asterisk/codecs/ilbc/iLBC_encode.c

448 lines
14 KiB
C
Executable File

/******************************************************************
iLBC Speech Coder ANSI-C Source Code
iLBC_encode.c
Copyright (c) 2001,
Global IP Sound AB.
All rights reserved.
******************************************************************/
#include <math.h>
#include <string.h>
#include "iLBC_define.h"
#include "LPCencode.h"
#include "FrameClassify.h"
#include "StateSearchW.h"
#include "StateConstructW.h"
#include "helpfun.h"
#include "constants.h"
#include "packing.h"
#include "iLBC_encode.h"
#include "iCBSearch.h"
#include "iCBConstruct.h"
#include "hpInput.h"
#include "anaFilter.h"
#include "syntFilter.h"
/*----------------------------------------------------------------*
* Initiation of encoder instance.
*---------------------------------------------------------------*/
short initEncode( /* (o) Number of bytes encoded */
iLBC_Enc_Inst_t *iLBCenc_inst /* (i/o) Encoder instance */
){
memset((*iLBCenc_inst).anaMem, 0,
LPC_FILTERORDER*sizeof(float));
memcpy((*iLBCenc_inst).lsfold, lsfmeanTbl,
LPC_FILTERORDER*sizeof(float));
memcpy((*iLBCenc_inst).lsfdeqold, lsfmeanTbl,
LPC_FILTERORDER*sizeof(float));
memset((*iLBCenc_inst).lpc_buffer, 0,
LPC_LOOKBACK*sizeof(float));
memset((*iLBCenc_inst).hpimem, 0, 4*sizeof(float));
return (NO_OF_BYTES);
}
/*----------------------------------------------------------------*
* main encoder function
*---------------------------------------------------------------*/
void iLBC_encode(
unsigned char *bytes, /* (o) encoded data bits iLBC */
float *block, /* (o) speech vector to encode */
iLBC_Enc_Inst_t *iLBCenc_inst /* (i/o) the general encoder
state */
){
float data[BLOCKL];
float residual[BLOCKL], reverseResidual[BLOCKL];
int start, idxForMax, idxVec[STATE_LEN];
float reverseDecresidual[BLOCKL], mem[CB_MEML];
int n, k, meml_gotten, Nfor, Nback, i, pos;
int gain_index[CB_NSTAGES*NASUB], extra_gain_index[CB_NSTAGES];
int cb_index[CB_NSTAGES*NASUB],extra_cb_index[CB_NSTAGES];
int lsf_i[LSF_NSPLIT*LPC_N];
unsigned char *pbytes;
int diff, start_pos, state_first;
float en1, en2;
int index, ulp, firstpart;
int subcount, subframe;
float weightState[LPC_FILTERORDER];
float syntdenum[NSUB*(LPC_FILTERORDER+1)];
float weightdenum[NSUB*(LPC_FILTERORDER+1)];
float decresidual[BLOCKL];
/* high pass filtering of input signal if such is not done
prior to calling this function */
/*hpInput(block, BLOCKL, data, (*iLBCenc_inst).hpimem);*/
/* otherwise simply copy */
memcpy(data,block,BLOCKL*sizeof(float));
/* LPC of hp filtered input data */
LPCencode(syntdenum, weightdenum, lsf_i, data,
iLBCenc_inst);
/* inverse filter to get residual */
for (n=0; n<NSUB; n++ ) {
anaFilter(&data[n*SUBL], &syntdenum[n*(LPC_FILTERORDER+1)],
SUBL, &residual[n*SUBL], (*iLBCenc_inst).anaMem);
}
/* find state location */
start = FrameClassify(residual);
/* check if state should be in first or last part of the
two subframes */
diff = STATE_LEN - STATE_SHORT_LEN;
en1 = 0;
index = (start-1)*SUBL;
for (i = 0; i < STATE_SHORT_LEN; i++) {
en1 += residual[index+i]*residual[index+i];
}
en2 = 0;
index = (start-1)*SUBL+diff;
for (i = 0; i < STATE_SHORT_LEN; i++) {
en2 += residual[index+i]*residual[index+i];
}
if (en1 > en2) {
state_first = 1;
start_pos = (start-1)*SUBL;
} else {
state_first = 0;
start_pos = (start-1)*SUBL + diff;
}
/* scalar quantization of state */
StateSearchW(&residual[start_pos],
&syntdenum[(start-1)*(LPC_FILTERORDER+1)],
&weightdenum[(start-1)*(LPC_FILTERORDER+1)], &idxForMax,
idxVec, STATE_SHORT_LEN, state_first);
StateConstructW(idxForMax, idxVec,
&syntdenum[(start-1)*(LPC_FILTERORDER+1)],
&decresidual[start_pos], STATE_SHORT_LEN);
/* predictive quantization in state */
if (state_first) { /* put adaptive part in the end */
/* setup memory */
memset(mem, 0, (CB_MEML-STATE_SHORT_LEN)*sizeof(float));
memcpy(mem+CB_MEML-STATE_SHORT_LEN, decresidual+start_pos,
STATE_SHORT_LEN*sizeof(float));
memset(weightState, 0, LPC_FILTERORDER*sizeof(float));
/* encode subframes */
iCBSearch(extra_cb_index, extra_gain_index,
&residual[start_pos+STATE_SHORT_LEN],
mem+CB_MEML-stMemLTbl,
stMemLTbl, diff, CB_NSTAGES,
&weightdenum[start*(LPC_FILTERORDER+1)], weightState, 0);
/* construct decoded vector */
iCBConstruct(&decresidual[start_pos+STATE_SHORT_LEN],
extra_cb_index, extra_gain_index, mem+CB_MEML-stMemLTbl,
stMemLTbl, diff, CB_NSTAGES);
}
else { /* put adaptive part in the beginning */
/* create reversed vectors for prediction */
for(k=0; k<diff; k++ ){
reverseResidual[k] = residual[(start+1)*SUBL -1
-(k+STATE_SHORT_LEN)];
}
/* setup memory */
meml_gotten = STATE_SHORT_LEN;
for( k=0; k<meml_gotten; k++){
mem[CB_MEML-1-k] = decresidual[start_pos + k];
}
memset(mem, 0, (CB_MEML-k)*sizeof(float));
memset(weightState, 0, LPC_FILTERORDER*sizeof(float));
/* encode subframes */
iCBSearch(extra_cb_index, extra_gain_index,
reverseResidual, mem+CB_MEML-stMemLTbl, stMemLTbl, diff,
CB_NSTAGES, &weightdenum[(start-1)*(LPC_FILTERORDER+1)],
weightState, 0);
/* construct decoded vector */
iCBConstruct(reverseDecresidual, extra_cb_index,
extra_gain_index, mem+CB_MEML-stMemLTbl, stMemLTbl, diff,
CB_NSTAGES);
/* get decoded residual from reversed vector */
for( k=0; k<diff; k++ ){
decresidual[start_pos-1-k] = reverseDecresidual[k];
}
}
/* counter for predicted subframes */
subcount=0;
/* forward prediction of subframes */
Nfor = NSUB-start-1;
if( Nfor > 0 ){
/* setup memory */
memset(mem, 0, (CB_MEML-STATE_LEN)*sizeof(float));
memcpy(mem+CB_MEML-STATE_LEN, decresidual+(start-1)*SUBL,
STATE_LEN*sizeof(float));
memset(weightState, 0, LPC_FILTERORDER*sizeof(float));
/* loop over subframes to encode */
for (subframe=0; subframe<Nfor; subframe++) {
/* encode subframe */
iCBSearch(cb_index+subcount*CB_NSTAGES,
gain_index+subcount*CB_NSTAGES,
&residual[(start+1+subframe)*SUBL],
mem+CB_MEML-memLfTbl[subcount], memLfTbl[subcount],
SUBL, CB_NSTAGES,
&weightdenum[(start+1+subframe)*(LPC_FILTERORDER+1)],
weightState, subcount+1);
/* construct decoded vector */
iCBConstruct(&decresidual[(start+1+subframe)*SUBL],
cb_index+subcount*CB_NSTAGES,
gain_index+subcount*CB_NSTAGES,
mem+CB_MEML-memLfTbl[subcount], memLfTbl[subcount],
SUBL, CB_NSTAGES);
/* update memory */
memcpy(mem, mem+SUBL, (CB_MEML-SUBL)*sizeof(float));
memcpy(mem+CB_MEML-SUBL,
&decresidual[(start+1+subframe)*SUBL],
SUBL*sizeof(float));
memset(weightState, 0, LPC_FILTERORDER*sizeof(float));
subcount++;
}
}
/* backward prediction of subframes */
Nback = start-1;
if( Nback > 0 ){
/* create reverse order vectors */
for( n=0; n<Nback; n++ ){
for( k=0; k<SUBL; k++ ){
reverseResidual[n*SUBL+k] =
residual[(start-1)*SUBL-1-n*SUBL-k];
reverseDecresidual[n*SUBL+k] =
decresidual[(start-1)*SUBL-1-n*SUBL-k];
}
}
/* setup memory */
meml_gotten = SUBL*(NSUB+1-start);
if( meml_gotten > CB_MEML ) {
meml_gotten=CB_MEML;
}
for( k=0; k<meml_gotten; k++) {
mem[CB_MEML-1-k] = decresidual[(start-1)*SUBL + k];
}
memset(mem, 0, (CB_MEML-k)*sizeof(float));
memset(weightState, 0, LPC_FILTERORDER*sizeof(float));
/* loop over subframes to encode */
for (subframe=0; subframe<Nback; subframe++) {
/* encode subframe */
iCBSearch(cb_index+subcount*CB_NSTAGES,
gain_index+subcount*CB_NSTAGES,
&reverseResidual[subframe*SUBL],
mem+CB_MEML-memLfTbl[subcount], memLfTbl[subcount],
SUBL, CB_NSTAGES,
&weightdenum[(start-2-subframe)*(LPC_FILTERORDER+1)],
weightState, subcount+1);
/* construct decoded vector */
iCBConstruct(&reverseDecresidual[subframe*SUBL],
cb_index+subcount*CB_NSTAGES,
gain_index+subcount*CB_NSTAGES,
mem+CB_MEML-memLfTbl[subcount],
memLfTbl[subcount], SUBL, CB_NSTAGES);
/* update memory */
memcpy(mem, mem+SUBL, (CB_MEML-SUBL)*sizeof(float));
memcpy(mem+CB_MEML-SUBL,
&reverseDecresidual[subframe*SUBL],
SUBL*sizeof(float));
memset(weightState, 0, LPC_FILTERORDER*sizeof(float));
subcount++;
}
/* get decoded residual from reversed vector */
for (i = 0; i < SUBL*Nback; i++) {
decresidual[SUBL*Nback - i - 1] =
reverseDecresidual[i];
}
}
/* end encoding part */
/* adjust index */
index_conv_enc(cb_index);
/* pack bytes */
pbytes=bytes;
pos=0;
/* loop over the 3 ULP classes */
for (ulp=0; ulp<3; ulp++) {
/* LSF */
for (k=0;k<6;k++) {
packsplit(&lsf_i[k], &firstpart, &lsf_i[k],
ulp_lsf_bitsTbl[k][ulp],
ulp_lsf_bitsTbl[k][ulp]+
ulp_lsf_bitsTbl[k][ulp+1]+
ulp_lsf_bitsTbl[k][ulp+2]);
dopack( &pbytes, firstpart,
ulp_lsf_bitsTbl[k][ulp], &pos);
}
/* Start block info */
packsplit(&start, &firstpart, &start,
ulp_start_bitsTbl[ulp],
ulp_start_bitsTbl[ulp]+
ulp_start_bitsTbl[ulp+1]+
ulp_start_bitsTbl[ulp+2]);
dopack( &pbytes, firstpart,
ulp_start_bitsTbl[ulp], &pos);
packsplit(&state_first, &firstpart, &state_first,
ulp_startfirst_bitsTbl[ulp],
ulp_startfirst_bitsTbl[ulp]+
ulp_startfirst_bitsTbl[ulp+1]+
ulp_startfirst_bitsTbl[ulp+2]);
dopack( &pbytes, firstpart,
ulp_startfirst_bitsTbl[ulp], &pos);
packsplit(&idxForMax, &firstpart, &idxForMax,
ulp_scale_bitsTbl[ulp], ulp_scale_bitsTbl[ulp]+
ulp_scale_bitsTbl[ulp+1]+ulp_scale_bitsTbl[ulp+2]);
dopack( &pbytes, firstpart,
ulp_scale_bitsTbl[ulp], &pos);
for (k=0; k<STATE_SHORT_LEN; k++) {
packsplit(idxVec+k, &firstpart, idxVec+k,
ulp_state_bitsTbl[ulp],
ulp_state_bitsTbl[ulp]+
ulp_state_bitsTbl[ulp+1]+
ulp_state_bitsTbl[ulp+2]);
dopack( &pbytes, firstpart,
ulp_state_bitsTbl[ulp], &pos);
}
/* 22 sample block */
for (k=0;k<CB_NSTAGES;k++) {
packsplit(extra_cb_index+k, &firstpart,
extra_cb_index+k,
ulp_extra_cb_indexTbl[k][ulp],
ulp_extra_cb_indexTbl[k][ulp]+
ulp_extra_cb_indexTbl[k][ulp+1]+
ulp_extra_cb_indexTbl[k][ulp+2]);
dopack( &pbytes, firstpart,
ulp_extra_cb_indexTbl[k][ulp], &pos);
}
for (k=0;k<CB_NSTAGES;k++) {
packsplit(extra_gain_index+k, &firstpart,
extra_gain_index+k,
ulp_extra_cb_gainTbl[k][ulp],
ulp_extra_cb_gainTbl[k][ulp]+
ulp_extra_cb_gainTbl[k][ulp+1]+
ulp_extra_cb_gainTbl[k][ulp+2]);
dopack( &pbytes, firstpart,
ulp_extra_cb_gainTbl[k][ulp], &pos);
}
/* The four 40 sample sub blocks */
for (i=0; i<NASUB; i++) {
for (k=0; k<CB_NSTAGES; k++) {
packsplit(cb_index+i*CB_NSTAGES+k, &firstpart,
cb_index+i*CB_NSTAGES+k,
ulp_cb_indexTbl[i][k][ulp],
ulp_cb_indexTbl[i][k][ulp]+
ulp_cb_indexTbl[i][k][ulp+1]+
ulp_cb_indexTbl[i][k][ulp+2]);
dopack( &pbytes, firstpart,
ulp_cb_indexTbl[i][k][ulp], &pos);
}
}
for (i=0; i<NASUB; i++) {
for (k=0; k<CB_NSTAGES; k++) {
packsplit(gain_index+i*CB_NSTAGES+k, &firstpart,
gain_index+i*CB_NSTAGES+k,
ulp_cb_gainTbl[i][k][ulp],
ulp_cb_gainTbl[i][k][ulp]+
ulp_cb_gainTbl[i][k][ulp+1]+
ulp_cb_gainTbl[i][k][ulp+2]);
dopack( &pbytes, firstpart,
ulp_cb_gainTbl[i][k][ulp], &pos);
}
}
}
/* set the last unused bit to zero */
dopack( &pbytes, 0, 1, &pos);
}