asterisk/channels/vcodecs.c
Kevin P. Fleming e6b2e9a750 Const-ify the world (or at least a good part of it)
This patch adds 'const' tags to a number of Asterisk APIs where they are appropriate (where the API already demanded that the function argument not be modified, but the compiler was not informed of that fact). The list includes:

- CLI command handlers
- CLI command handler arguments
- AGI command handlers
- AGI command handler arguments
- Dialplan application handler arguments
- Speech engine API function arguments

In addition, various file-scope and function-scope constant arrays got 'const' and/or 'static' qualifiers where they were missing.

Review: https://reviewboard.asterisk.org/r/251/



git-svn-id: https://origsvn.digium.com/svn/asterisk/trunk@196072 65c4cc65-6c06-0410-ace0-fbb531ad65f3
2009-05-21 21:13:09 +00:00

1254 lines
35 KiB
C

/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright 2007-2008, Sergio Fadda, Luigi Rizzo
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*
* Video codecs support for console_video.c
* $Revision$
*/
#include "asterisk.h"
#include "console_video.h"
#include "asterisk/frame.h"
#include "asterisk/utils.h" /* ast_calloc() */
struct video_out_desc;
struct video_dec_desc;
struct fbuf_t;
/*
* Each codec is defined by a number of callbacks
*/
/*! \brief initialize the encoder */
typedef int (*encoder_init_f)(AVCodecContext *v);
/*! \brief actually call the encoder */
typedef int (*encoder_encode_f)(struct video_out_desc *v);
/*! \brief encapsulate the bistream in RTP frames */
typedef struct ast_frame *(*encoder_encap_f)(struct fbuf_t *, int mtu,
struct ast_frame **tail);
/*! \brief inizialize the decoder */
typedef int (*decoder_init_f)(AVCodecContext *enc_ctx);
/*! \brief extract the bitstream from RTP frames and store in the fbuf.
* return 0 if ok, 1 on error
*/
typedef int (*decoder_decap_f)(struct fbuf_t *b, uint8_t *data, int len);
/*! \brief actually call the decoder */
typedef int (*decoder_decode_f)(struct video_dec_desc *v, struct fbuf_t *b);
struct video_codec_desc {
const char *name; /* format name */
int format; /* AST_FORMAT_* */
encoder_init_f enc_init;
encoder_encap_f enc_encap;
encoder_encode_f enc_run;
decoder_init_f dec_init;
decoder_decap_f dec_decap;
decoder_decode_f dec_run;
};
/*
* Descriptor for the incoming stream, with multiple buffers for the bitstream
* extracted from the RTP packets, RTP reassembly info, and a frame buffer
* for the decoded frame (buf).
* The descriptor is allocated as the first frame comes in.
*
* Incoming payload is stored in one of the dec_in[] buffers, which are
* emptied by the video thread. These buffers are organized in a circular
* queue, with dec_in_cur being the buffer in use by the incoming stream,
* and dec_in_dpy is the one being displayed. When the pointers need to
* be changed, we synchronize the access to them with dec_lock.
* When the list is full dec_in_cur = NULL (we cannot store new data),
* when the list is empty dec_in_dpy = NULL (we cannot display frames).
*/
struct video_dec_desc {
struct video_codec_desc *d_callbacks; /* decoder callbacks */
AVCodecContext *dec_ctx; /* information about the codec in the stream */
AVCodec *codec; /* reference to the codec */
AVFrame *d_frame; /* place to store the decoded frame */
AVCodecParserContext *parser;
uint16_t next_seq; /* must be 16 bit */
int discard; /* flag for discard status */
#define N_DEC_IN 3 /* number of incoming buffers */
struct fbuf_t *dec_in_cur; /* buffer being filled in */
struct fbuf_t *dec_in_dpy; /* buffer to display */
struct fbuf_t dec_in[N_DEC_IN]; /* incoming bitstream, allocated/extended in fbuf_append() */
struct fbuf_t dec_out; /* decoded frame, no buffer (data is in AVFrame) */
};
#ifdef debugging_only
/* some debugging code to check the bitstream:
* declare a bit buffer, initialize it, and fetch data from it.
*/
struct bitbuf {
const uint8_t *base;
int bitsize; /* total size in bits */
int ofs; /* next bit to read */
};
static struct bitbuf bitbuf_init(const uint8_t *base, int bitsize, int start_ofs)
{
struct bitbuf a;
a.base = base;
a.bitsize = bitsize;
a.ofs = start_ofs;
return a;
}
static int bitbuf_left(struct bitbuf *b)
{
return b->bitsize - b->ofs;
}
static uint32_t getbits(struct bitbuf *b, int n)
{
int i, ofs;
const uint8_t *d;
uint8_t mask;
uint32_t retval = 0;
if (n> 31) {
ast_log(LOG_WARNING, "too many bits %d, max 32\n", n);
return 0;
}
if (n + b->ofs > b->bitsize) {
ast_log(LOG_WARNING, "bitbuf overflow %d of %d\n", n + b->ofs, b->bitsize);
n = b->bitsize - b->ofs;
}
ofs = 7 - b->ofs % 8; /* start from msb */
mask = 1 << ofs;
d = b->base + b->ofs / 8; /* current byte */
for (i=0 ; i < n; i++) {
retval += retval + (*d & mask ? 1 : 0); /* shift in new byte */
b->ofs++;
mask >>= 1;
if (mask == 0) {
d++;
mask = 0x80;
}
}
return retval;
}
static void check_h261(struct fbuf_t *b)
{
struct bitbuf a = bitbuf_init(b->data, b->used * 8, 0);
uint32_t x, y;
x = getbits(&a, 20); /* PSC, 0000 0000 0000 0001 0000 */
if (x != 0x10) {
ast_log(LOG_WARNING, "bad PSC 0x%x\n", x);
return;
}
x = getbits(&a, 5); /* temporal reference */
y = getbits(&a, 6); /* ptype */
if (0)
ast_log(LOG_WARNING, "size %d TR %d PTY spl %d doc %d freeze %d %sCIF hi %d\n",
b->used,
x,
(y & 0x20) ? 1 : 0,
(y & 0x10) ? 1 : 0,
(y & 0x8) ? 1 : 0,
(y & 0x4) ? "" : "Q",
(y & 0x2) ? 1:0);
while ( (x = getbits(&a, 1)) == 1)
ast_log(LOG_WARNING, "PSPARE 0x%x\n", getbits(&a, 8));
// ast_log(LOG_WARNING, "PSPARE 0 - start GOB LAYER\n");
while ( (x = bitbuf_left(&a)) > 0) {
// ast_log(LOG_WARNING, "GBSC %d bits left\n", x);
x = getbits(&a, 16); /* GBSC 0000 0000 0000 0001 */
if (x != 0x1) {
ast_log(LOG_WARNING, "bad GBSC 0x%x\n", x);
break;
}
x = getbits(&a, 4); /* group number */
y = getbits(&a, 5); /* gquant */
if (x == 0) {
ast_log(LOG_WARNING, " bad GN %d\n", x);
break;
}
while ( (x = getbits(&a, 1)) == 1)
ast_log(LOG_WARNING, "GSPARE 0x%x\n", getbits(&a, 8));
while ( (x = bitbuf_left(&a)) > 0) { /* MB layer */
break;
}
}
}
void dump_buf(struct fbuf_t *b);
void dump_buf(struct fbuf_t *b)
{
int i, x, last2lines;
char buf[80];
last2lines = (b->used - 16) & ~0xf;
ast_log(LOG_WARNING, "buf size %d of %d\n", b->used, b->size);
for (i = 0; i < b->used; i++) {
x = i & 0xf;
if ( x == 0) { /* new line */
if (i != 0)
ast_log(LOG_WARNING, "%s\n", buf);
memset(buf, '\0', sizeof(buf));
sprintf(buf, "%04x: ", i);
}
sprintf(buf + 6 + x*3, "%02x ", b->data[i]);
if (i > 31 && i < last2lines)
i = last2lines - 1;
}
if (buf[0])
ast_log(LOG_WARNING, "%s\n", buf);
}
#endif /* debugging_only */
/*!
* Build an ast_frame for a given chunk of data, and link it into
* the queue, with possibly 'head' bytes at the beginning to
* fill in some fields later.
*/
static struct ast_frame *create_video_frame(uint8_t *start, uint8_t *end,
int format, int head, struct ast_frame *prev)
{
int len = end-start;
uint8_t *data;
struct ast_frame *f;
data = ast_calloc(1, len+head);
f = ast_calloc(1, sizeof(*f));
if (f == NULL || data == NULL) {
ast_log(LOG_WARNING, "--- frame error f %p data %p len %d format %d\n",
f, data, len, format);
if (f)
ast_free(f);
if (data)
ast_free(data);
return NULL;
}
memcpy(data+head, start, len);
f->data.ptr = data;
f->mallocd = AST_MALLOCD_DATA | AST_MALLOCD_HDR;
//f->has_timing_info = 1;
//f->ts = ast_tvdiff_ms(ast_tvnow(), out->ts);
f->datalen = len+head;
f->frametype = AST_FRAME_VIDEO;
f->subclass = format;
f->samples = 0;
f->offset = 0;
f->src = "Console";
f->delivery.tv_sec = 0;
f->delivery.tv_usec = 0;
f->seqno = 0;
AST_LIST_NEXT(f, frame_list) = NULL;
if (prev)
AST_LIST_NEXT(prev, frame_list) = f;
return f;
}
/*
* Append a chunk of data to a buffer taking care of bit alignment
* Return 0 on success, != 0 on failure
*/
static int fbuf_append(struct fbuf_t *b, uint8_t *src, int len,
int sbit, int ebit)
{
/*
* Allocate buffer. ffmpeg wants an extra FF_INPUT_BUFFER_PADDING_SIZE,
* and also wants 0 as a buffer terminator to prevent trouble.
*/
int need = len + FF_INPUT_BUFFER_PADDING_SIZE;
int i;
uint8_t *dst, mask;
if (b->data == NULL) {
b->size = need;
b->used = 0;
b->ebit = 0;
b->data = ast_calloc(1, b->size);
} else if (b->used + need > b->size) {
b->size = b->used + need;
b->data = ast_realloc(b->data, b->size);
}
if (b->data == NULL) {
ast_log(LOG_WARNING, "alloc failure for %d, discard\n",
b->size);
return 1;
}
if (b->used == 0 && b->ebit != 0) {
ast_log(LOG_WARNING, "ebit not reset at start\n");
b->ebit = 0;
}
dst = b->data + b->used;
i = b->ebit + sbit; /* bits to ignore around */
if (i == 0) { /* easy case, just append */
/* do everything in the common block */
} else if (i == 8) { /* easy too, just handle the overlap byte */
mask = (1 << b->ebit) - 1;
/* update the last byte in the buffer */
dst[-1] &= ~mask; /* clear bits to ignore */
dst[-1] |= (*src & mask); /* append new bits */
src += 1; /* skip and prepare for common block */
len --;
} else { /* must shift the new block, not done yet */
ast_log(LOG_WARNING, "must handle shift %d %d at %d\n",
b->ebit, sbit, b->used);
return 1;
}
memcpy(dst, src, len);
b->used += len;
b->ebit = ebit;
b->data[b->used] = 0; /* padding */
return 0;
}
/*
* Here starts the glue code for the various supported video codecs.
* For each of them, we need to provide routines for initialization,
* calling the encoder, encapsulating the bitstream in ast_frames,
* extracting payload from ast_frames, and calling the decoder.
*/
/*--- h263+ support --- */
/*! \brief initialization of h263p */
static int h263p_enc_init(AVCodecContext *enc_ctx)
{
/* modes supported are
- Unrestricted Motion Vector (annex D)
- Advanced Prediction (annex F)
- Advanced Intra Coding (annex I)
- Deblocking Filter (annex J)
- Slice Structure (annex K)
- Alternative Inter VLC (annex S)
- Modified Quantization (annex T)
*/
enc_ctx->flags |=CODEC_FLAG_H263P_UMV; /* annex D */
enc_ctx->flags |=CODEC_FLAG_AC_PRED; /* annex f ? */
enc_ctx->flags |=CODEC_FLAG_H263P_SLICE_STRUCT; /* annex k */
enc_ctx->flags |= CODEC_FLAG_H263P_AIC; /* annex I */
return 0;
}
/*
* Create RTP/H.263 fragments to avoid IP fragmentation. We fragment on a
* PSC or a GBSC, but if we don't find a suitable place just break somewhere.
* Everything is byte-aligned.
*/
static struct ast_frame *h263p_encap(struct fbuf_t *b, int mtu,
struct ast_frame **tail)
{
struct ast_frame *cur = NULL, *first = NULL;
uint8_t *d = b->data;
int len = b->used;
int l = len; /* size of the current fragment. If 0, must look for a psc */
for (;len > 0; len -= l, d += l) {
uint8_t *data;
struct ast_frame *f;
int i, h;
if (len >= 3 && d[0] == 0 && d[1] == 0 && d[2] >= 0x80) {
/* we are starting a new block, so look for a PSC. */
for (i = 3; i < len - 3; i++) {
if (d[i] == 0 && d[i+1] == 0 && d[i+2] >= 0x80) {
l = i;
break;
}
}
}
if (l > mtu || l > len) { /* psc not found, split */
l = MIN(len, mtu);
}
if (l < 1 || l > mtu) {
ast_log(LOG_WARNING, "--- frame error l %d\n", l);
break;
}
if (d[0] == 0 && d[1] == 0) { /* we start with a psc */
h = 0;
} else { /* no psc, create a header */
h = 2;
}
f = create_video_frame(d, d+l, AST_FORMAT_H263_PLUS, h, cur);
if (!f)
break;
data = f->data.ptr;
if (h == 0) { /* we start with a psc */
data[0] |= 0x04; // set P == 1, and we are done
} else { /* no psc, create a header */
data[0] = data[1] = 0; // P == 0
}
if (!cur)
first = f;
cur = f;
}
if (cur)
cur->subclass |= 1; // RTP Marker
*tail = cur; /* end of the list */
return first;
}
/*! \brief extract the bitstreem from the RTP payload.
* This is format dependent.
* For h263+, the format is defined in RFC 2429
* and basically has a fixed 2-byte header as follows:
* 5 bits RR reserved, shall be 0
* 1 bit P indicate a start/end condition,
* in which case the payload should be prepended
* by two zero-valued bytes.
* 1 bit V there is an additional VRC header after this header
* 6 bits PLEN length in bytes of extra picture header
* 3 bits PEBIT how many bits to be ignored in the last byte
*
* XXX the code below is not complete.
*/
static int h263p_decap(struct fbuf_t *b, uint8_t *data, int len)
{
int PLEN;
if (len < 2) {
ast_log(LOG_WARNING, "invalid framesize %d\n", len);
return 1;
}
PLEN = ( (data[0] & 1) << 5 ) | ( (data[1] & 0xf8) >> 3);
if (PLEN > 0) {
data += PLEN;
len -= PLEN;
}
if (data[0] & 4) /* bit P */
data[0] = data[1] = 0;
else {
data += 2;
len -= 2;
}
return fbuf_append(b, data, len, 0, 0); /* ignore trail bits */
}
/*
* generic encoder, used by the various protocols supported here.
* We assume that the buffer is empty at the beginning.
*/
static int ffmpeg_encode(struct video_out_desc *v)
{
struct fbuf_t *b = &v->enc_out;
int i;
b->used = avcodec_encode_video(v->enc_ctx, b->data, b->size, v->enc_in_frame);
i = avcodec_encode_video(v->enc_ctx, b->data + b->used, b->size - b->used, NULL); /* delayed frames ? */
if (i > 0) {
ast_log(LOG_WARNING, "have %d more bytes\n", i);
b->used += i;
}
return 0;
}
/*
* Generic decoder, which is used by h263p, h263 and h261 as it simply
* invokes ffmpeg's decoder.
* av_parser_parse should merge a randomly chopped up stream into
* proper frames. After that, if we have a valid frame, we decode it
* until the entire frame is processed.
*/
static int ffmpeg_decode(struct video_dec_desc *v, struct fbuf_t *b)
{
uint8_t *src = b->data;
int srclen = b->used;
int full_frame = 0;
if (srclen == 0) /* no data */
return 0;
while (srclen) {
uint8_t *data;
int datalen, ret;
int len = av_parser_parse(v->parser, v->dec_ctx, &data, &datalen, src, srclen, 0, 0);
src += len;
srclen -= len;
/* The parser might return something it cannot decode, so it skips
* the block returning no data
*/
if (data == NULL || datalen == 0)
continue;
ret = avcodec_decode_video(v->dec_ctx, v->d_frame, &full_frame, data, datalen);
if (full_frame == 1) /* full frame */
break;
if (ret < 0) {
ast_log(LOG_NOTICE, "Error decoding\n");
break;
}
}
if (srclen != 0) /* update b with leftover data */
memmove(b->data, src, srclen);
b->used = srclen;
b->ebit = 0;
return full_frame;
}
static struct video_codec_desc h263p_codec = {
.name = "h263p",
.format = AST_FORMAT_H263_PLUS,
.enc_init = h263p_enc_init,
.enc_encap = h263p_encap,
.enc_run = ffmpeg_encode,
.dec_init = NULL,
.dec_decap = h263p_decap,
.dec_run = ffmpeg_decode
};
/*--- Plain h263 support --------*/
static int h263_enc_init(AVCodecContext *enc_ctx)
{
/* XXX check whether these are supported */
enc_ctx->flags |= CODEC_FLAG_H263P_UMV;
enc_ctx->flags |= CODEC_FLAG_H263P_AIC;
enc_ctx->flags |= CODEC_FLAG_H263P_SLICE_STRUCT;
enc_ctx->flags |= CODEC_FLAG_AC_PRED;
return 0;
}
/*
* h263 encapsulation is specified in RFC2190. There are three modes
* defined (A, B, C), with 4, 8 and 12 bytes of header, respectively.
* The header is made as follows
* 0.....................|.......................|.............|....31
* F:1 P:1 SBIT:3 EBIT:3 SRC:3 I:1 U:1 S:1 A:1 R:4 DBQ:2 TRB:3 TR:8
* FP = 0- mode A, (only one word of header)
* FP = 10 mode B, and also means this is an I or P frame
* FP = 11 mode C, and also means this is a PB frame.
* SBIT, EBIT nuber of bits to ignore at beginning (msbits) and end (lsbits)
* SRC bits 6,7,8 from the h263 PTYPE field
* I = 0 intra-coded, 1 = inter-coded (bit 9 from PTYPE)
* U = 1 for Unrestricted Motion Vector (bit 10 from PTYPE)
* S = 1 for Syntax Based Arith coding (bit 11 from PTYPE)
* A = 1 for Advanced Prediction (bit 12 from PTYPE)
* R = reserved, must be 0
* DBQ = differential quantization, DBQUANT from h263, 0 unless we are using
* PB frames
* TRB = temporal reference for bframes, also 0 unless this is a PB frame
* TR = temporal reference for P frames, also 0 unless PB frame.
*
* Mode B and mode C description omitted.
*
* An RTP frame can start with a PSC 0000 0000 0000 0000 1000 0
* or with a GBSC, which also has the first 17 bits as a PSC.
* Note - PSC are byte-aligned, GOB not necessarily. PSC start with
* PSC:22 0000 0000 0000 0000 1000 00 picture start code
* TR:8 .... .... temporal reference
* PTYPE:13 or more ptype...
* If we don't fragment a GOB SBIT and EBIT = 0.
* reference, 8 bit)
*
* The assumption below is that we start with a PSC.
*/
static struct ast_frame *h263_encap(struct fbuf_t *b, int mtu,
struct ast_frame **tail)
{
uint8_t *d = b->data;
int start = 0, i, len = b->used;
struct ast_frame *f, *cur = NULL, *first = NULL;
const int pheader_len = 4; /* Use RFC-2190 Mode A */
uint8_t h263_hdr[12]; /* worst case, room for a type c header */
uint8_t *h = h263_hdr; /* shorthand */
#define H263_MIN_LEN 6
if (len < H263_MIN_LEN) /* unreasonably small */
return NULL;
memset(h263_hdr, '\0', sizeof(h263_hdr));
/* Now set the header bytes. Only type A by now,
* and h[0] = h[2] = h[3] = 0 by default.
* PTYPE starts 30 bits in the picture, so the first useful
* bit for us is bit 36 i.e. within d[4] (0 is the msbit).
* SRC = d[4] & 0x1c goes into data[1] & 0xe0
* I = d[4] & 0x02 goes into data[1] & 0x10
* U = d[4] & 0x01 goes into data[1] & 0x08
* S = d[5] & 0x80 goes into data[1] & 0x04
* A = d[5] & 0x40 goes into data[1] & 0x02
* R = 0 goes into data[1] & 0x01
* Optimizing it, we have
*/
h[1] = ( (d[4] & 0x1f) << 3 ) | /* SRC, I, U */
( (d[5] & 0xc0) >> 5 ); /* S, A, R */
/* now look for the next PSC or GOB header. First try to hit
* a '0' byte then look around for the 0000 0000 0000 0000 1 pattern
* which is both in the PSC and the GBSC.
*/
for (i = H263_MIN_LEN, start = 0; start < len; start = i, i += 3) {
//ast_log(LOG_WARNING, "search at %d of %d/%d\n", i, start, len);
for (; i < len ; i++) {
uint8_t x, rpos, lpos;
int rpos_i; /* index corresponding to rpos */
if (d[i] != 0) /* cannot be in a GBSC */
continue;
if (i > len - 1)
break;
x = d[i+1];
if (x == 0) /* next is equally good */
continue;
/* see if around us we can make 16 '0' bits for the GBSC.
* Look for the first bit set on the right, and then
* see if we have enough 0 on the left.
* We are guaranteed to end before rpos == 0
*/
for (rpos = 0x80, rpos_i = 8; rpos; rpos >>= 1, rpos_i--)
if (x & rpos) /* found the '1' bit in GBSC */
break;
x = d[i-1]; /* now look behind */
for (lpos = rpos; lpos ; lpos >>= 1)
if (x & lpos) /* too early, not a GBSC */
break;
if (lpos) /* as i said... */
continue;
/* now we have a GBSC starting somewhere in d[i-1],
* but it might be not byte-aligned
*/
if (rpos == 0x80) { /* lucky case */
i = i - 1;
} else { /* XXX to be completed */
ast_log(LOG_WARNING, "unaligned GBSC 0x%x %d\n",
rpos, rpos_i);
}
break;
}
/* This frame is up to offset i (not inclusive).
* We do not split it yet even if larger than MTU.
*/
f = create_video_frame(d + start, d+i, AST_FORMAT_H263,
pheader_len, cur);
if (!f)
break;
memmove(f->data.ptr, h, 4); /* copy the h263 header */
/* XXX to do: if not aligned, fix sbit and ebit,
* then move i back by 1 for the next frame
*/
if (!cur)
first = f;
cur = f;
}
if (cur)
cur->subclass |= 1; // RTP Marker
*tail = cur;
return first;
}
/* XXX We only drop the header here, but maybe we need more. */
static int h263_decap(struct fbuf_t *b, uint8_t *data, int len)
{
if (len < 4) {
ast_log(LOG_WARNING, "invalid framesize %d\n", len);
return 1; /* error */
}
if ( (data[0] & 0x80) == 0) {
len -= 4;
data += 4;
} else {
ast_log(LOG_WARNING, "unsupported mode 0x%x\n",
data[0]);
return 1;
}
return fbuf_append(b, data, len, 0, 0); /* XXX no bit alignment support yet */
}
static struct video_codec_desc h263_codec = {
.name = "h263",
.format = AST_FORMAT_H263,
.enc_init = h263_enc_init,
.enc_encap = h263_encap,
.enc_run = ffmpeg_encode,
.dec_init = NULL,
.dec_decap = h263_decap,
.dec_run = ffmpeg_decode
};
/*---- h261 support -----*/
static int h261_enc_init(AVCodecContext *enc_ctx)
{
/* It is important to set rtp_payload_size = 0, otherwise
* ffmpeg in h261 mode will produce output that it cannot parse.
* Also try to send I frames more frequently than with other codecs.
*/
enc_ctx->rtp_payload_size = 0; /* important - ffmpeg fails otherwise */
return 0;
}
/*
* The encapsulation of H261 is defined in RFC4587 which obsoletes RFC2032
* The bitstream is preceded by a 32-bit header word:
* SBIT:3 EBIT:3 I:1 V:1 GOBN:4 MBAP:5 QUANT:5 HMVD:5 VMVD:5
* SBIT and EBIT are the bits to be ignored at beginning and end,
* I=1 if the stream has only INTRA frames - cannot change during the stream.
* V=0 if motion vector is not used. Cannot change.
* GOBN is the GOB number in effect at the start of packet, 0 if we
* start with a GOB header
* QUANT is the quantizer in effect, 0 if we start with GOB header
* HMVD reference horizontal motion vector. 10000 is forbidden
* VMVD reference vertical motion vector, as above.
* Packetization should occur at GOB boundaries, and if not possible
* with MacroBlock fragmentation. However it is likely that blocks
* are not bit-aligned so we must take care of this.
*/
static struct ast_frame *h261_encap(struct fbuf_t *b, int mtu,
struct ast_frame **tail)
{
uint8_t *d = b->data;
int start = 0, i, len = b->used;
struct ast_frame *f, *cur = NULL, *first = NULL;
const int pheader_len = 4;
uint8_t h261_hdr[4];
uint8_t *h = h261_hdr; /* shorthand */
int sbit = 0, ebit = 0;
#define H261_MIN_LEN 10
if (len < H261_MIN_LEN) /* unreasonably small */
return NULL;
memset(h261_hdr, '\0', sizeof(h261_hdr));
/* Similar to the code in h263_encap, but the marker there is longer.
* Start a few bytes within the bitstream to avoid hitting the marker
* twice. Note we might access the buffer at len, but this is ok because
* the caller has it oversized.
*/
for (i = H261_MIN_LEN, start = 0; start < len - 1; start = i, i += 4) {
#if 0 /* test - disable packetization */
i = len; /* wrong... */
#else
int found = 0, found_ebit = 0; /* last GBSC position found */
for (; i < len ; i++) {
uint8_t x, rpos, lpos;
if (d[i] != 0) /* cannot be in a GBSC */
continue;
x = d[i+1];
if (x == 0) /* next is equally good */
continue;
/* See if around us we find 15 '0' bits for the GBSC.
* Look for the first bit set on the right, and then
* see if we have enough 0 on the left.
* We are guaranteed to end before rpos == 0
*/
for (rpos = 0x80, ebit = 7; rpos; ebit--, rpos >>= 1)
if (x & rpos) /* found the '1' bit in GBSC */
break;
x = d[i-1]; /* now look behind */
for (lpos = (rpos >> 1); lpos ; lpos >>= 1)
if (x & lpos) /* too early, not a GBSC */
break;
if (lpos) /* as i said... */
continue;
/* now we have a GBSC starting somewhere in d[i-1],
* but it might be not byte-aligned. Just remember it.
*/
if (i - start > mtu) /* too large, stop now */
break;
found_ebit = ebit;
found = i;
i += 4; /* continue forward */
}
if (i >= len) { /* trim if we went too forward */
i = len;
ebit = 0; /* hopefully... should ask the bitstream ? */
}
if (i - start > mtu && found) {
/* use the previous GBSC, hope is within the mtu */
i = found;
ebit = found_ebit;
}
#endif /* test */
if (i - start < 4) /* XXX too short ? */
continue;
/* This frame is up to offset i (not inclusive).
* We do not split it yet even if larger than MTU.
*/
f = create_video_frame(d + start, d+i, AST_FORMAT_H261,
pheader_len, cur);
if (!f)
break;
/* recompute header with I=0, V=1 */
h[0] = ( (sbit & 7) << 5 ) | ( (ebit & 7) << 2 ) | 1;
memmove(f->data.ptr, h, 4); /* copy the h261 header */
if (ebit) /* not aligned, restart from previous byte */
i--;
sbit = (8 - ebit) & 7;
ebit = 0;
if (!cur)
first = f;
cur = f;
}
if (cur)
cur->subclass |= 1; // RTP Marker
*tail = cur;
return first;
}
/*
* Pieces might be unaligned so we really need to put them together.
*/
static int h261_decap(struct fbuf_t *b, uint8_t *data, int len)
{
int ebit, sbit;
if (len < 8) {
ast_log(LOG_WARNING, "invalid framesize %d\n", len);
return 1;
}
sbit = (data[0] >> 5) & 7;
ebit = (data[0] >> 2) & 7;
len -= 4;
data += 4;
return fbuf_append(b, data, len, sbit, ebit);
}
static struct video_codec_desc h261_codec = {
.name = "h261",
.format = AST_FORMAT_H261,
.enc_init = h261_enc_init,
.enc_encap = h261_encap,
.enc_run = ffmpeg_encode,
.dec_init = NULL,
.dec_decap = h261_decap,
.dec_run = ffmpeg_decode
};
/* mpeg4 support */
static int mpeg4_enc_init(AVCodecContext *enc_ctx)
{
#if 0
//enc_ctx->flags |= CODEC_FLAG_LOW_DELAY; /*don't use b frames ?*/
enc_ctx->flags |= CODEC_FLAG_AC_PRED;
enc_ctx->flags |= CODEC_FLAG_H263P_UMV;
enc_ctx->flags |= CODEC_FLAG_QPEL;
enc_ctx->flags |= CODEC_FLAG_4MV;
enc_ctx->flags |= CODEC_FLAG_GMC;
enc_ctx->flags |= CODEC_FLAG_LOOP_FILTER;
enc_ctx->flags |= CODEC_FLAG_H263P_SLICE_STRUCT;
#endif
enc_ctx->rtp_payload_size = 0; /* important - ffmpeg fails otherwise */
return 0;
}
/* simplistic encapsulation - just split frames in mtu-size units */
static struct ast_frame *mpeg4_encap(struct fbuf_t *b, int mtu,
struct ast_frame **tail)
{
struct ast_frame *f, *cur = NULL, *first = NULL;
uint8_t *d = b->data;
uint8_t *end = d + b->used;
int len;
for (;d < end; d += len, cur = f) {
len = MIN(mtu, end - d);
f = create_video_frame(d, d + len, AST_FORMAT_MP4_VIDEO, 0, cur);
if (!f)
break;
if (!first)
first = f;
}
if (cur)
cur->subclass |= 1;
*tail = cur;
return first;
}
static int mpeg4_decap(struct fbuf_t *b, uint8_t *data, int len)
{
return fbuf_append(b, data, len, 0, 0);
}
static int mpeg4_decode(struct video_dec_desc *v, struct fbuf_t *b)
{
int full_frame = 0, datalen = b->used;
int ret = avcodec_decode_video(v->dec_ctx, v->d_frame, &full_frame,
b->data, datalen);
if (ret < 0) {
ast_log(LOG_NOTICE, "Error decoding\n");
ret = datalen; /* assume we used everything. */
}
datalen -= ret;
if (datalen > 0) /* update b with leftover bytes */
memmove(b->data, b->data + ret, datalen);
b->used = datalen;
b->ebit = 0;
return full_frame;
}
static struct video_codec_desc mpeg4_codec = {
.name = "mpeg4",
.format = AST_FORMAT_MP4_VIDEO,
.enc_init = mpeg4_enc_init,
.enc_encap = mpeg4_encap,
.enc_run = ffmpeg_encode,
.dec_init = NULL,
.dec_decap = mpeg4_decap,
.dec_run = mpeg4_decode
};
static int h264_enc_init(AVCodecContext *enc_ctx)
{
enc_ctx->flags |= CODEC_FLAG_TRUNCATED;
//enc_ctx->flags |= CODEC_FLAG_GLOBAL_HEADER;
//enc_ctx->flags2 |= CODEC_FLAG2_FASTPSKIP;
/* TODO: Maybe we need to add some other flags */
enc_ctx->rtp_mode = 0;
enc_ctx->rtp_payload_size = 0;
enc_ctx->bit_rate_tolerance = enc_ctx->bit_rate;
return 0;
}
static int h264_dec_init(AVCodecContext *dec_ctx)
{
dec_ctx->flags |= CODEC_FLAG_TRUNCATED;
return 0;
}
/*
* The structure of a generic H.264 stream is:
* - 0..n 0-byte(s), unused, optional. one zero-byte is always present
* in the first NAL before the start code prefix.
* - start code prefix (3 bytes): 0x000001
* (the first bytestream has a
* like these 0x00000001!)
* - NAL header byte ( F[1] | NRI[2] | Type[5] ) where type != 0
* - byte-stream
* - 0..n 0-byte(s) (padding, unused).
* Segmentation in RTP only needs to be done on start code prefixes.
* If fragments are too long... we don't support it yet.
* - encapsulate (or fragment) the byte-stream (with NAL header included)
*/
static struct ast_frame *h264_encap(struct fbuf_t *b, int mtu,
struct ast_frame **tail)
{
struct ast_frame *f = NULL, *cur = NULL, *first = NULL;
uint8_t *d, *start = b->data;
uint8_t *end = start + b->used;
/* Search the first start code prefix - ITU-T H.264 sec. B.2,
* and move start right after that, on the NAL header byte.
*/
#define HAVE_NAL(x) (x[-4] == 0 && x[-3] == 0 && x[-2] == 0 && x[-1] == 1)
for (start += 4; start < end; start++) {
int ty = start[0] & 0x1f;
if (HAVE_NAL(start) && ty != 0 && ty != 31)
break;
}
/* if not found, or too short, we just skip the next loop and are done. */
/* Here follows the main loop to create frames. Search subsequent start
* codes, and then possibly fragment the unit into smaller fragments.
*/
for (;start < end - 4; start = d) {
int size; /* size of current block */
uint8_t hdr[2]; /* add-on header when fragmenting */
int ty = 0;
/* now search next nal */
for (d = start + 4; d < end; d++) {
ty = d[0] & 0x1f;
if (HAVE_NAL(d))
break; /* found NAL */
}
/* have a block to send. d past the start code unless we overflow */
if (d >= end) { /* NAL not found */
d = end + 4;
} else if (ty == 0 || ty == 31) { /* found but invalid type, skip */
ast_log(LOG_WARNING, "skip invalid nal type %d at %d of %d\n",
ty, d - (uint8_t *)b->data, b->used);
continue;
}
size = d - start - 4; /* don't count the end */
if (size < mtu) { // test - don't fragment
// Single NAL Unit
f = create_video_frame(start, d - 4, AST_FORMAT_H264, 0, cur);
if (!f)
break;
if (!first)
first = f;
cur = f;
continue;
}
// Fragmented Unit (Mode A: no DON, very weak)
hdr[0] = (*start & 0xe0) | 28; /* mark as a fragmentation unit */
hdr[1] = (*start++ & 0x1f) | 0x80 ; /* keep type and set START bit */
size--; /* skip the NAL header */
while (size) {
uint8_t *data;
int frag_size = MIN(size, mtu);
f = create_video_frame(start, start+frag_size, AST_FORMAT_H264, 2, cur);
if (!f)
break;
size -= frag_size; /* skip this data block */
start += frag_size;
data = f->data.ptr;
data[0] = hdr[0];
data[1] = hdr[1] | (size == 0 ? 0x40 : 0); /* end bit if we are done */
hdr[1] &= ~0x80; /* clear start bit for subsequent frames */
if (!first)
first = f;
cur = f;
}
}
if (cur)
cur->subclass |= 1; // RTP Marker
*tail = cur;
return first;
}
static int h264_decap(struct fbuf_t *b, uint8_t *data, int len)
{
/* Start Code Prefix (Annex B in specification) */
uint8_t scp[] = { 0x00, 0x00, 0x00, 0x01 };
int retval = 0;
int type, ofs = 0;
if (len < 2) {
ast_log(LOG_WARNING, "--- invalid len %d\n", len);
return 1;
}
/* first of all, check if the packet has F == 0 */
if (data[0] & 0x80) {
ast_log(LOG_WARNING, "--- forbidden packet; nal: %02x\n",
data[0]);
return 1;
}
type = data[0] & 0x1f;
switch (type) {
case 0:
case 31:
ast_log(LOG_WARNING, "--- invalid type: %d\n", type);
return 1;
case 24:
case 25:
case 26:
case 27:
case 29:
ast_log(LOG_WARNING, "--- encapsulation not supported : %d\n", type);
return 1;
case 28: /* FU-A Unit */
if (data[1] & 0x80) { // S == 1, import F and NRI from next
data[1] &= 0x1f; /* preserve type */
data[1] |= (data[0] & 0xe0); /* import F & NRI */
retval = fbuf_append(b, scp, sizeof(scp), 0, 0);
ofs = 1;
} else {
ofs = 2;
}
break;
default: /* From 1 to 23 (Single NAL Unit) */
retval = fbuf_append(b, scp, sizeof(scp), 0, 0);
}
if (!retval)
retval = fbuf_append(b, data + ofs, len - ofs, 0, 0);
if (retval)
ast_log(LOG_WARNING, "result %d\n", retval);
return retval;
}
static struct video_codec_desc h264_codec = {
.name = "h264",
.format = AST_FORMAT_H264,
.enc_init = h264_enc_init,
.enc_encap = h264_encap,
.enc_run = ffmpeg_encode,
.dec_init = h264_dec_init,
.dec_decap = h264_decap,
.dec_run = ffmpeg_decode
};
/*
* Table of translation between asterisk and ffmpeg formats.
* We need also a field for read and write (encoding and decoding), because
* e.g. H263+ uses different codec IDs in ffmpeg when encoding or decoding.
*/
struct _cm { /* map ffmpeg codec types to asterisk formats */
uint32_t ast_format; /* 0 is a terminator */
enum CodecID codec;
enum { CM_RD = 1, CM_WR = 2, CM_RDWR = 3 } rw; /* read or write or both ? */
//struct video_codec_desc *codec_desc;
};
static const struct _cm video_formats[] = {
{ AST_FORMAT_H263_PLUS, CODEC_ID_H263, CM_RD }, /* incoming H263P ? */
{ AST_FORMAT_H263_PLUS, CODEC_ID_H263P, CM_WR },
{ AST_FORMAT_H263, CODEC_ID_H263, CM_RD },
{ AST_FORMAT_H263, CODEC_ID_H263, CM_WR },
{ AST_FORMAT_H261, CODEC_ID_H261, CM_RDWR },
{ AST_FORMAT_H264, CODEC_ID_H264, CM_RDWR },
{ AST_FORMAT_MP4_VIDEO, CODEC_ID_MPEG4, CM_RDWR },
{ 0, 0, 0 },
};
/*! \brief map an asterisk format into an ffmpeg one */
static enum CodecID map_video_format(uint32_t ast_format, int rw)
{
struct _cm *i;
for (i = video_formats; i->ast_format != 0; i++)
if (ast_format & i->ast_format && rw & i->rw && rw & i->rw)
return i->codec;
return CODEC_ID_NONE;
}
/* pointers to supported codecs. We assume the first one to be non null. */
static const struct video_codec_desc *supported_codecs[] = {
&h263p_codec,
&h264_codec,
&h263_codec,
&h261_codec,
&mpeg4_codec,
NULL
};
/*
* Map the AST_FORMAT to the library. If not recognised, fail.
* This is useful in the input path where we get frames.
*/
static struct video_codec_desc *map_video_codec(int fmt)
{
int i;
for (i = 0; supported_codecs[i]; i++)
if (fmt == supported_codecs[i]->format) {
ast_log(LOG_WARNING, "using %s for format 0x%x\n",
supported_codecs[i]->name, fmt);
return supported_codecs[i];
}
return NULL;
}
/*! \brief uninitialize the descriptor for remote video stream */
static struct video_dec_desc *dec_uninit(struct video_dec_desc *v)
{
int i;
if (v == NULL) /* not initialized yet */
return NULL;
if (v->parser) {
av_parser_close(v->parser);
v->parser = NULL;
}
if (v->dec_ctx) {
avcodec_close(v->dec_ctx);
av_free(v->dec_ctx);
v->dec_ctx = NULL;
}
if (v->d_frame) {
av_free(v->d_frame);
v->d_frame = NULL;
}
v->codec = NULL; /* only a reference */
v->d_callbacks = NULL; /* forget the decoder */
v->discard = 1; /* start in discard mode */
for (i = 0; i < N_DEC_IN; i++)
fbuf_free(&v->dec_in[i]);
fbuf_free(&v->dec_out);
ast_free(v);
return NULL; /* error, in case someone cares */
}
/*
* initialize ffmpeg resources used for decoding frames from the network.
*/
static struct video_dec_desc *dec_init(uint32_t the_ast_format)
{
enum CodecID codec;
struct video_dec_desc *v = ast_calloc(1, sizeof(*v));
if (v == NULL)
return NULL;
v->discard = 1;
v->d_callbacks = map_video_codec(the_ast_format);
if (v->d_callbacks == NULL) {
ast_log(LOG_WARNING, "cannot find video codec, drop input 0x%x\n", the_ast_format);
return dec_uninit(v);
}
codec = map_video_format(v->d_callbacks->format, CM_RD);
v->codec = avcodec_find_decoder(codec);
if (!v->codec) {
ast_log(LOG_WARNING, "Unable to find the decoder for format %d\n", codec);
return dec_uninit(v);
}
/*
* Initialize the codec context.
*/
v->dec_ctx = avcodec_alloc_context();
if (!v->dec_ctx) {
ast_log(LOG_WARNING, "Cannot allocate the decoder context\n");
return dec_uninit(v);
}
/* XXX call dec_init() ? */
if (avcodec_open(v->dec_ctx, v->codec) < 0) {
ast_log(LOG_WARNING, "Cannot open the decoder context\n");
av_free(v->dec_ctx);
v->dec_ctx = NULL;
return dec_uninit(v);
}
v->parser = av_parser_init(codec);
if (!v->parser) {
ast_log(LOG_WARNING, "Cannot initialize the decoder parser\n");
return dec_uninit(v);
}
v->d_frame = avcodec_alloc_frame();
if (!v->d_frame) {
ast_log(LOG_WARNING, "Cannot allocate decoding video frame\n");
return dec_uninit(v);
}
v->dec_in_cur = &v->dec_in[0]; /* buffer for incoming frames */
v->dec_in_dpy = NULL; /* nothing to display */
return v; /* ok */
}
/*------ end codec specific code -----*/