asterisk/main/taskprocessor.c
Richard Mudgett f4e77a5678 taskprocessor.c: Change when high water warning logged.
The task processor queue reached X scheduled tasks message was originally
intended to get logged only once per task processor to prevent spamming
the log.  This is no longer necessary since high and low water thresholds
can better control when the message is logged.

It is beneficial to generate the warning each time a task processor
reaches the high water level because PJSIP stops processing new requests
while any high water alert is active.  Without this change you would have
to enable at least debug level 3 logging to know about a repeated alert
trigger.

* Made generate the warning message whenever a task is pushed into the
task processor that triggers the high water alert.

* Appended 'again' to the warning for a repeated high water alert trigger.

Change-Id: Iabf75a004f7edaf1e5e8c323099418e667cac999
2017-01-13 21:36:54 -06:00

1037 lines
27 KiB
C

/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 2007-2013, Digium, Inc.
*
* Dwayne M. Hubbard <dhubbard@digium.com>
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*!
* \file
* \brief Maintain a container of uniquely-named taskprocessor threads that can be shared across modules.
*
* \author Dwayne Hubbard <dhubbard@digium.com>
*/
/*** MODULEINFO
<support_level>core</support_level>
***/
#include "asterisk.h"
#include "asterisk/_private.h"
#include "asterisk/module.h"
#include "asterisk/time.h"
#include "asterisk/astobj2.h"
#include "asterisk/cli.h"
#include "asterisk/taskprocessor.h"
#include "asterisk/sem.h"
/*!
* \brief tps_task structure is queued to a taskprocessor
*
* tps_tasks are processed in FIFO order and freed by the taskprocessing
* thread after the task handler returns. The callback function that is assigned
* to the execute() function pointer is responsible for releasing datap resources if necessary.
*/
struct tps_task {
/*! \brief The execute() task callback function pointer */
union {
int (*execute)(void *datap);
int (*execute_local)(struct ast_taskprocessor_local *local);
} callback;
/*! \brief The data pointer for the task execute() function */
void *datap;
/*! \brief AST_LIST_ENTRY overhead */
AST_LIST_ENTRY(tps_task) list;
unsigned int wants_local:1;
};
/*! \brief tps_taskprocessor_stats maintain statistics for a taskprocessor. */
struct tps_taskprocessor_stats {
/*! \brief This is the maximum number of tasks queued at any one time */
unsigned long max_qsize;
/*! \brief This is the current number of tasks processed */
unsigned long _tasks_processed_count;
};
/*! \brief A ast_taskprocessor structure is a singleton by name */
struct ast_taskprocessor {
/*! \brief Friendly name of the taskprocessor */
const char *name;
/*! \brief Taskprocessor statistics */
struct tps_taskprocessor_stats *stats;
void *local_data;
/*! \brief Taskprocessor current queue size */
long tps_queue_size;
/*! \brief Taskprocessor low water clear alert level */
long tps_queue_low;
/*! \brief Taskprocessor high water alert trigger level */
long tps_queue_high;
/*! \brief Taskprocessor queue */
AST_LIST_HEAD_NOLOCK(tps_queue, tps_task) tps_queue;
struct ast_taskprocessor_listener *listener;
/*! Current thread executing the tasks */
pthread_t thread;
/*! Indicates if the taskprocessor is currently executing a task */
unsigned int executing:1;
/*! Indicates that a high water warning has been issued on this task processor */
unsigned int high_water_warned:1;
/*! Indicates that a high water alert is active on this taskprocessor */
unsigned int high_water_alert:1;
/*! Indicates if the taskprocessor is currently suspended */
unsigned int suspended:1;
};
/*!
* \brief A listener for taskprocessors
*
* \since 12.0.0
*
* When a taskprocessor's state changes, the listener
* is notified of the change. This allows for tasks
* to be addressed in whatever way is appropriate for
* the module using the taskprocessor.
*/
struct ast_taskprocessor_listener {
/*! The callbacks the taskprocessor calls into to notify of state changes */
const struct ast_taskprocessor_listener_callbacks *callbacks;
/*! The taskprocessor that the listener is listening to */
struct ast_taskprocessor *tps;
/*! Data private to the listener */
void *user_data;
};
#define TPS_MAX_BUCKETS 7
/*! \brief tps_singletons is the astobj2 container for taskprocessor singletons */
static struct ao2_container *tps_singletons;
/*! \brief CLI <example>taskprocessor ping &lt;blah&gt;</example> operation requires a ping condition */
static ast_cond_t cli_ping_cond;
/*! \brief CLI <example>taskprocessor ping &lt;blah&gt;</example> operation requires a ping condition lock */
AST_MUTEX_DEFINE_STATIC(cli_ping_cond_lock);
/*! \brief The astobj2 hash callback for taskprocessors */
static int tps_hash_cb(const void *obj, const int flags);
/*! \brief The astobj2 compare callback for taskprocessors */
static int tps_cmp_cb(void *obj, void *arg, int flags);
/*! \brief CLI <example>taskprocessor ping &lt;blah&gt;</example> handler function */
static int tps_ping_handler(void *datap);
static char *cli_tps_ping(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a);
static char *cli_tps_report(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a);
static struct ast_cli_entry taskprocessor_clis[] = {
AST_CLI_DEFINE(cli_tps_ping, "Ping a named task processor"),
AST_CLI_DEFINE(cli_tps_report, "List instantiated task processors and statistics"),
};
struct default_taskprocessor_listener_pvt {
pthread_t poll_thread;
int dead;
struct ast_sem sem;
};
static void default_listener_pvt_destroy(struct default_taskprocessor_listener_pvt *pvt)
{
ast_assert(pvt->dead);
ast_sem_destroy(&pvt->sem);
ast_free(pvt);
}
static void default_listener_pvt_dtor(struct ast_taskprocessor_listener *listener)
{
struct default_taskprocessor_listener_pvt *pvt = listener->user_data;
default_listener_pvt_destroy(pvt);
listener->user_data = NULL;
}
/*!
* \brief Function that processes tasks in the taskprocessor
* \internal
*/
static void *default_tps_processing_function(void *data)
{
struct ast_taskprocessor_listener *listener = data;
struct ast_taskprocessor *tps = listener->tps;
struct default_taskprocessor_listener_pvt *pvt = listener->user_data;
int sem_value;
int res;
while (!pvt->dead) {
res = ast_sem_wait(&pvt->sem);
if (res != 0 && errno != EINTR) {
ast_log(LOG_ERROR, "ast_sem_wait(): %s\n",
strerror(errno));
/* Just give up */
break;
}
ast_taskprocessor_execute(tps);
}
/* No posting to a dead taskprocessor! */
res = ast_sem_getvalue(&pvt->sem, &sem_value);
ast_assert(res == 0 && sem_value == 0);
/* Free the shutdown reference (see default_listener_shutdown) */
ao2_t_ref(listener->tps, -1, "tps-shutdown");
return NULL;
}
static int default_listener_start(struct ast_taskprocessor_listener *listener)
{
struct default_taskprocessor_listener_pvt *pvt = listener->user_data;
if (ast_pthread_create(&pvt->poll_thread, NULL, default_tps_processing_function, listener)) {
return -1;
}
return 0;
}
static void default_task_pushed(struct ast_taskprocessor_listener *listener, int was_empty)
{
struct default_taskprocessor_listener_pvt *pvt = listener->user_data;
if (ast_sem_post(&pvt->sem) != 0) {
ast_log(LOG_ERROR, "Failed to notify of enqueued task: %s\n",
strerror(errno));
}
}
static int default_listener_die(void *data)
{
struct default_taskprocessor_listener_pvt *pvt = data;
pvt->dead = 1;
return 0;
}
static void default_listener_shutdown(struct ast_taskprocessor_listener *listener)
{
struct default_taskprocessor_listener_pvt *pvt = listener->user_data;
int res;
/* Hold a reference during shutdown */
ao2_t_ref(listener->tps, +1, "tps-shutdown");
ast_taskprocessor_push(listener->tps, default_listener_die, pvt);
ast_assert(pvt->poll_thread != AST_PTHREADT_NULL);
if (pthread_equal(pthread_self(), pvt->poll_thread)) {
res = pthread_detach(pvt->poll_thread);
if (res != 0) {
ast_log(LOG_ERROR, "pthread_detach(): %s\n", strerror(errno));
}
} else {
res = pthread_join(pvt->poll_thread, NULL);
if (res != 0) {
ast_log(LOG_ERROR, "pthread_join(): %s\n", strerror(errno));
}
}
pvt->poll_thread = AST_PTHREADT_NULL;
}
static const struct ast_taskprocessor_listener_callbacks default_listener_callbacks = {
.start = default_listener_start,
.task_pushed = default_task_pushed,
.shutdown = default_listener_shutdown,
.dtor = default_listener_pvt_dtor,
};
/*!
* \internal
* \brief Clean up resources on Asterisk shutdown
*/
static void tps_shutdown(void)
{
ast_cli_unregister_multiple(taskprocessor_clis, ARRAY_LEN(taskprocessor_clis));
ao2_t_ref(tps_singletons, -1, "Unref tps_singletons in shutdown");
tps_singletons = NULL;
}
/* initialize the taskprocessor container and register CLI operations */
int ast_tps_init(void)
{
if (!(tps_singletons = ao2_container_alloc(TPS_MAX_BUCKETS, tps_hash_cb, tps_cmp_cb))) {
ast_log(LOG_ERROR, "taskprocessor container failed to initialize!\n");
return -1;
}
ast_cond_init(&cli_ping_cond, NULL);
ast_cli_register_multiple(taskprocessor_clis, ARRAY_LEN(taskprocessor_clis));
ast_register_cleanup(tps_shutdown);
return 0;
}
/* allocate resources for the task */
static struct tps_task *tps_task_alloc(int (*task_exe)(void *datap), void *datap)
{
struct tps_task *t;
if (!task_exe) {
ast_log(LOG_ERROR, "task_exe is NULL!\n");
return NULL;
}
t = ast_calloc(1, sizeof(*t));
if (!t) {
ast_log(LOG_ERROR, "failed to allocate task!\n");
return NULL;
}
t->callback.execute = task_exe;
t->datap = datap;
return t;
}
static struct tps_task *tps_task_alloc_local(int (*task_exe)(struct ast_taskprocessor_local *local), void *datap)
{
struct tps_task *t;
if (!task_exe) {
ast_log(LOG_ERROR, "task_exe is NULL!\n");
return NULL;
}
t = ast_calloc(1, sizeof(*t));
if (!t) {
ast_log(LOG_ERROR, "failed to allocate task!\n");
return NULL;
}
t->callback.execute_local = task_exe;
t->datap = datap;
t->wants_local = 1;
return t;
}
/* release task resources */
static void *tps_task_free(struct tps_task *task)
{
ast_free(task);
return NULL;
}
/* taskprocessor tab completion */
static char *tps_taskprocessor_tab_complete(struct ast_cli_args *a)
{
int tklen;
int wordnum = 0;
struct ast_taskprocessor *p;
char *name = NULL;
struct ao2_iterator i;
if (a->pos != 3)
return NULL;
tklen = strlen(a->word);
i = ao2_iterator_init(tps_singletons, 0);
while ((p = ao2_iterator_next(&i))) {
if (!strncasecmp(a->word, p->name, tklen) && ++wordnum > a->n) {
name = ast_strdup(p->name);
ast_taskprocessor_unreference(p);
break;
}
ast_taskprocessor_unreference(p);
}
ao2_iterator_destroy(&i);
return name;
}
/* ping task handling function */
static int tps_ping_handler(void *datap)
{
ast_mutex_lock(&cli_ping_cond_lock);
ast_cond_signal(&cli_ping_cond);
ast_mutex_unlock(&cli_ping_cond_lock);
return 0;
}
/* ping the specified taskprocessor and display the ping time on the CLI */
static char *cli_tps_ping(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
{
struct timeval begin, end, delta;
const char *name;
struct timeval when;
struct timespec ts;
struct ast_taskprocessor *tps;
switch (cmd) {
case CLI_INIT:
e->command = "core ping taskprocessor";
e->usage =
"Usage: core ping taskprocessor <taskprocessor>\n"
" Displays the time required for a task to be processed\n";
return NULL;
case CLI_GENERATE:
return tps_taskprocessor_tab_complete(a);
}
if (a->argc != 4)
return CLI_SHOWUSAGE;
name = a->argv[3];
if (!(tps = ast_taskprocessor_get(name, TPS_REF_IF_EXISTS))) {
ast_cli(a->fd, "\nping failed: %s not found\n\n", name);
return CLI_SUCCESS;
}
ast_cli(a->fd, "\npinging %s ...", name);
/*
* Wait up to 5 seconds for a ping reply.
*
* On a very busy system it could take awhile to get a
* ping response from some taskprocessors.
*/
begin = ast_tvnow();
when = ast_tvadd(begin, ast_samp2tv(5000, 1000));
ts.tv_sec = when.tv_sec;
ts.tv_nsec = when.tv_usec * 1000;
ast_mutex_lock(&cli_ping_cond_lock);
if (ast_taskprocessor_push(tps, tps_ping_handler, 0) < 0) {
ast_mutex_unlock(&cli_ping_cond_lock);
ast_cli(a->fd, "\nping failed: could not push task to %s\n\n", name);
ast_taskprocessor_unreference(tps);
return CLI_FAILURE;
}
ast_cond_timedwait(&cli_ping_cond, &cli_ping_cond_lock, &ts);
ast_mutex_unlock(&cli_ping_cond_lock);
end = ast_tvnow();
delta = ast_tvsub(end, begin);
ast_cli(a->fd, "\n\t%24s ping time: %.1ld.%.6ld sec\n\n", name, (long)delta.tv_sec, (long int)delta.tv_usec);
ast_taskprocessor_unreference(tps);
return CLI_SUCCESS;
}
/*!
* \internal
* \brief Taskprocessor ao2 container sort function.
* \since 13.8.0
*
* \param obj_left pointer to the (user-defined part) of an object.
* \param obj_right pointer to the (user-defined part) of an object.
* \param flags flags from ao2_callback()
* OBJ_SEARCH_OBJECT - if set, 'obj_right', is an object.
* OBJ_SEARCH_KEY - if set, 'obj_right', is a search key item that is not an object.
* OBJ_SEARCH_PARTIAL_KEY - if set, 'obj_right', is a partial search key item that is not an object.
*
* \retval <0 if obj_left < obj_right
* \retval =0 if obj_left == obj_right
* \retval >0 if obj_left > obj_right
*/
static int tps_sort_cb(const void *obj_left, const void *obj_right, int flags)
{
const struct ast_taskprocessor *tps_left = obj_left;
const struct ast_taskprocessor *tps_right = obj_right;
const char *right_key = obj_right;
int cmp;
switch (flags & OBJ_SEARCH_MASK) {
default:
case OBJ_SEARCH_OBJECT:
right_key = tps_right->name;
/* Fall through */
case OBJ_SEARCH_KEY:
cmp = strcasecmp(tps_left->name, right_key);
break;
case OBJ_SEARCH_PARTIAL_KEY:
cmp = strncasecmp(tps_left->name, right_key, strlen(right_key));
break;
}
return cmp;
}
static char *cli_tps_report(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
{
char name[256];
int tcount;
unsigned long qsize;
unsigned long maxqsize;
unsigned long processed;
struct ao2_container *sorted_tps;
struct ast_taskprocessor *tps;
struct ao2_iterator iter;
#define FMT_HEADERS "%-45s %10s %10s %10s %10s %10s\n"
#define FMT_FIELDS "%-45s %10lu %10lu %10lu %10lu %10lu\n"
switch (cmd) {
case CLI_INIT:
e->command = "core show taskprocessors";
e->usage =
"Usage: core show taskprocessors\n"
" Shows a list of instantiated task processors and their statistics\n";
return NULL;
case CLI_GENERATE:
return NULL;
}
if (a->argc != e->args) {
return CLI_SHOWUSAGE;
}
sorted_tps = ao2_container_alloc_rbtree(AO2_ALLOC_OPT_LOCK_NOLOCK, 0, tps_sort_cb,
NULL);
if (!sorted_tps
|| ao2_container_dup(sorted_tps, tps_singletons, 0)) {
ao2_cleanup(sorted_tps);
return CLI_FAILURE;
}
ast_cli(a->fd, "\n" FMT_HEADERS, "Processor", "Processed", "In Queue", "Max Depth", "Low water", "High water");
tcount = 0;
iter = ao2_iterator_init(sorted_tps, AO2_ITERATOR_UNLINK);
while ((tps = ao2_iterator_next(&iter))) {
ast_copy_string(name, tps->name, sizeof(name));
qsize = tps->tps_queue_size;
if (tps->stats) {
maxqsize = tps->stats->max_qsize;
processed = tps->stats->_tasks_processed_count;
} else {
maxqsize = 0;
processed = 0;
}
ast_cli(a->fd, FMT_FIELDS, name, processed, qsize, maxqsize,
tps->tps_queue_low, tps->tps_queue_high);
ast_taskprocessor_unreference(tps);
++tcount;
}
ao2_iterator_destroy(&iter);
ast_cli(a->fd, "\n%d taskprocessors\n\n", tcount);
ao2_ref(sorted_tps, -1);
return CLI_SUCCESS;
}
/* hash callback for astobj2 */
static int tps_hash_cb(const void *obj, const int flags)
{
const struct ast_taskprocessor *tps = obj;
const char *name = flags & OBJ_KEY ? obj : tps->name;
return ast_str_case_hash(name);
}
/* compare callback for astobj2 */
static int tps_cmp_cb(void *obj, void *arg, int flags)
{
struct ast_taskprocessor *lhs = obj, *rhs = arg;
const char *rhsname = flags & OBJ_KEY ? arg : rhs->name;
return !strcasecmp(lhs->name, rhsname) ? CMP_MATCH | CMP_STOP : 0;
}
/*! Count of the number of taskprocessors in high water alert. */
static unsigned int tps_alert_count;
/*! Access protection for tps_alert_count */
AST_RWLOCK_DEFINE_STATIC(tps_alert_lock);
/*!
* \internal
* \brief Add a delta to tps_alert_count with protection.
* \since 13.10.0
*
* \param tps Taskprocessor updating queue water mark alert trigger.
* \param delta The amount to add to tps_alert_count.
*
* \return Nothing
*/
static void tps_alert_add(struct ast_taskprocessor *tps, int delta)
{
unsigned int old;
ast_rwlock_wrlock(&tps_alert_lock);
old = tps_alert_count;
tps_alert_count += delta;
if (DEBUG_ATLEAST(3)
/* and tps_alert_count becomes zero or non-zero */
&& !old != !tps_alert_count) {
ast_log(LOG_DEBUG, "Taskprocessor '%s' %s the high water alert.\n",
tps->name, tps_alert_count ? "triggered" : "cleared");
}
ast_rwlock_unlock(&tps_alert_lock);
}
unsigned int ast_taskprocessor_alert_get(void)
{
unsigned int count;
ast_rwlock_rdlock(&tps_alert_lock);
count = tps_alert_count;
ast_rwlock_unlock(&tps_alert_lock);
return count;
}
int ast_taskprocessor_alert_set_levels(struct ast_taskprocessor *tps, long low_water, long high_water)
{
if (!tps || high_water < 0 || high_water < low_water) {
return -1;
}
if (low_water < 0) {
/* Set low water level to 90% of high water level */
low_water = (high_water * 9) / 10;
}
ao2_lock(tps);
tps->tps_queue_low = low_water;
tps->tps_queue_high = high_water;
if (tps->high_water_alert) {
if (!tps->tps_queue_size || tps->tps_queue_size < low_water) {
/* Update water mark alert immediately */
tps->high_water_alert = 0;
tps_alert_add(tps, -1);
}
} else {
if (high_water < tps->tps_queue_size) {
/* Update water mark alert immediately */
tps->high_water_alert = 1;
tps_alert_add(tps, +1);
}
}
ao2_unlock(tps);
return 0;
}
/* destroy the taskprocessor */
static void tps_taskprocessor_dtor(void *tps)
{
struct ast_taskprocessor *t = tps;
struct tps_task *task;
while ((task = AST_LIST_REMOVE_HEAD(&t->tps_queue, list))) {
tps_task_free(task);
}
t->tps_queue_size = 0;
if (t->high_water_alert) {
t->high_water_alert = 0;
tps_alert_add(t, -1);
}
ast_free(t->stats);
t->stats = NULL;
ast_free((char *) t->name);
t->name = NULL;
ao2_cleanup(t->listener);
t->listener = NULL;
}
/* pop the front task and return it */
static struct tps_task *tps_taskprocessor_pop(struct ast_taskprocessor *tps)
{
struct tps_task *task;
if ((task = AST_LIST_REMOVE_HEAD(&tps->tps_queue, list))) {
--tps->tps_queue_size;
if (tps->high_water_alert && tps->tps_queue_size <= tps->tps_queue_low) {
tps->high_water_alert = 0;
tps_alert_add(tps, -1);
}
}
return task;
}
long ast_taskprocessor_size(struct ast_taskprocessor *tps)
{
return (tps) ? tps->tps_queue_size : -1;
}
/* taskprocessor name accessor */
const char *ast_taskprocessor_name(struct ast_taskprocessor *tps)
{
if (!tps) {
ast_log(LOG_ERROR, "no taskprocessor specified!\n");
return NULL;
}
return tps->name;
}
static void listener_shutdown(struct ast_taskprocessor_listener *listener)
{
listener->callbacks->shutdown(listener);
ao2_ref(listener->tps, -1);
}
static void taskprocessor_listener_dtor(void *obj)
{
struct ast_taskprocessor_listener *listener = obj;
if (listener->callbacks->dtor) {
listener->callbacks->dtor(listener);
}
}
struct ast_taskprocessor_listener *ast_taskprocessor_listener_alloc(const struct ast_taskprocessor_listener_callbacks *callbacks, void *user_data)
{
struct ast_taskprocessor_listener *listener;
listener = ao2_alloc(sizeof(*listener), taskprocessor_listener_dtor);
if (!listener) {
return NULL;
}
listener->callbacks = callbacks;
listener->user_data = user_data;
return listener;
}
struct ast_taskprocessor *ast_taskprocessor_listener_get_tps(const struct ast_taskprocessor_listener *listener)
{
ao2_ref(listener->tps, +1);
return listener->tps;
}
void *ast_taskprocessor_listener_get_user_data(const struct ast_taskprocessor_listener *listener)
{
return listener->user_data;
}
static void *default_listener_pvt_alloc(void)
{
struct default_taskprocessor_listener_pvt *pvt;
pvt = ast_calloc(1, sizeof(*pvt));
if (!pvt) {
return NULL;
}
pvt->poll_thread = AST_PTHREADT_NULL;
if (ast_sem_init(&pvt->sem, 0, 0) != 0) {
ast_log(LOG_ERROR, "ast_sem_init(): %s\n", strerror(errno));
ast_free(pvt);
return NULL;
}
return pvt;
}
static struct ast_taskprocessor *__allocate_taskprocessor(const char *name, struct ast_taskprocessor_listener *listener)
{
struct ast_taskprocessor *p;
p = ao2_alloc(sizeof(*p), tps_taskprocessor_dtor);
if (!p) {
ast_log(LOG_WARNING, "failed to create taskprocessor '%s'\n", name);
return NULL;
}
/* Set default congestion water level alert triggers. */
p->tps_queue_low = (AST_TASKPROCESSOR_HIGH_WATER_LEVEL * 9) / 10;
p->tps_queue_high = AST_TASKPROCESSOR_HIGH_WATER_LEVEL;
p->stats = ast_calloc(1, sizeof(*p->stats));
p->name = ast_strdup(name);
if (!p->stats || !p->name) {
ao2_ref(p, -1);
return NULL;
}
ao2_ref(listener, +1);
p->listener = listener;
p->thread = AST_PTHREADT_NULL;
ao2_ref(p, +1);
listener->tps = p;
if (!(ao2_link(tps_singletons, p))) {
ast_log(LOG_ERROR, "Failed to add taskprocessor '%s' to container\n", p->name);
listener->tps = NULL;
ao2_ref(p, -2);
return NULL;
}
if (p->listener->callbacks->start(p->listener)) {
ast_log(LOG_ERROR, "Unable to start taskprocessor listener for taskprocessor %s\n",
p->name);
ast_taskprocessor_unreference(p);
return NULL;
}
return p;
}
/* Provide a reference to a taskprocessor. Create the taskprocessor if necessary, but don't
* create the taskprocessor if we were told via ast_tps_options to return a reference only
* if it already exists */
struct ast_taskprocessor *ast_taskprocessor_get(const char *name, enum ast_tps_options create)
{
struct ast_taskprocessor *p;
struct ast_taskprocessor_listener *listener;
struct default_taskprocessor_listener_pvt *pvt;
if (ast_strlen_zero(name)) {
ast_log(LOG_ERROR, "requesting a nameless taskprocessor!!!\n");
return NULL;
}
p = ao2_find(tps_singletons, name, OBJ_KEY);
if (p) {
return p;
}
if (create & TPS_REF_IF_EXISTS) {
/* calling function does not want a new taskprocessor to be created if it doesn't already exist */
return NULL;
}
/* Create a new taskprocessor. Start by creating a default listener */
pvt = default_listener_pvt_alloc();
if (!pvt) {
return NULL;
}
listener = ast_taskprocessor_listener_alloc(&default_listener_callbacks, pvt);
if (!listener) {
default_listener_pvt_destroy(pvt);
return NULL;
}
p = __allocate_taskprocessor(name, listener);
ao2_ref(listener, -1);
return p;
}
struct ast_taskprocessor *ast_taskprocessor_create_with_listener(const char *name, struct ast_taskprocessor_listener *listener)
{
struct ast_taskprocessor *p = ao2_find(tps_singletons, name, OBJ_KEY);
if (p) {
ast_taskprocessor_unreference(p);
return NULL;
}
return __allocate_taskprocessor(name, listener);
}
void ast_taskprocessor_set_local(struct ast_taskprocessor *tps,
void *local_data)
{
SCOPED_AO2LOCK(lock, tps);
tps->local_data = local_data;
}
/* decrement the taskprocessor reference count and unlink from the container if necessary */
void *ast_taskprocessor_unreference(struct ast_taskprocessor *tps)
{
if (!tps) {
return NULL;
}
/* To prevent another thread from finding and getting a reference to this
* taskprocessor we hold the singletons lock. If we didn't do this then
* they may acquire it and find that the listener has been shut down.
*/
ao2_lock(tps_singletons);
if (ao2_ref(tps, -1) > 3) {
ao2_unlock(tps_singletons);
return NULL;
}
/* If we're down to 3 references, then those must be:
* 1. The reference we just got rid of
* 2. The container
* 3. The listener
*/
ao2_unlink_flags(tps_singletons, tps, OBJ_NOLOCK);
ao2_unlock(tps_singletons);
listener_shutdown(tps->listener);
return NULL;
}
/* push the task into the taskprocessor queue */
static int taskprocessor_push(struct ast_taskprocessor *tps, struct tps_task *t)
{
int previous_size;
int was_empty;
if (!tps) {
ast_log(LOG_ERROR, "tps is NULL!\n");
return -1;
}
if (!t) {
ast_log(LOG_ERROR, "t is NULL!\n");
return -1;
}
ao2_lock(tps);
AST_LIST_INSERT_TAIL(&tps->tps_queue, t, list);
previous_size = tps->tps_queue_size++;
if (tps->tps_queue_high <= tps->tps_queue_size) {
if (!tps->high_water_alert) {
ast_log(LOG_WARNING, "The '%s' task processor queue reached %ld scheduled tasks%s.\n",
tps->name, tps->tps_queue_size, tps->high_water_warned ? " again" : "");
tps->high_water_warned = 1;
tps->high_water_alert = 1;
tps_alert_add(tps, +1);
}
}
/* The currently executing task counts as still in queue */
was_empty = tps->executing ? 0 : previous_size == 0;
ao2_unlock(tps);
tps->listener->callbacks->task_pushed(tps->listener, was_empty);
return 0;
}
int ast_taskprocessor_push(struct ast_taskprocessor *tps, int (*task_exe)(void *datap), void *datap)
{
return taskprocessor_push(tps, tps_task_alloc(task_exe, datap));
}
int ast_taskprocessor_push_local(struct ast_taskprocessor *tps, int (*task_exe)(struct ast_taskprocessor_local *datap), void *datap)
{
return taskprocessor_push(tps, tps_task_alloc_local(task_exe, datap));
}
int ast_taskprocessor_suspend(struct ast_taskprocessor *tps)
{
if (tps) {
ao2_lock(tps);
tps->suspended = 1;
ao2_unlock(tps);
return 0;
}
return -1;
}
int ast_taskprocessor_unsuspend(struct ast_taskprocessor *tps)
{
if (tps) {
ao2_lock(tps);
tps->suspended = 0;
ao2_unlock(tps);
return 0;
}
return -1;
}
int ast_taskprocessor_is_suspended(struct ast_taskprocessor *tps)
{
return tps ? tps->suspended : -1;
}
int ast_taskprocessor_execute(struct ast_taskprocessor *tps)
{
struct ast_taskprocessor_local local;
struct tps_task *t;
long size;
ao2_lock(tps);
t = tps_taskprocessor_pop(tps);
if (!t) {
ao2_unlock(tps);
return 0;
}
tps->thread = pthread_self();
tps->executing = 1;
if (t->wants_local) {
local.local_data = tps->local_data;
local.data = t->datap;
}
ao2_unlock(tps);
if (t->wants_local) {
t->callback.execute_local(&local);
} else {
t->callback.execute(t->datap);
}
tps_task_free(t);
ao2_lock(tps);
tps->thread = AST_PTHREADT_NULL;
/* We need to check size in the same critical section where we reset the
* executing bit. Avoids a race condition where a task is pushed right
* after we pop an empty stack.
*/
tps->executing = 0;
size = ast_taskprocessor_size(tps);
/* Update the stats */
if (tps->stats) {
++tps->stats->_tasks_processed_count;
/* Include the task we just executed as part of the queue size. */
if (size >= tps->stats->max_qsize) {
tps->stats->max_qsize = size + 1;
}
}
ao2_unlock(tps);
/* If we executed a task, check for the transition to empty */
if (size == 0 && tps->listener->callbacks->emptied) {
tps->listener->callbacks->emptied(tps->listener);
}
return size > 0;
}
int ast_taskprocessor_is_task(struct ast_taskprocessor *tps)
{
int is_task;
ao2_lock(tps);
is_task = pthread_equal(tps->thread, pthread_self());
ao2_unlock(tps);
return is_task;
}
unsigned int ast_taskprocessor_seq_num(void)
{
static int seq_num;
return (unsigned int) ast_atomic_fetchadd_int(&seq_num, +1);
}
void ast_taskprocessor_build_name(char *buf, unsigned int size, const char *format, ...)
{
va_list ap;
int user_size;
#define SEQ_STR_SIZE (1 + 8 + 1) /* Dash plus 8 hex digits plus null terminator */
ast_assert(buf != NULL);
ast_assert(SEQ_STR_SIZE <= size);
va_start(ap, format);
user_size = vsnprintf(buf, size - (SEQ_STR_SIZE - 1), format, ap);
va_end(ap);
if (user_size < 0) {
/*
* Wow! We got an output error to a memory buffer.
* Assume no user part of name written.
*/
user_size = 0;
} else if (size < user_size + SEQ_STR_SIZE) {
/* Truncate user part of name to make sequence number fit. */
user_size = size - SEQ_STR_SIZE;
}
/* Append sequence number to end of user name. */
snprintf(buf + user_size, SEQ_STR_SIZE, "-%08x", ast_taskprocessor_seq_num());
}