asterisk/utils.c

732 lines
18 KiB
C
Executable File

/*
* Asterisk -- A telephony toolkit for Linux.
*
* Utility functions
*
* Copyright (C) 2004 - 2005, Digium, Inc.
*
* This program is free software, distributed under the terms of
* the GNU General Public License
*/
#include <ctype.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <stdarg.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdarg.h>
#include "asterisk.h"
ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
#include "asterisk/lock.h"
#include "asterisk/io.h"
#include "asterisk/logger.h"
#include "asterisk/md5.h"
#include "asterisk/options.h"
#define AST_API_MODULE /* ensure that inlinable API functions will be built in this module if required */
#include "asterisk/strings.h"
#define AST_API_MODULE /* ensure that inlinable API functions will be built in this module if required */
#include "asterisk/time.h"
#define AST_API_MODULE /* ensure that inlinable API functions will be built in this module if required */
#include "asterisk/utils.h"
static char base64[64];
static char b2a[256];
#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined( __NetBSD__ ) || defined(__APPLE__)
/* duh? ERANGE value copied from web... */
#define ERANGE 34
#undef gethostbyname
AST_MUTEX_DEFINE_STATIC(__mutex);
/* Recursive replacement for gethostbyname for BSD-based systems. This
routine is derived from code originally written and placed in the public
domain by Enzo Michelangeli <em@em.no-ip.com> */
static int gethostbyname_r (const char *name, struct hostent *ret, char *buf,
size_t buflen, struct hostent **result,
int *h_errnop)
{
int hsave;
struct hostent *ph;
ast_mutex_lock(&__mutex); /* begin critical area */
hsave = h_errno;
ph = gethostbyname(name);
*h_errnop = h_errno; /* copy h_errno to *h_herrnop */
if (ph == NULL) {
*result = NULL;
} else {
char **p, **q;
char *pbuf;
int nbytes=0;
int naddr=0, naliases=0;
/* determine if we have enough space in buf */
/* count how many addresses */
for (p = ph->h_addr_list; *p != 0; p++) {
nbytes += ph->h_length; /* addresses */
nbytes += sizeof(*p); /* pointers */
naddr++;
}
nbytes += sizeof(*p); /* one more for the terminating NULL */
/* count how many aliases, and total length of strings */
for (p = ph->h_aliases; *p != 0; p++) {
nbytes += (strlen(*p)+1); /* aliases */
nbytes += sizeof(*p); /* pointers */
naliases++;
}
nbytes += sizeof(*p); /* one more for the terminating NULL */
/* here nbytes is the number of bytes required in buffer */
/* as a terminator must be there, the minimum value is ph->h_length */
if(nbytes > buflen) {
*result = NULL;
ast_mutex_unlock(&__mutex); /* end critical area */
return ERANGE; /* not enough space in buf!! */
}
/* There is enough space. Now we need to do a deep copy! */
/* Allocation in buffer:
from [0] to [(naddr-1) * sizeof(*p)]:
pointers to addresses
at [naddr * sizeof(*p)]:
NULL
from [(naddr+1) * sizeof(*p)] to [(naddr+naliases) * sizeof(*p)] :
pointers to aliases
at [(naddr+naliases+1) * sizeof(*p)]:
NULL
then naddr addresses (fixed length), and naliases aliases (asciiz).
*/
*ret = *ph; /* copy whole structure (not its address!) */
/* copy addresses */
q = (char **)buf; /* pointer to pointers area (type: char **) */
ret->h_addr_list = q; /* update pointer to address list */
pbuf = buf + ((naddr+naliases+2)*sizeof(*p)); /* skip that area */
for (p = ph->h_addr_list; *p != 0; p++) {
memcpy(pbuf, *p, ph->h_length); /* copy address bytes */
*q++ = pbuf; /* the pointer is the one inside buf... */
pbuf += ph->h_length; /* advance pbuf */
}
*q++ = NULL; /* address list terminator */
/* copy aliases */
ret->h_aliases = q; /* update pointer to aliases list */
for (p = ph->h_aliases; *p != 0; p++) {
strcpy(pbuf, *p); /* copy alias strings */
*q++ = pbuf; /* the pointer is the one inside buf... */
pbuf += strlen(*p); /* advance pbuf */
*pbuf++ = 0; /* string terminator */
}
*q++ = NULL; /* terminator */
strcpy(pbuf, ph->h_name); /* copy alias strings */
ret->h_name = pbuf;
pbuf += strlen(ph->h_name); /* advance pbuf */
*pbuf++ = 0; /* string terminator */
*result = ret; /* and let *result point to structure */
}
h_errno = hsave; /* restore h_errno */
ast_mutex_unlock(&__mutex); /* end critical area */
return (*result == NULL); /* return 0 on success, non-zero on error */
}
#endif
/* Re-entrant (thread safe) version of gethostbyname that replaces the
standard gethostbyname (which is not thread safe)
*/
struct hostent *ast_gethostbyname(const char *host, struct ast_hostent *hp)
{
int res;
int herrno;
const char *s;
struct hostent *result = NULL;
/* Although it is perfectly legitimate to lookup a pure integer, for
the sake of the sanity of people who like to name their peers as
integers, we break with tradition and refuse to look up a
pure integer */
s = host;
res = 0;
while(s && *s) {
if (!isdigit(*s))
break;
s++;
}
if (!s || !*s)
return NULL;
#ifdef SOLARIS
result = gethostbyname_r(host, &hp->hp, hp->buf, sizeof(hp->buf), &herrno);
if (!result || !hp->hp.h_addr_list || !hp->hp.h_addr_list[0])
return NULL;
#else
res = gethostbyname_r(host, &hp->hp, hp->buf, sizeof(hp->buf), &result, &herrno);
if (res || !result || !hp->hp.h_addr_list || !hp->hp.h_addr_list[0])
return NULL;
#endif
return &hp->hp;
}
/* This is a regression test for recursive mutexes.
test_for_thread_safety() will return 0 if recursive mutex locks are
working properly, and non-zero if they are not working properly. */
AST_MUTEX_DEFINE_STATIC(test_lock);
AST_MUTEX_DEFINE_STATIC(test_lock2);
static pthread_t test_thread;
static int lock_count = 0;
static int test_errors = 0;
static void *test_thread_body(void *data)
{
ast_mutex_lock(&test_lock);
lock_count += 10;
if (lock_count != 10)
test_errors++;
ast_mutex_lock(&test_lock);
lock_count += 10;
if (lock_count != 20)
test_errors++;
ast_mutex_lock(&test_lock2);
ast_mutex_unlock(&test_lock);
lock_count -= 10;
if (lock_count != 10)
test_errors++;
ast_mutex_unlock(&test_lock);
lock_count -= 10;
ast_mutex_unlock(&test_lock2);
if (lock_count != 0)
test_errors++;
return NULL;
}
int test_for_thread_safety(void)
{
ast_mutex_lock(&test_lock2);
ast_mutex_lock(&test_lock);
lock_count += 1;
ast_mutex_lock(&test_lock);
lock_count += 1;
ast_pthread_create(&test_thread, NULL, test_thread_body, NULL);
usleep(100);
if (lock_count != 2)
test_errors++;
ast_mutex_unlock(&test_lock);
lock_count -= 1;
usleep(100);
if (lock_count != 1)
test_errors++;
ast_mutex_unlock(&test_lock);
lock_count -= 1;
if (lock_count != 0)
test_errors++;
ast_mutex_unlock(&test_lock2);
usleep(100);
if (lock_count != 0)
test_errors++;
pthread_join(test_thread, NULL);
return(test_errors); /* return 0 on success. */
}
/*--- ast_md5_hash: Produce 16 char MD5 hash of value. ---*/
void ast_md5_hash(char *output, char *input)
{
struct MD5Context md5;
unsigned char digest[16];
char *ptr;
int x;
MD5Init(&md5);
MD5Update(&md5, input, strlen(input));
MD5Final(digest, &md5);
ptr = output;
for (x=0; x<16; x++)
ptr += sprintf(ptr, "%2.2x", digest[x]);
}
int ast_base64decode(unsigned char *dst, char *src, int max)
{
int cnt = 0;
unsigned int byte = 0;
unsigned int bits = 0;
int incnt = 0;
#if 0
unsigned char *odst = dst;
#endif
while(*src && (cnt < max)) {
/* Shift in 6 bits of input */
byte <<= 6;
byte |= (b2a[(int)(*src)]) & 0x3f;
bits += 6;
#if 0
printf("Add: %c %s\n", *src, binary(b2a[(int)(*src)] & 0x3f, 6));
#endif
src++;
incnt++;
/* If we have at least 8 bits left over, take that character
off the top */
if (bits >= 8) {
bits -= 8;
*dst = (byte >> bits) & 0xff;
#if 0
printf("Remove: %02x %s\n", *dst, binary(*dst, 8));
#endif
dst++;
cnt++;
}
}
#if 0
dump(odst, cnt);
#endif
/* Dont worry about left over bits, they're extra anyway */
return cnt;
}
int ast_base64encode(char *dst, unsigned char *src, int srclen, int max)
{
int cnt = 0;
unsigned int byte = 0;
int bits = 0;
int index;
int cntin = 0;
#if 0
char *odst = dst;
dump(src, srclen);
#endif
/* Reserve one bit for end */
max--;
while((cntin < srclen) && (cnt < max)) {
byte <<= 8;
#if 0
printf("Add: %02x %s\n", *src, binary(*src, 8));
#endif
byte |= *(src++);
bits += 8;
cntin++;
while((bits >= 6) && (cnt < max)) {
bits -= 6;
/* We want only the top */
index = (byte >> bits) & 0x3f;
*dst = base64[index];
#if 0
printf("Remove: %c %s\n", *dst, binary(index, 6));
#endif
dst++;
cnt++;
}
}
if (bits && (cnt < max)) {
/* Add one last character for the remaining bits,
padding the rest with 0 */
byte <<= (6 - bits);
index = (byte) & 0x3f;
*(dst++) = base64[index];
cnt++;
}
*dst = '\0';
return cnt;
}
static void base64_init(void)
{
int x;
memset(b2a, -1, sizeof(b2a));
/* Initialize base-64 Conversion table */
for (x=0;x<26;x++) {
/* A-Z */
base64[x] = 'A' + x;
b2a['A' + x] = x;
/* a-z */
base64[x + 26] = 'a' + x;
b2a['a' + x] = x + 26;
/* 0-9 */
if (x < 10) {
base64[x + 52] = '0' + x;
b2a['0' + x] = x + 52;
}
}
base64[62] = '+';
base64[63] = '/';
b2a[(int)'+'] = 62;
b2a[(int)'/'] = 63;
#if 0
for (x=0;x<64;x++) {
if (b2a[(int)base64[x]] != x) {
fprintf(stderr, "!!! %d failed\n", x);
} else
fprintf(stderr, "--- %d passed\n", x);
}
#endif
}
/* Recursive thread safe replacement of inet_ntoa */
const char *ast_inet_ntoa(char *buf, int bufsiz, struct in_addr ia)
{
return inet_ntop(AF_INET, &ia, buf, bufsiz);
}
int ast_utils_init(void)
{
base64_init();
return 0;
}
#ifndef __linux__
#undef pthread_create /* For ast_pthread_create function only */
#endif /* ! LINUX */
int ast_pthread_create_stack(pthread_t *thread, pthread_attr_t *attr, void *(*start_routine)(void *), void *data, size_t stacksize)
{
pthread_attr_t lattr;
if (!attr) {
pthread_attr_init(&lattr);
attr = &lattr;
}
if (!stacksize)
stacksize = AST_STACKSIZE;
errno = pthread_attr_setstacksize(attr, stacksize);
if (errno)
ast_log(LOG_WARNING, "pthread_attr_setstacksize returned non-zero: %s\n", strerror(errno));
return pthread_create(thread, attr, start_routine, data); /* We're in ast_pthread_create, so it's okay */
}
int ast_wait_for_input(int fd, int ms)
{
struct pollfd pfd[1];
memset(pfd, 0, sizeof(pfd));
pfd[0].fd = fd;
pfd[0].events = POLLIN|POLLPRI;
return poll(pfd, 1, ms);
}
char *ast_strip_quoted(char *s, const char *beg_quotes, const char *end_quotes)
{
char *e;
char *q;
s = ast_strip(s);
if ((q = strchr(beg_quotes, *s))) {
e = s + strlen(s) - 1;
if (*e == *(end_quotes + (q - beg_quotes))) {
s++;
*e = '\0';
}
}
return s;
}
int ast_build_string(char **buffer, size_t *space, const char *fmt, ...)
{
va_list ap;
int result;
if (!buffer || !*buffer || !space || !*space)
return -1;
va_start(ap, fmt);
result = vsnprintf(*buffer, *space, fmt, ap);
va_end(ap);
if (result < 0)
return -1;
else if (result > *space)
result = *space;
*buffer += result;
*space -= result;
return 0;
}
int ast_true(const char *s)
{
if (!s || ast_strlen_zero(s))
return 0;
/* Determine if this is a true value */
if (!strcasecmp(s, "yes") ||
!strcasecmp(s, "true") ||
!strcasecmp(s, "y") ||
!strcasecmp(s, "t") ||
!strcasecmp(s, "1") ||
!strcasecmp(s, "on"))
return -1;
return 0;
}
int ast_false(const char *s)
{
if (!s || ast_strlen_zero(s))
return 0;
/* Determine if this is a false value */
if (!strcasecmp(s, "no") ||
!strcasecmp(s, "false") ||
!strcasecmp(s, "n") ||
!strcasecmp(s, "f") ||
!strcasecmp(s, "0") ||
!strcasecmp(s, "off"))
return -1;
return 0;
}
#define ONE_MILLION 1000000
/*
* put timeval in a valid range. usec is 0..999999
* negative values are not allowed and truncated.
*/
static struct timeval tvfix(struct timeval a)
{
if (a.tv_usec >= ONE_MILLION) {
ast_log(LOG_ERROR, "warning too large timestamp %ld.%ld\n",
a.tv_sec, a.tv_usec);
a.tv_sec += a.tv_usec % ONE_MILLION;
a.tv_usec %= ONE_MILLION;
} else if (a.tv_usec < 0) {
ast_log(LOG_WARNING, "warning negative timestamp %ld.%ld\n",
a.tv_sec, a.tv_usec);
a.tv_usec = 0;
}
return a;
}
struct timeval ast_tvadd(struct timeval a, struct timeval b)
{
/* consistency checks to guarantee usec in 0..999999 */
a = tvfix(a);
b = tvfix(b);
a.tv_sec += b.tv_sec;
a.tv_usec += b.tv_usec;
if (a.tv_usec >= ONE_MILLION) {
a.tv_sec++;
a.tv_usec -= ONE_MILLION;
}
return a;
}
struct timeval ast_tvsub(struct timeval a, struct timeval b)
{
/* consistency checks to guarantee usec in 0..999999 */
a = tvfix(a);
b = tvfix(b);
a.tv_sec -= b.tv_sec;
a.tv_usec -= b.tv_usec;
if (a.tv_usec < 0) {
a.tv_sec-- ;
a.tv_usec += ONE_MILLION;
}
return a;
}
#undef ONE_MILLION
#ifndef HAVE_STRCASESTR
static char *upper(const char *orig, char *buf, int bufsize)
{
int i = 0;
while (i < (bufsize - 1) && orig[i]) {
buf[i] = toupper(orig[i]);
i++;
}
buf[i] = '\0';
return buf;
}
char *strcasestr(const char *haystack, const char *needle)
{
char *u1, *u2;
int u1len = strlen(haystack) + 1, u2len = strlen(needle) + 1;
u1 = alloca(u1len);
u2 = alloca(u2len);
if (u1 && u2) {
char *offset;
if (u2len > u1len) {
/* Needle bigger than haystack */
return NULL;
}
offset = strstr(upper(haystack, u1, u1len), upper(needle, u2, u2len));
if (offset) {
/* Return the offset into the original string */
return ((char *)((unsigned long)haystack + (unsigned long)(offset - u1)));
} else {
return NULL;
}
} else {
ast_log(LOG_ERROR, "Out of memory\n");
return NULL;
}
}
#endif
#ifndef HAVE_STRNLEN
size_t strnlen(const char *s, size_t n)
{
size_t len;
for (len=0; len < n; len++)
if (s[len] == '\0')
break;
return len;
}
#endif
#ifndef HAVE_STRNDUP
char *strndup(const char *s, size_t n)
{
size_t len = strnlen(s, n);
char *new = malloc(len + 1);
if (!new)
return NULL;
new[len] = '\0';
return memcpy(new, s, len);
}
#endif
#ifndef HAVE_VASPRINTF
int vasprintf(char **strp, const char *fmt, va_list ap)
{
int size;
va_list ap2;
*strp = NULL;
va_copy(ap2, ap);
size = vsnprintf(*strp, 0, fmt, ap2);
va_end(ap2);
*strp = malloc(size + 1);
if (!*strp)
return -1;
va_start(fmt, ap);
vsnprintf(*strp, size + 1, fmt, ap);
va_end(ap);
return size;
}
#endif
#ifndef HAVE_STRTOQ
#define LONG_MIN (-9223372036854775807L-1L)
/* min value of a "long int" */
#define LONG_MAX 9223372036854775807L
/* max value of a "long int" */
/*
* Convert a string to a quad integer.
*
* Ignores `locale' stuff. Assumes that the upper and lower case
* alphabets and digits are each contiguous.
*/
uint64_t strtoq(const char *nptr, char **endptr, int base)
{
const char *s;
uint64_t acc;
unsigned char c;
uint64_t qbase, cutoff;
int neg, any, cutlim;
/*
* Skip white space and pick up leading +/- sign if any.
* If base is 0, allow 0x for hex and 0 for octal, else
* assume decimal; if base is already 16, allow 0x.
*/
s = nptr;
do {
c = *s++;
} while (isspace(c));
if (c == '-') {
neg = 1;
c = *s++;
} else {
neg = 0;
if (c == '+')
c = *s++;
}
if ((base == 0 || base == 16) &&
c == '\0' && (*s == 'x' || *s == 'X')) {
c = s[1];
s += 2;
base = 16;
}
if (base == 0)
base = c == '\0' ? 8 : 10;
/*
* Compute the cutoff value between legal numbers and illegal
* numbers. That is the largest legal value, divided by the
* base. An input number that is greater than this value, if
* followed by a legal input character, is too big. One that
* is equal to this value may be valid or not; the limit
* between valid and invalid numbers is then based on the last
* digit. For instance, if the range for quads is
* [-9223372036854775808..9223372036854775807] and the input base
* is 10, cutoff will be set to 922337203685477580 and cutlim to
* either 7 (neg==0) or 8 (neg==1), meaning that if we have
* accumulated a value > 922337203685477580, or equal but the
* next digit is > 7 (or 8), the number is too big, and we will
* return a range error.
*
* Set any if any `digits' consumed; make it negative to indicate
* overflow.
*/
qbase = (unsigned)base;
cutoff = neg ? (uint64_t)-(LONG_MIN + LONG_MAX) + LONG_MAX : LONG_MAX;
cutlim = cutoff % qbase;
cutoff /= qbase;
for (acc = 0, any = 0;; c = *s++) {
if (!isascii(c))
break;
if (isdigit(c))
c -= '\0';
else if (isalpha(c))
c -= isupper(c) ? 'A' - 10 : 'a' - 10;
else
break;
if (c >= base)
break;
if (any < 0 || acc > cutoff || (acc == cutoff && c > cutlim))
any = -1;
else {
any = 1;
acc *= qbase;
acc += c;
}
}
if (any < 0) {
acc = neg ? LONG_MIN : LONG_MAX;
} else if (neg)
acc = -acc;
if (endptr != 0)
*((const char **)endptr) = any ? s - 1 : nptr;
return (acc);
}
#endif