Failed to enqueue data1\n");
goto end;
}
started = wait_for_complex_start(data1);
if (!started) {
ast_test_status_update(test, "Failed to start data1\n");
goto end;
}
/* This should not start until data 1 is complete */
if (ast_taskprocessor_push(uut, complex_task, data2)) {
ast_test_status_update(test, "Failed to enqueue data2\n");
goto end;
}
started = has_complex_started(data2);
if (started) {
ast_test_status_update(test, "data2 started out of order\n");
goto end;
}
/* But the free thread in the pool can still run */
if (ast_threadpool_push(pool, complex_task, data3)) {
ast_test_status_update(test, "Failed to enqueue data3\n");
}
started = wait_for_complex_start(data3);
if (!started) {
ast_test_status_update(test, "Failed to start data3\n");
goto end;
}
/* Finishing data1 should allow data2 to start */
poke_worker(data1);
finished = wait_for_complex_completion(data1) == AST_TEST_PASS;
if (!finished) {
ast_test_status_update(test, "data1 couldn't finish\n");
goto end;
}
started = wait_for_complex_start(data2);
if (!started) {
ast_test_status_update(test, "Failed to start data2\n");
goto end;
}
/* Finish up */
poke_worker(data2);
finished = wait_for_complex_completion(data2) == AST_TEST_PASS;
if (!finished) {
ast_test_status_update(test, "data2 couldn't finish\n");
goto end;
}
poke_worker(data3);
finished = wait_for_complex_completion(data3) == AST_TEST_PASS;
if (!finished) {
ast_test_status_update(test, "data3 couldn't finish\n");
goto end;
}
res = AST_TEST_PASS;
end:
poke_worker(data1);
poke_worker(data2);
poke_worker(data3);
ast_taskprocessor_unreference(uut);
ast_threadpool_shutdown(pool);
complex_task_data_free(data1);
complex_task_data_free(data2);
complex_task_data_free(data3);
return res;
}
AST_TEST_DEFINE(threadpool_serializer_dupe)
{
enum ast_test_result_state res = AST_TEST_FAIL;
struct ast_threadpool *pool = NULL;
struct ast_taskprocessor *uut = NULL;
struct ast_taskprocessor *there_can_be_only_one = NULL;
struct ast_threadpool_options options = {
.version = AST_THREADPOOL_OPTIONS_VERSION,
.idle_timeout = 0,
.auto_increment = 0,
.initial_size = 2,
.max_size = 0,
};
switch (cmd) {
case TEST_INIT:
info->name = "threadpool_serializer_dupe";
info->category = "/main/threadpool/";
info->summary = "Test that serializers are uniquely named";
info->description =
"Creating two serializers with the same name should\n"
"result in error.";
return AST_TEST_NOT_RUN;
case TEST_EXECUTE:
break;
}
pool = ast_threadpool_create("threadpool_serializer", NULL, &options);
if (!pool) {
ast_test_status_update(test, "Could not create threadpool\n");
goto end;
}
uut = ast_threadpool_serializer("highlander", pool);
if (!uut) {
ast_test_status_update(test, "Allocation failed\n");
goto end;
}
there_can_be_only_one = ast_threadpool_serializer("highlander", pool);
if (there_can_be_only_one) {
ast_taskprocessor_unreference(there_can_be_only_one);
ast_test_status_update(test, "Duplicate name error\n");
goto end;
}
res = AST_TEST_PASS;
end:
ast_taskprocessor_unreference(uut);
ast_threadpool_shutdown(pool);
return res;
}
static int unload_module(void)
{
ast_test_unregister(threadpool_push);
ast_test_unregister(threadpool_initial_threads);
ast_test_unregister(threadpool_thread_creation);
ast_test_unregister(threadpool_thread_destruction);
ast_test_unregister(threadpool_thread_timeout);
ast_test_unregister(threadpool_thread_timeout_thrash);
ast_test_unregister(threadpool_one_task_one_thread);
ast_test_unregister(threadpool_one_thread_one_task);
ast_test_unregister(threadpool_one_thread_multiple_tasks);
ast_test_unregister(threadpool_auto_increment);
ast_test_unregister(threadpool_max_size);
ast_test_unregister(threadpool_reactivation);
ast_test_unregister(threadpool_task_distribution);
ast_test_unregister(threadpool_more_destruction);
ast_test_unregister(threadpool_serializer);
ast_test_unregister(threadpool_serializer_dupe);
return 0;
}
static int load_module(void)
{
ast_test_register(threadpool_push);
ast_test_register(threadpool_initial_threads);
ast_test_register(threadpool_thread_creation);
ast_test_register(threadpool_thread_destruction);
ast_test_register(threadpool_thread_timeout);
ast_test_register(threadpool_thread_timeout_thrash);
ast_test_register(threadpool_one_task_one_thread);
ast_test_register(threadpool_one_thread_one_task);
ast_test_register(threadpool_one_thread_multiple_tasks);
ast_test_register(threadpool_auto_increment);
ast_test_register(threadpool_max_size);
ast_test_register(threadpool_reactivation);
ast_test_register(threadpool_task_distribution);
ast_test_register(threadpool_more_destruction);
ast_test_register(threadpool_serializer);
ast_test_register(threadpool_serializer_dupe);
return AST_MODULE_LOAD_SUCCESS;
}
AST_MODULE_INFO_STANDARD(ASTERISK_GPL_KEY, "threadpool test module");