openblt/Target/Source/TRICORE_TC1798/flash.c

1095 lines
43 KiB
C
Raw Normal View History

/************************************************************************************//**
* \file Source\TRICORE_TC1798\flash.c
* \brief Bootloader flash driver source file.
* \ingroup Target_TRICORE_TC1798
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2015 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You have received a copy of the GNU General Public License along with OpenBLT. It
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
*
* \endinternal
****************************************************************************************/
/****************************************************************************************
* Include files
****************************************************************************************/
#include "boot.h" /* bootloader generic header */
#include "cpu_comp.h" /* compiler specific CPU definitions */
/****************************************************************************************
* Macro definitions
****************************************************************************************/
/** \brief Value for an invalid flash sector. */
#define FLASH_INVALID_SECTOR (0xffu)
/** \brief Value for an invalid flash address. */
#define FLASH_INVALID_ADDRESS (0xffffffffu)
/** \brief Standard size of a flash block for writing. */
#define FLASH_WRITE_BLOCK_SIZE (256u)
/** \brief Total numbers of sectors in array flashLayout[]. */
#define FLASH_TOTAL_SECTORS (sizeof(flashLayout)/sizeof(flashLayout[0]))
/** \brief End address of the bootloader programmable flash. */
#define FLASH_END_ADDRESS (flashLayout[FLASH_TOTAL_SECTORS-1].sector_start + \
flashLayout[FLASH_TOTAL_SECTORS-1].sector_size - 1)
/** \brief The flash driver is setup to operate on the cached PFLASH addresses, whereas
* the actual PFLASH commands should operate on non-cached addresses. This
* macro defines the offset between cached (80xxxxxxh) and non-cached
* (A0xxxxxxh) addresses.
*/
#define FLASH_NON_CACHED_OFFSET (0x20000000u)
/** \brief Base address of the PFLASH0 module. */
#define FLASH_PFLASH0_BASE (0x80000000u)
/** \brief Base address of the PFLASH1 module. */
#define FLASH_PFLASH1_BASE (0x80800000u)
/** \brief Base address of the PFLASH0 flash status register. */
#define FLASH_PFLASH0_FSR_ADDR (0xF8002010u)
/** \brief Base address of the PFLASH0 flash status register. */
#define FLASH_PFLASH1_FSR_ADDR (0xF8004010u)
/** \brief Macro that returns the PFLASHx modules base address, giving any address
* in PFLASH.
*/
#define FLASH_GET_PFLASH_BASE(addr) ((addr < FLASH_PFLASH1_BASE) ? \
FLASH_PFLASH0_BASE : FLASH_PFLASH1_BASE)
/** \brief Macro that converts are 32 bit address into a pointer to a 32-bit unsigned
* value and writes a value to this pointer.
*/
#define FLASH_WRITE_TO_U32_PTR_BY_ADDR(addr, val) ((*((volatile blt_int32u *) (addr+FLASH_NON_CACHED_OFFSET))) = val)
/** \brief The FLASHx_FSR register is the only register used in this driver. Its address
* depends on the PFLASH module that is being operated on. This macro gets the
* correct base address for the FSR register.
*/
#define FLASH_GET_FSR_REG_ADDR(addr) ((addr < FLASH_PFLASH1_BASE) ? \
FLASH_PFLASH0_FSR_ADDR : FLASH_PFLASH1_FSR_ADDR)
/** \brief Offset in bytes from the bootblock's base address where the checksum is
* located.
*/
#define FLASH_CS_OFFSET (0x04u)
/** \brief Offset in bytes from the bootblock's base address where the checksum area
* starts.
*/
#define FLASH_CS_RANGE_START_OFFSET (0x08u)
/** \brief The total number of 32-bit words that are in the checksum address range. */
#define FLASH_CS_RANGE_TOTAL_WORDS ((FLASH_WRITE_BLOCK_SIZE/4u) - \
(FLASH_CS_RANGE_START_OFFSET/4u))
/** \brief Maximum time for a sector erase operation as specified by the Tricore data-
* sheet with an added margin of at least 20%.
*/
#define FLASH_ERASE_TIME_MAX_MS (5100)
/** \brief Maximum time for a page program operation as specified by the Tricore data-
* sheet with an added margin of at least 20%.
*/
#define FLASH_PROGRAM_TIME_MAX_MS (40)
/****************************************************************************************
* Plausibility checks
****************************************************************************************/
#ifndef BOOT_FLASH_CUSTOM_LAYOUT_ENABLE
#define BOOT_FLASH_CUSTOM_LAYOUT_ENABLE (0u)
#endif
/****************************************************************************************
* Type definitions
****************************************************************************************/
/** \brief Flash sector descriptor type. */
typedef struct
{
blt_addr sector_start; /**< sector start address */
blt_int32u sector_size; /**< sector size in bytes */
blt_int8u sector_num; /**< sector number */
} tFlashSector;
/** \brief Structure type for grouping flash block information.
* \details Programming is done per block of max FLASH_WRITE_BLOCK_SIZE. for this a
* flash block manager is implemented in this driver. this flash block manager
* depends on this flash block info structure. It holds the base address of
* the flash block and the data that should be programmed into the flash
* block. The .base_addr must be a multiple of FLASH_WRITE_BLOCK_SIZE.
*/
typedef struct
{
blt_addr base_addr;
blt_int8u data[FLASH_WRITE_BLOCK_SIZE];
} tFlashBlockInfo;
/****************************************************************************************
* Hook functions
****************************************************************************************/
#if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0)
extern blt_bool FlashCryptoDecryptDataHook(blt_int8u * data, blt_int32u size);
#endif
/****************************************************************************************
* Function prototypes
****************************************************************************************/
static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address);
static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr);
static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address,
blt_int8u *data, blt_int32u len);
static blt_bool FlashWriteBlock(tFlashBlockInfo *block);
static blt_bool FlashEraseSectors(blt_int8u first_sector, blt_int8u last_sector);
static blt_int8u FlashGetSector(blt_addr address);
static blt_addr FlashGetSectorBaseAddr(blt_int8u sector);
static blt_int32u FlashGetSectorSize(blt_int8u sector);
static blt_bool FlashTricoreProgramPage(blt_addr start_addr, blt_int8u *data);
static blt_bool FlashTricoreEraseSector(blt_addr start_addr);
/****************************************************************************************
* Local constant declarations
****************************************************************************************/
/** \brief If desired, it is possible to set BOOT_FLASH_CUSTOM_LAYOUT_ENABLE to > 0
* in blt_conf.h and then implement your own version of the flashLayout[] table
* in a source-file with the name flash_layout.c. This way you customize the
* flash memory size reserved for the bootloader, without having to modify
* the flashLayout[] table in this file directly. This file will then include
* flash_layout.c so there is no need to compile it additionally with your
* project.
*/
#if (BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0)
/** \brief Array wit the layout of the flash memory.
* \details The current implementation assumes that the bootloader is in the 2Mbyte
* PFLASH0 and supports flash operations only on the 2Mbyte PFLASH1. The reason
* for this is that a flash module cannot be in read mode and command mode at
* the same time. A future improvement is one where the actual flash command
* code is copied and run from RAM, to bypass this restriction.
*/
static const tFlashSector flashLayout[] =
{
{ 0x80800000, 0x04000, 0}, /* flash sector 0 - 16kb */
{ 0x80804000, 0x04000, 1}, /* flash sector 1 - 16kb */
{ 0x80808000, 0x04000, 2}, /* flash sector 2 - 16kb */
{ 0x8080C000, 0x04000, 3}, /* flash sector 3 - 16kb */
{ 0x80810000, 0x04000, 4}, /* flash sector 4 - 16kb */
{ 0x80814000, 0x04000, 5}, /* flash sector 5 - 16kb */
{ 0x80818000, 0x04000, 6}, /* flash sector 6 - 16kb */
{ 0x8081C000, 0x04000, 7}, /* flash sector 7 - 16kb */
{ 0x80820000, 0x20000, 8}, /* flash sector 8 - 128kb */
{ 0x80840000, 0x40000, 9}, /* flash sector 9 - 256kb */
{ 0x80880000, 0x40000, 10}, /* flash sector 10 - 256kb */
{ 0x808C0000, 0x40000, 11}, /* flash sector 11 - 256kb */
{ 0x80900000, 0x40000, 12}, /* flash sector 12 - 256kb */
{ 0x80940000, 0x40000, 13}, /* flash sector 13 - 256kb */
{ 0x80980000, 0x40000, 14}, /* flash sector 14 - 256kb */
{ 0x809C0000, 0x40000, 15}, /* flash sector 15 - 256kb */
#if (BOOT_NVM_SIZE_KB > 2048)
#error "BOOT_NVM_SIZE_KB > 2048 is currently not supported."
#endif
};
#else
#include "flash_layout.c"
#endif /* BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0 */
/****************************************************************************************
* Local data declarations
****************************************************************************************/
/** \brief Local variable with information about the flash block that is currently
* being operated on.
* \details The smallest amount of flash that can be programmed is
* FLASH_WRITE_BLOCK_SIZE. A flash block manager is implemented in this driver
* and stores info in this variable. Whenever new data should be flashed, it
* is first added to a RAM buffer, which is part of this variable. Whenever
* the RAM buffer, which has the size of a flash block, is full or data needs
* to be written to a different block, the contents of the RAM buffer are
* programmed to flash. The flash block manager requires some software
* overhead, yet results is faster flash programming because data is first
* harvested, ideally until there is enough to program an entire flash block,
* before the flash device is actually operated on.
*/
static tFlashBlockInfo blockInfo;
/** \brief Local variable with information about the flash boot block.
* \details The first block of the user program holds the vector table, which on the
* STM32 is also the where the checksum is written to. Is it likely that
* the vector table is first flashed and then, at the end of the programming
* sequence, the checksum. This means that this flash block need to be written
* to twice. Normally this is not a problem with flash memory, as long as you
* write the same values to those bytes that are not supposed to be changed
* and the locations where you do write to are still in the erased 0xFF state.
* Unfortunately, writing twice to flash this way, does not work reliably on
* all micros. This is why we need to have an extra block, the bootblock,
* placed under the management of the block manager. This way is it possible
* to implement functionality so that the bootblock is only written to once
* at the end of the programming sequence.
*/
static tFlashBlockInfo bootBlockInfo;
/************************************************************************************//**
** \brief Initializes the flash driver.
** \return none.
**
****************************************************************************************/
void FlashInit(void)
{
/* init the flash block info structs by setting the address to an invalid address */
blockInfo.base_addr = FLASH_INVALID_ADDRESS;
bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS;
} /*** end of FlashInit ***/
/************************************************************************************//**
** \brief Reinitializes the flash driver.
** \return none.
**
****************************************************************************************/
void FlashReinit(void)
{
/* init the flash block info structs by setting the address to an invalid address */
blockInfo.base_addr = FLASH_INVALID_ADDRESS;
bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS;
} /*** end of FlashReinit ***/
/************************************************************************************//**
** \brief Writes the data to flash through a flash block manager. Note that this
** function also checks that no data is programmed outside the flash
** memory region, so the bootloader can never be overwritten.
** \param addr Start address.
** \param len Length in bytes.
** \param data Pointer to the data buffer.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashWrite(blt_addr addr, blt_int32u len, blt_int8u *data)
{
blt_addr base_addr;
/* validate the len parameter */
if ((len - 1) > (FLASH_END_ADDRESS - addr))
{
return BLT_FALSE;
}
/* make sure the addresses are within the flash device */
if ((FlashGetSector(addr) == FLASH_INVALID_SECTOR) || \
(FlashGetSector(addr+len-1) == FLASH_INVALID_SECTOR))
{
return BLT_FALSE;
}
/* if this is the bootblock, then let the boot block manager handle it */
base_addr = (addr/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE;
if (base_addr == flashLayout[0].sector_start)
{
/* let the boot block manager handle it */
return FlashAddToBlock(&bootBlockInfo, addr, data, len);
}
/* let the block manager handle it */
return FlashAddToBlock(&blockInfo, addr, data, len);
} /*** end of FlashWrite ***/
/************************************************************************************//**
** \brief Erases the flash memory. Note that this function also checks that no
** data is erased outside the flash memory region, so the bootloader can
** never be erased.
** \param addr Start address.
** \param len Length in bytes.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashErase(blt_addr addr, blt_int32u len)
{
blt_int8u first_sector;
blt_int8u last_sector;
/* validate the len parameter */
if ((len - 1) > (FLASH_END_ADDRESS - addr))
{
return BLT_FALSE;
}
/* obtain the first and last sector number */
first_sector = FlashGetSector(addr);
last_sector = FlashGetSector(addr+len-1);
/* check them */
if ((first_sector == FLASH_INVALID_SECTOR) || (last_sector == FLASH_INVALID_SECTOR))
{
return BLT_FALSE;
}
/* erase the sectors */
return FlashEraseSectors(first_sector, last_sector);
} /*** end of FlashErase ***/
/************************************************************************************//**
** \brief Writes a checksum of the user program to non-volatile memory. This is
** performed once the entire user program has been programmed. Through
** the checksum, the bootloader can check if the programming session
** was completed, which indicates that a valid user programming is
** present and can be started.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashWriteChecksum(void)
{
blt_int32u signature_checksum = 0;
blt_int8u wordIdx;
/* for the Tricore TC1798 target, the bootlblock is FLASH_WRITE_BLOCK_SIZE in size.
* the actual 32-bit checksum value in this bootblock is located at:
* <bootblock_base_addr> + 4.
* for this reason the checksum is defined as the one's complement value of the sum
* of everything else in the bootblock, so starting at:
* <bootblock_base_addr> + 8 and ending at:
* <bootblock_base_addr> + FLASH_WRITE_BLOCK_SIZE - 1;
*
* note that the user program need to be modified to reserve 32-bit at
* <bootblock_base_addr> + 4, because the bootload will write the checksum value
* here. refer to the port specific documentation for additional details.
*
* keep in mind that this checksum is just used as a user program signature, i.e. as
* a flag to figure out if a user program is present or not. the checksum is not
* calculated over the full user program size. such a checksum routine is typically
* application/customer specific and therefore not part of the standard bootloader.
* it can however be easily implemented by adding the following macro to blt_conf.h:
* #define BOOT_NVM_CHECKSUM_HOOKS_ENABLE (1).
* You can then implement your own checksum write/verify routines in the hook
* functions NvmWriteChecksumHook() and NvmVerifyChecksumHook().
*/
/* first check that the bootblock contains valid data. if not, this means the
* bootblock is not part of the reprogramming this time and therefore no
* new checksum needs to be written
*/
if (bootBlockInfo.base_addr == FLASH_INVALID_ADDRESS)
{
return BLT_TRUE;
}
#if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0)
/* perform decryption of the bootblock, before calculating the checksum and writing it
* to flash memory.
*/
if (FlashCryptoDecryptDataHook(bootBlockInfo.data, FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE)
{
return BLT_FALSE;
}
#endif
/* compute the checksum. note that the data in the checksum range is not yet written
* to flash but is present in the bootblock data structure at this point.
*/
for (wordIdx = 0; wordIdx < FLASH_CS_RANGE_TOTAL_WORDS; wordIdx++)
{
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[(wordIdx*4)+FLASH_CS_RANGE_START_OFFSET]));
}
signature_checksum = ~signature_checksum; /* one's complement */
/* write the checksum */
return FlashWrite(flashLayout[0].sector_start+FLASH_CS_OFFSET,
sizeof(blt_addr), (blt_int8u *)&signature_checksum);
} /*** end of FlashWriteChecksum ***/
/************************************************************************************//**
** \brief Verifies the checksum, which indicates that a valid user program is
** present and can be started.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashVerifyChecksum(void)
{
blt_int32u signature_checksum = 0;
blt_int32u signature_checksum_rom;
blt_int8u wordIdx;
/* compute the checksum by reading it from flash */
for (wordIdx = 0; wordIdx < FLASH_CS_RANGE_TOTAL_WORDS; wordIdx++)
{
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start + (wordIdx*4) + FLASH_CS_RANGE_START_OFFSET));
}
signature_checksum = ~signature_checksum; /* one's complement */
/* read the checksum value from flash that was writtin by the bootloader at the end
* of the last firmware update
*/
signature_checksum_rom = *((blt_int32u *)(flashLayout[0].sector_start + FLASH_CS_OFFSET));
/* verify that they are both the same */
if (signature_checksum == signature_checksum_rom)
{
/* checksum okay */
return BLT_TRUE;
}
/* checksum incorrect */
return BLT_FALSE;
} /*** end of FlashVerifyChecksum ***/
/************************************************************************************//**
** \brief Finalizes the flash driver operations. There could still be data in
** the currently active block that needs to be flashed.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashDone(void)
{
/* check if there is still data waiting to be programmed in the boot block */
if (bootBlockInfo.base_addr != FLASH_INVALID_ADDRESS)
{
if (FlashWriteBlock(&bootBlockInfo) == BLT_FALSE)
{
return BLT_FALSE;
}
}
/* check if there is still data waiting to be programmed */
if (blockInfo.base_addr != FLASH_INVALID_ADDRESS)
{
if (FlashWriteBlock(&blockInfo) == BLT_FALSE)
{
return BLT_FALSE;
}
}
/* still here so all is okay */
return BLT_TRUE;
} /*** end of FlashDone ***/
/************************************************************************************//**
** \brief Obtains the base address of the flash memory available to the user program.
** This is basically the first address in the flashLayout table.
** \return Base address.
**
****************************************************************************************/
blt_addr FlashGetUserProgBaseAddress(void)
{
return flashLayout[0].sector_start;
} /*** end of FlashGetUserProgBaseAddress ***/
/************************************************************************************//**
** \brief Copies data currently in flash to the block->data and sets the
** base address.
** \param block Pointer to flash block info structure to operate on.
** \param address Base address of the block data.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address)
{
/* check address alignment */
if ((address % FLASH_WRITE_BLOCK_SIZE) != 0)
{
return BLT_FALSE;
}
/* make sure that we are initializing a new block and not the same one */
if (block->base_addr == address)
{
/* block already initialized, so nothing to do */
return BLT_TRUE;
}
/* set the base address and copies the current data from flash */
block->base_addr = address;
CpuMemCopy((blt_addr)block->data, address, FLASH_WRITE_BLOCK_SIZE);
return BLT_TRUE;
} /*** end of FlashInitBlock ***/
/************************************************************************************//**
** \brief Switches blocks by programming the current one and initializing the
** next.
** \param block Pointer to flash block info structure to operate on.
** \param base_addr Base address of the next block.
** \return The pointer of the block info struct that is no being used, or a NULL
** pointer in case of error.
**
****************************************************************************************/
static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr)
{
/* check if a switch needs to be made away from the boot block. in this case the boot
* block shouldn't be written yet, because this is done at the end of the programming
* session by FlashDone(), this is right after the checksum was written.
*/
if (block == &bootBlockInfo)
{
/* switch from the boot block to the generic block info structure */
block = &blockInfo;
}
/* check if a switch back into the bootblock is needed. in this case the generic block
* doesn't need to be written here yet.
*/
else if (base_addr == flashLayout[0].sector_start)
{
/* switch from the generic block to the boot block info structure */
block = &bootBlockInfo;
base_addr = flashLayout[0].sector_start;
}
else
{
/* need to switch to a new block, so program the current one and init the next */
if (FlashWriteBlock(block) == BLT_FALSE)
{
return BLT_NULL;
}
}
/* initialize tne new block when necessary */
if (FlashInitBlock(block, base_addr) == BLT_FALSE)
{
return BLT_NULL;
}
/* still here to all is okay */
return block;
} /*** end of FlashSwitchBlock ***/
/************************************************************************************//**
** \brief Programming is done per block. This function adds data to the block
** that is currently collecting data to be written to flash. If the
** address is outside of the current block, the current block is written
** to flash an a new block is initialized.
** \param block Pointer to flash block info structure to operate on.
** \param address Flash destination address.
** \param data Pointer to the byte array with data.
** \param len Number of bytes to add to the block.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address,
blt_int8u *data, blt_int32u len)
{
blt_addr current_base_addr;
blt_int8u *dst;
blt_int8u *src;
/* determine the current base address */
current_base_addr = (address/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE;
/* make sure the blockInfo is not uninitialized */
if (block->base_addr == FLASH_INVALID_ADDRESS)
{
/* initialize the blockInfo struct for the current block */
if (FlashInitBlock(block, current_base_addr) == BLT_FALSE)
{
return BLT_FALSE;
}
}
/* check if the new data fits in the current block */
if (block->base_addr != current_base_addr)
{
/* need to switch to a new block, so program the current one and init the next */
block = FlashSwitchBlock(block, current_base_addr);
if (block == BLT_NULL)
{
return BLT_FALSE;
}
}
/* add the data to the current block, but check for block overflow */
dst = &(block->data[address - block->base_addr]);
src = data;
do
{
/* keep the watchdog happy */
CopService();
/* buffer overflow? */
if ((blt_addr)(dst-&(block->data[0])) >= FLASH_WRITE_BLOCK_SIZE)
{
/* need to switch to a new block, so program the current one and init the next */
block = FlashSwitchBlock(block, current_base_addr+FLASH_WRITE_BLOCK_SIZE);
if (block == BLT_NULL)
{
return BLT_FALSE;
}
/* reset destination pointer */
dst = &(block->data[0]);
}
/* write the data to the buffer */
*dst = *src;
/* update pointers */
dst++;
src++;
/* decrement byte counter */
len--;
}
while (len > 0);
/* still here so all is good */
return BLT_TRUE;
} /*** end of FlashAddToBlock ***/
/************************************************************************************//**
** \brief Programs FLASH_WRITE_BLOCK_SIZE bytes to flash from the block->data
** array.
** \param block Pointer to flash block info structure to operate on.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashWriteBlock(tFlashBlockInfo *block)
{
blt_int8u sector_num;
/* check that address is actually within flash */
sector_num = FlashGetSector(block->base_addr);
if (sector_num == FLASH_INVALID_SECTOR)
{
return BLT_FALSE;
}
#if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0)
#if (BOOT_NVM_CHECKSUM_HOOKS_ENABLE == 0)
/* note that the bootblock is already decrypted in FlashWriteChecksum(), if the
* internal checksum mechanism is used. Therefore don't decrypt it again.
*/
if (block != &bootBlockInfo)
#endif
{
/* perform decryption of the program data before writing it to flash memory. */
if (FlashCryptoDecryptDataHook(block->data, FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE)
{
return BLT_FALSE;
}
}
#endif
/* the FLASH_WRITE_BLOCK_SIZE is configured to exactly match the size of a page in
* PFLASH. so here simply need to program one page in PFLASH.
*/
return FlashTricoreProgramPage(block->base_addr, block->data);
} /*** end of FlashWriteBlock ***/
/************************************************************************************//**
** \brief Erases the flash sectors from first_sector up until last_sector.
** \param first_sector First flash sector number.
** \param last_sector Last flash sector number.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashEraseSectors(blt_int8u first_sector, blt_int8u last_sector)
{
blt_int8u current_sector;
blt_bool result = BLT_TRUE;
/* validate the sector numbers */
if (first_sector > last_sector)
{
return BLT_FALSE;
}
if ((first_sector < flashLayout[0].sector_num) || \
(last_sector > flashLayout[FLASH_TOTAL_SECTORS-1].sector_num))
{
return BLT_FALSE;
}
/* the table flashLayout[] is implemented such that it exactly matches the sectors
* in PFLASH. this means that here we simply need to loop through the sectors one-
* by-one and erase them.
*/
for (current_sector = first_sector; current_sector <= last_sector; current_sector++)
{
if (FlashTricoreEraseSector(FlashGetSectorBaseAddr(current_sector)) == BLT_FALSE)
{
/* flag error and stop the loop */
result = BLT_FALSE;
break;
}
/* keep the watchdog happy */
CopService();
}
/* return the result */
return result;
} /*** end of FlashEraseSectors ***/
/************************************************************************************//**
** \brief Determines the flash sector the address is in.
** \param address Address in the flash sector.
** \return Flash sector number or FLASH_INVALID_SECTOR.
**
****************************************************************************************/
static blt_int8u FlashGetSector(blt_addr address)
{
blt_int8u sectorIdx;
/* search through the sectors to find the right one */
for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++)
{
/* keep the watchdog happy */
CopService();
/* is the address in this sector? */
if ((address >= flashLayout[sectorIdx].sector_start) && \
(address < (flashLayout[sectorIdx].sector_start + \
flashLayout[sectorIdx].sector_size)))
{
/* return the sector number */
return flashLayout[sectorIdx].sector_num;
}
}
/* still here so no valid sector found */
return FLASH_INVALID_SECTOR;
} /*** end of FlashGetSector ***/
/************************************************************************************//**
** \brief Determines the flash sector base address.
** \param sector Sector to get the base address of.
** \return Flash sector base address or FLASH_INVALID_ADDRESS.
**
****************************************************************************************/
static blt_addr FlashGetSectorBaseAddr(blt_int8u sector)
{
blt_int8u sectorIdx;
/* search through the sectors to find the right one */
for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++)
{
/* keep the watchdog happy */
CopService();
if (flashLayout[sectorIdx].sector_num == sector)
{
return flashLayout[sectorIdx].sector_start;
}
}
/* still here so no valid sector found */
return FLASH_INVALID_ADDRESS;
} /*** end of FlashGetSectorBaseAddr ***/
/************************************************************************************//**
** \brief Determines the flash sector size.
** \param sector Sector to get the size of.
** \return Flash sector size or 0.
**
****************************************************************************************/
static blt_int32u FlashGetSectorSize(blt_int8u sector)
{
blt_int8u sectorIdx;
/* search through the sectors to find the right one */
for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++)
{
/* keep the watchdog happy */
CopService();
if (flashLayout[sectorIdx].sector_num == sector)
{
return flashLayout[sectorIdx].sector_size;
}
}
/* still here so no valid sector found */
return 0;
} /*** end of FlashGetSectorSize ***/
/************************************************************************************//**
** \brief Programs FLASH_WRITE_BLOCK_SIZE bytes into flash starting at the page's base
** address.
** \param start_addr Starting address of the page where the bytes should be
** programmed. Should be aligned to FLASH_WRITE_BLOCK_SIZE.
** \param data Pointer to a byte array with the data to be programmed. The array
** should have FLASH_WRITE_BLOCK_SIZE bytes.
** \return BLT_TRUE is the page was programmed successfully, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashTricoreProgramPage(blt_addr start_addr, blt_int8u *data)
{
blt_addr baseAddr;
blt_int32u *dataPtr;
blt_int8u *readPtr;
blt_int32u idx;
FLASHn_FSR_t *pflashFSR;
blt_int32u timeout;
/* check address alignment to a page in PFLASH */
if ((start_addr % FLASH_WRITE_BLOCK_SIZE) != 0)
{
return BLT_FALSE;
}
/* determine base address of the PFLASH module */
baseAddr = FLASH_GET_PFLASH_BASE(start_addr);
/* set pointer for the PFLASH module's FSR register */
pflashFSR = (FLASHn_FSR_t *)FLASH_GET_FSR_REG_ADDR(start_addr);
/* use "clear status" command to clear flags */
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0x5554u, 0x000000F5u);
/* execute "enter page mode" command to activate the PFLASH assembly buffer */
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0x5554u, 0x00000050u);
/* perform DSYNC */
CpuSetDSYNC();
/* set timeout time for hardware handshake */
timeout = TimerGet() + FLASH_PROGRAM_TIME_MAX_MS;
/* wait until FSR.xFPAGE = '1' */
while (pflashFSR->bits.PFPAGE != 1)
{
/* fail if FSR.SQER = '1' */
if (pflashFSR->bits.SQER == 1)
{
return BLT_FALSE;
}
/* fail if FSR.PROER = '1' */
if (pflashFSR->bits.PROER == 1)
{
return BLT_FALSE;
}
/* keep the watchdog happy */
CopService();
/* fail in case of timeout */
if (TimerGet() > timeout)
{
return BLT_FALSE;
}
}
/* load FLASH_WRITE_BLOCK_SIZE bytes of program data into the assembly buffer */
dataPtr = (blt_int32u *)data;
for (idx = 0; idx <(FLASH_WRITE_BLOCK_SIZE/8u); idx++)
{
/* write first 32-bit value */
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0x55F0U, *dataPtr);
dataPtr++;
/* write second 32-bit value */
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0x55F4U, *dataPtr);
dataPtr++;
}
/* launch the "write page" command */
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0x5554u, 0x000000AAu);
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0xAAA8u, 0x00000055u);
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0x5554u, 0x000000A0u);
FLASH_WRITE_TO_U32_PTR_BY_ADDR(start_addr, 0x000000AAu);
/* perform DSYNC */
CpuSetDSYNC();
/* set timeout time for hardware handshake */
timeout = TimerGet() + FLASH_PROGRAM_TIME_MAX_MS;
/* wait until FSR.PROG = '1' */
while (pflashFSR->bits.PROG != 1)
{
/* fail if FSR.SQER = '1' */
if (pflashFSR->bits.SQER == 1)
{
return BLT_FALSE;
}
/* fail if FSR.PROER = '1' */
if (pflashFSR->bits.PROER == 1)
{
return BLT_FALSE;
}
/* keep the watchdog happy */
CopService();
/* fail in case of timeout */
if (TimerGet() > timeout)
{
return BLT_FALSE;
}
}
/* set timeout time for hardware handshake */
timeout = TimerGet() + FLASH_PROGRAM_TIME_MAX_MS;
/* wait until FSR.xBUSY = '0' */
while (pflashFSR->bits.PBUSY == 1)
{
/* check flag FSR.xFOPER for 1 as abort criterion to protect against hardware
* failures causing BUSY to stay '1'
*/
if (pflashFSR->bits.PFOPER == 1)
{
return BLT_FALSE;
}
/* keep the watchdog happy */
CopService();
/* fail in case of timeout */
if (TimerGet() > timeout)
{
return BLT_FALSE;
}
}
/* check FSR.VER flag */
if (pflashFSR->bits.VER != 0)
{
return BLT_FALSE;
}
/* fail if FSR.xFOPER = '1' */
if (pflashFSR->bits.PFOPER != 0)
{
return BLT_FALSE;
}
/* evaluate FSR.xDBER */
if (pflashFSR->bits.PFDBER != 0)
{
return BLT_FALSE;
}
/* use "clear status" command to clear flags */
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0x5554u, 0x000000F5u);
/* perform verification by checking the written values. do this on a byte-per-byte
* basis to also check the code for byte swapping mistakes.
*/
readPtr = (blt_int8u *)start_addr;
for (idx = 0; idx <FLASH_WRITE_BLOCK_SIZE; idx++)
{
/* verify 32-bits at a time */
if (*readPtr != data[idx])
{
return BLT_FALSE;
}
/* increment pointer */
readPtr++;
}
/* still here so programming was completed successfully */
return BLT_TRUE;
} /*** end of FlashTricoreProgramPage ***/
/************************************************************************************//**
** \brief Erases a sector in PFLASH. The sector is identified using its start
** address.
** \param start_addr Starting address of the sector that is to be erased.
** \return BLT_TRUE is the sector was successfully erased, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashTricoreEraseSector(blt_addr start_addr)
{
blt_addr baseAddr;
FLASHn_FSR_t *pflashFSR;
blt_int32u sectorWords;
blt_int8u sectorNum;
blt_int32u *readPtr;
blt_int32u idx;
blt_int32u timeout;
/* determine base address of the PFLASH module */
baseAddr = FLASH_GET_PFLASH_BASE(start_addr);
/* set pointer for the PFLASH module's FSR register */
pflashFSR = (FLASHn_FSR_t *)FLASH_GET_FSR_REG_ADDR(start_addr);
/* use "clear status" command to clear flags */
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0x5554u, 0x000000F5u);
/* issue "erase sector" command */
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0x5554u, 0x000000AAu);
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0xAAA8u, 0x00000055u);
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0x5554u, 0x00000080u);
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0x5554u, 0x000000AAu);
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0xAAA8u, 0x00000055u);
FLASH_WRITE_TO_U32_PTR_BY_ADDR(start_addr, 0x00000030u);
/* perform DSYNC */
CpuSetDSYNC();
/* set timeout time for hardware handshake */
timeout = TimerGet() + FLASH_ERASE_TIME_MAX_MS;
/* wait until FSR.ERASE = '1' */
while (pflashFSR->bits.ERASE != 1)
{
/* fail if FSR.SQER = '1' */
if (pflashFSR->bits.SQER == 1)
{
return BLT_FALSE;
}
/* fail if FSR.PROER = '1' */
if (pflashFSR->bits.PROER == 1)
{
return BLT_FALSE;
}
/* keep the watchdog happy */
CopService();
/* fail in case of timeout */
if (TimerGet() > timeout)
{
return BLT_FALSE;
}
}
/* set timeout time for hardware handshake */
timeout = TimerGet() + FLASH_ERASE_TIME_MAX_MS;
/* wait until FSR.xBUSY = '0' */
while (pflashFSR->bits.PBUSY == 1)
{
/* check flag FSR.xFOPER for 1 as abort criterion to protect against hardware
* failures causing BUSY to stay '1'
*/
if (pflashFSR->bits.PFOPER == 1)
{
return BLT_FALSE;
}
/* keep the watchdog happy */
CopService();
/* fail in case of timeout */
if (TimerGet() > timeout)
{
return BLT_FALSE;
}
}
/* check FSR.VER flag */
if (pflashFSR->bits.VER != 0)
{
return BLT_FALSE;
}
/* fail if FSR.xFOPER = '1' */
if (pflashFSR->bits.PFOPER != 0)
{
return BLT_FALSE;
}
/* use "clear status" command to clear flags */
FLASH_WRITE_TO_U32_PTR_BY_ADDR(baseAddr + 0x5554u, 0x000000F5u);
/* perform erase verification */
sectorNum = FlashGetSector(start_addr);
if (sectorNum == FLASH_INVALID_SECTOR)
{
/* should not happen */
return BLT_FALSE;
}
/* get sector size in words and set the read pointer to the first word in the sector */
sectorWords = FlashGetSectorSize(sectorNum) / sizeof(blt_int32u);
if (sectorWords == 0)
{
/* should not happen */
return BLT_FALSE;
}
readPtr = (blt_int32u *)(FlashGetSectorBaseAddr(sectorNum));
/* loop through all words in the sector and check that they are in the erase state.
* note that this is a 0 value for PFLASH.
*/
for (idx=0; idx<sectorWords; idx++)
{
if (*readPtr != 0)
{
/* not in the erased state */
return BLT_FALSE;
}
/* continue with the next word */
readPtr++;
/* keep the watchdog happy. this is a fast loop so no need to do it every iteration */
if ((idx % 100) == 0)
{
CopService();
}
}
/* still here so erase operation was completed successfully */
return BLT_TRUE;
} /*** end of FlashTricoreEraseSector ***/
/*********************************** end of flash.c ************************************/