asterisk/funcs/func_pitchshift.c
Leif Madsen a525edea59 Merged revisions 328247 via svnmerge from
https://origsvn.digium.com/svn/asterisk/branches/1.10

................
  r328247 | lmadsen | 2011-07-14 16:25:31 -0400 (Thu, 14 Jul 2011) | 14 lines
  
  Merged revisions 328209 via svnmerge from 
  https://origsvn.digium.com/svn/asterisk/branches/1.8
  
  ........
    r328209 | lmadsen | 2011-07-14 16:13:06 -0400 (Thu, 14 Jul 2011) | 6 lines
    
    Introduce <support_level> tags in MODULEINFO.
    This change introduces MODULEINFO into many modules in Asterisk in order to show
    the community support level for those modules. This is used by changes committed
    to menuselect by Russell Bryant recently (r917 in menuselect). More information about
    the support level types and what they mean is available on the wiki at
    https://wiki.asterisk.org/wiki/display/AST/Asterisk+Module+Support+States
  ........
................


git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@328259 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2011-07-14 20:28:54 +00:00

510 lines
15 KiB
C

/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 2010, Digium, Inc.
*
* David Vossel <dvossel@digium.com>
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
*
* \brief Pitch Shift Audio Effect
*
* \author David Vossel <dvossel@digium.com>
*
* \ingroup functions
*/
/************************* SMB FUNCTION LICENSE *********************************
*
* SYNOPSIS: Routine for doing pitch shifting while maintaining
* duration using the Short Time Fourier Transform.
*
* DESCRIPTION: The routine takes a pitchShift factor value which is between 0.5
* (one octave down) and 2. (one octave up). A value of exactly 1 does not change
* the pitch. num_samps_to_process tells the routine how many samples in indata[0...
* num_samps_to_process-1] should be pitch shifted and moved to outdata[0 ...
* num_samps_to_process-1]. The two buffers can be identical (ie. it can process the
* data in-place). fft_frame_size defines the FFT frame size used for the
* processing. Typical values are 1024, 2048 and 4096. It may be any value <=
* MAX_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT
* oversampling factor which also determines the overlap between adjacent STFT
* frames. It should at least be 4 for moderate scaling ratios. A value of 32 is
* recommended for best quality. sampleRate takes the sample rate for the signal
* in unit Hz, ie. 44100 for 44.1 kHz audio. The data passed to the routine in
* indata[] should be in the range [-1.0, 1.0), which is also the output range
* for the data, make sure you scale the data accordingly (for 16bit signed integers
* you would have to divide (and multiply) by 32768).
*
* COPYRIGHT 1999-2009 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
*
* The Wide Open License (WOL)
*
* Permission to use, copy, modify, distribute and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice and this license appear in all source copies.
* THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF
* ANY KIND. See http://www.dspguru.com/wol.htm for more information.
*
*****************************************************************************/
/*** MODULEINFO
<support_level>extended</support_level>
***/
#include "asterisk.h"
ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
#include "asterisk/module.h"
#include "asterisk/channel.h"
#include "asterisk/pbx.h"
#include "asterisk/utils.h"
#include "asterisk/audiohook.h"
#include <math.h>
/*** DOCUMENTATION
<function name="PITCH_SHIFT" language="en_US">
<synopsis>
Pitch shift both tx and rx audio streams on a channel.
</synopsis>
<syntax>
<parameter name="channel direction" required="true">
<para>Direction can be either <literal>rx</literal>, <literal>tx</literal>, or
<literal>both</literal>. The direction can either be set to a valid floating
point number between 0.1 and 4.0 or one of the enum values listed below. A value
of 1.0 has no effect. Greater than 1 raises the pitch. Lower than 1 lowers
the pitch.</para>
<para>The pitch amount can also be set by the following values</para>
<enumlist>
<enum name = "highest" />
<enum name = "higher" />
<enum name = "high" />
<enum name = "low" />
<enum name = "lower" />
<enum name = "lowest" />
</enumlist>
</parameter>
</syntax>
<description>
<para>Examples:</para>
<para>exten => 1,1,Set(PITCH_SHIFT(tx)=highest); raises pitch an octave </para>
<para>exten => 1,1,Set(PITCH_SHIFT(rx)=higher) ; raises pitch more </para>
<para>exten => 1,1,Set(PITCH_SHIFT(both)=high) ; raises pitch </para>
<para>exten => 1,1,Set(PITCH_SHIFT(rx)=low) ; lowers pitch </para>
<para>exten => 1,1,Set(PITCH_SHIFT(tx)=lower) ; lowers pitch more </para>
<para>exten => 1,1,Set(PITCH_SHIFT(both)=lowest) ; lowers pitch an octave </para>
<para>exten => 1,1,Set(PITCH_SHIFT(rx)=0.8) ; lowers pitch </para>
<para>exten => 1,1,Set(PITCH_SHIFT(tx)=1.5) ; raises pitch </para>
</description>
</function>
***/
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define MAX_FRAME_LENGTH 256
#define HIGHEST 2
#define HIGHER 1.5
#define HIGH 1.25
#define LOW .85
#define LOWER .7
#define LOWEST .5
struct fft_data {
float in_fifo[MAX_FRAME_LENGTH];
float out_fifo[MAX_FRAME_LENGTH];
float fft_worksp[2*MAX_FRAME_LENGTH];
float last_phase[MAX_FRAME_LENGTH/2+1];
float sum_phase[MAX_FRAME_LENGTH/2+1];
float output_accum[2*MAX_FRAME_LENGTH];
float ana_freq[MAX_FRAME_LENGTH];
float ana_magn[MAX_FRAME_LENGTH];
float syn_freq[MAX_FRAME_LENGTH];
float sys_magn[MAX_FRAME_LENGTH];
long gRover;
float shift_amount;
};
struct pitchshift_data {
struct ast_audiohook audiohook;
struct fft_data rx;
struct fft_data tx;
};
static void smb_fft(float *fft_buffer, long fft_frame_size, long sign);
static void smb_pitch_shift(float pitchShift, long num_samps_to_process, long fft_frame_size, long osamp, float sample_rate, int16_t *indata, int16_t *outdata, struct fft_data *fft_data);
static int pitch_shift(struct ast_frame *f, float amount, struct fft_data *fft_data);
static void destroy_callback(void *data)
{
struct pitchshift_data *shift = data;
ast_audiohook_destroy(&shift->audiohook);
ast_free(shift);
};
static const struct ast_datastore_info pitchshift_datastore = {
.type = "pitchshift",
.destroy = destroy_callback
};
static int pitchshift_cb(struct ast_audiohook *audiohook, struct ast_channel *chan, struct ast_frame *f, enum ast_audiohook_direction direction)
{
struct ast_datastore *datastore = NULL;
struct pitchshift_data *shift = NULL;
if (!f) {
return 0;
}
if ((audiohook->status == AST_AUDIOHOOK_STATUS_DONE) ||
(f->frametype != AST_FRAME_VOICE) ||
!(ast_format_is_slinear(&f->subclass.format))) {
return -1;
}
if (!(datastore = ast_channel_datastore_find(chan, &pitchshift_datastore, NULL))) {
return -1;
}
shift = datastore->data;
if (direction == AST_AUDIOHOOK_DIRECTION_WRITE) {
pitch_shift(f, shift->tx.shift_amount, &shift->tx);
} else {
pitch_shift(f, shift->rx.shift_amount, &shift->rx);
}
return 0;
}
static int pitchshift_helper(struct ast_channel *chan, const char *cmd, char *data, const char *value)
{
struct ast_datastore *datastore = NULL;
struct pitchshift_data *shift = NULL;
int new = 0;
float amount = 0;
ast_channel_lock(chan);
if (!(datastore = ast_channel_datastore_find(chan, &pitchshift_datastore, NULL))) {
ast_channel_unlock(chan);
if (!(datastore = ast_datastore_alloc(&pitchshift_datastore, NULL))) {
return 0;
}
if (!(shift = ast_calloc(1, sizeof(*shift)))) {
ast_datastore_free(datastore);
return 0;
}
ast_audiohook_init(&shift->audiohook, AST_AUDIOHOOK_TYPE_MANIPULATE, "pitch_shift", AST_AUDIOHOOK_MANIPULATE_ALL_RATES);
shift->audiohook.manipulate_callback = pitchshift_cb;
datastore->data = shift;
new = 1;
} else {
ast_channel_unlock(chan);
shift = datastore->data;
}
if (!strcasecmp(value, "highest")) {
amount = HIGHEST;
} else if (!strcasecmp(value, "higher")) {
amount = HIGHER;
} else if (!strcasecmp(value, "high")) {
amount = HIGH;
} else if (!strcasecmp(value, "lowest")) {
amount = LOWEST;
} else if (!strcasecmp(value, "lower")) {
amount = LOWER;
} else if (!strcasecmp(value, "low")) {
amount = LOW;
} else {
if (!sscanf(value, "%30f", &amount) || (amount <= 0) || (amount > 4)) {
goto cleanup_error;
}
}
if (!strcasecmp(data, "rx")) {
shift->rx.shift_amount = amount;
} else if (!strcasecmp(data, "tx")) {
shift->tx.shift_amount = amount;
} else if (!strcasecmp(data, "both")) {
shift->rx.shift_amount = amount;
shift->tx.shift_amount = amount;
} else {
goto cleanup_error;
}
if (new) {
ast_channel_lock(chan);
ast_channel_datastore_add(chan, datastore);
ast_channel_unlock(chan);
ast_audiohook_attach(chan, &shift->audiohook);
}
return 0;
cleanup_error:
ast_log(LOG_ERROR, "Invalid argument provided to the %s function\n", cmd);
if (new) {
ast_datastore_free(datastore);
}
return -1;
}
static void smb_fft(float *fft_buffer, long fft_frame_size, long sign)
{
float wr, wi, arg, *p1, *p2, temp;
float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i;
long i, bitm, j, le, le2, k;
for (i = 2; i < 2 * fft_frame_size - 2; i += 2) {
for (bitm = 2, j = 0; bitm < 2 * fft_frame_size; bitm <<= 1) {
if (i & bitm) {
j++;
}
j <<= 1;
}
if (i < j) {
p1 = fft_buffer + i; p2 = fft_buffer + j;
temp = *p1; *(p1++) = *p2;
*(p2++) = temp; temp = *p1;
*p1 = *p2; *p2 = temp;
}
}
for (k = 0, le = 2; k < (long) (log(fft_frame_size) / log(2.) + .5); k++) {
le <<= 1;
le2 = le>>1;
ur = 1.0;
ui = 0.0;
arg = M_PI / (le2>>1);
wr = cos(arg);
wi = sign * sin(arg);
for (j = 0; j < le2; j += 2) {
p1r = fft_buffer+j; p1i = p1r + 1;
p2r = p1r + le2; p2i = p2r + 1;
for (i = j; i < 2 * fft_frame_size; i += le) {
tr = *p2r * ur - *p2i * ui;
ti = *p2r * ui + *p2i * ur;
*p2r = *p1r - tr; *p2i = *p1i - ti;
*p1r += tr; *p1i += ti;
p1r += le; p1i += le;
p2r += le; p2i += le;
}
tr = ur * wr - ui * wi;
ui = ur * wi + ui * wr;
ur = tr;
}
}
}
static void smb_pitch_shift(float pitchShift, long num_samps_to_process, long fft_frame_size, long osamp, float sample_rate, int16_t *indata, int16_t *outdata, struct fft_data *fft_data)
{
float *in_fifo = fft_data->in_fifo;
float *out_fifo = fft_data->out_fifo;
float *fft_worksp = fft_data->fft_worksp;
float *last_phase = fft_data->last_phase;
float *sum_phase = fft_data->sum_phase;
float *output_accum = fft_data->output_accum;
float *ana_freq = fft_data->ana_freq;
float *ana_magn = fft_data->ana_magn;
float *syn_freq = fft_data->syn_freq;
float *sys_magn = fft_data->sys_magn;
double magn, phase, tmp, window, real, imag;
double freq_per_bin, expct;
long i,k, qpd, index, in_fifo_latency, step_size, fft_frame_size2;
/* set up some handy variables */
fft_frame_size2 = fft_frame_size / 2;
step_size = fft_frame_size / osamp;
freq_per_bin = sample_rate / (double) fft_frame_size;
expct = 2. * M_PI * (double) step_size / (double) fft_frame_size;
in_fifo_latency = fft_frame_size-step_size;
if (fft_data->gRover == 0) {
fft_data->gRover = in_fifo_latency;
}
/* main processing loop */
for (i = 0; i < num_samps_to_process; i++){
/* As long as we have not yet collected enough data just read in */
in_fifo[fft_data->gRover] = indata[i];
outdata[i] = out_fifo[fft_data->gRover - in_fifo_latency];
fft_data->gRover++;
/* now we have enough data for processing */
if (fft_data->gRover >= fft_frame_size) {
fft_data->gRover = in_fifo_latency;
/* do windowing and re,im interleave */
for (k = 0; k < fft_frame_size;k++) {
window = -.5 * cos(2. * M_PI * (double) k / (double) fft_frame_size) + .5;
fft_worksp[2*k] = in_fifo[k] * window;
fft_worksp[2*k+1] = 0.;
}
/* ***************** ANALYSIS ******************* */
/* do transform */
smb_fft(fft_worksp, fft_frame_size, -1);
/* this is the analysis step */
for (k = 0; k <= fft_frame_size2; k++) {
/* de-interlace FFT buffer */
real = fft_worksp[2*k];
imag = fft_worksp[2*k+1];
/* compute magnitude and phase */
magn = 2. * sqrt(real * real + imag * imag);
phase = atan2(imag, real);
/* compute phase difference */
tmp = phase - last_phase[k];
last_phase[k] = phase;
/* subtract expected phase difference */
tmp -= (double) k * expct;
/* map delta phase into +/- Pi interval */
qpd = tmp / M_PI;
if (qpd >= 0) {
qpd += qpd & 1;
} else {
qpd -= qpd & 1;
}
tmp -= M_PI * (double) qpd;
/* get deviation from bin frequency from the +/- Pi interval */
tmp = osamp * tmp / (2. * M_PI);
/* compute the k-th partials' true frequency */
tmp = (double) k * freq_per_bin + tmp * freq_per_bin;
/* store magnitude and true frequency in analysis arrays */
ana_magn[k] = magn;
ana_freq[k] = tmp;
}
/* ***************** PROCESSING ******************* */
/* this does the actual pitch shifting */
memset(sys_magn, 0, fft_frame_size * sizeof(float));
memset(syn_freq, 0, fft_frame_size * sizeof(float));
for (k = 0; k <= fft_frame_size2; k++) {
index = k * pitchShift;
if (index <= fft_frame_size2) {
sys_magn[index] += ana_magn[k];
syn_freq[index] = ana_freq[k] * pitchShift;
}
}
/* ***************** SYNTHESIS ******************* */
/* this is the synthesis step */
for (k = 0; k <= fft_frame_size2; k++) {
/* get magnitude and true frequency from synthesis arrays */
magn = sys_magn[k];
tmp = syn_freq[k];
/* subtract bin mid frequency */
tmp -= (double) k * freq_per_bin;
/* get bin deviation from freq deviation */
tmp /= freq_per_bin;
/* take osamp into account */
tmp = 2. * M_PI * tmp / osamp;
/* add the overlap phase advance back in */
tmp += (double) k * expct;
/* accumulate delta phase to get bin phase */
sum_phase[k] += tmp;
phase = sum_phase[k];
/* get real and imag part and re-interleave */
fft_worksp[2*k] = magn * cos(phase);
fft_worksp[2*k+1] = magn * sin(phase);
}
/* zero negative frequencies */
for (k = fft_frame_size + 2; k < 2 * fft_frame_size; k++) {
fft_worksp[k] = 0.;
}
/* do inverse transform */
smb_fft(fft_worksp, fft_frame_size, 1);
/* do windowing and add to output accumulator */
for (k = 0; k < fft_frame_size; k++) {
window = -.5 * cos(2. * M_PI * (double) k / (double) fft_frame_size) + .5;
output_accum[k] += 2. * window * fft_worksp[2*k] / (fft_frame_size2 * osamp);
}
for (k = 0; k < step_size; k++) {
out_fifo[k] = output_accum[k];
}
/* shift accumulator */
memmove(output_accum, output_accum+step_size, fft_frame_size * sizeof(float));
/* move input FIFO */
for (k = 0; k < in_fifo_latency; k++) {
in_fifo[k] = in_fifo[k+step_size];
}
}
}
}
static int pitch_shift(struct ast_frame *f, float amount, struct fft_data *fft)
{
int16_t *fun = (int16_t *) f->data.ptr;
int samples;
/* an amount of 1 has no effect */
if (!amount || amount == 1 || !fun || (f->samples % 32)) {
return 0;
}
for (samples = 0; samples < f->samples; samples += 32) {
smb_pitch_shift(amount, 32, MAX_FRAME_LENGTH, 32, ast_format_rate(&f->subclass.format), fun+samples, fun+samples, fft);
}
return 0;
}
static struct ast_custom_function pitch_shift_function = {
.name = "PITCH_SHIFT",
.write = pitchshift_helper,
};
static int unload_module(void)
{
return ast_custom_function_unregister(&pitch_shift_function);
}
static int load_module(void)
{
int res = ast_custom_function_register(&pitch_shift_function);
return res ? AST_MODULE_LOAD_DECLINE : AST_MODULE_LOAD_SUCCESS;
}
AST_MODULE_INFO_STANDARD(ASTERISK_GPL_KEY, "Audio Effects Dialplan Functions");