/*------------------------------------------------------------------------/ / MMCv3/SDv1/SDv2 (in SPI mode) control module /-------------------------------------------------------------------------/ / / Copyright (C) 2013, ChaN, all right reserved. / / * This software is a free software and there is NO WARRANTY. / * No restriction on use. You can use, modify and redistribute it for / personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY. / * Redistributions of source code must retain the above copyright notice. / /-------------------------------------------------------------------------*/ /* * This file was modified from a sample available from the FatFs * web site. It was modified to work with a Olimex STM32-P405 * evaluation board. * */ #include "diskio.h" #include "stm32f4xx.h" /* STM32 registers and drivers */ #include "stm32f4xx_ll_bus.h" /* STM32 LL BUS header */ #include "stm32f4xx_ll_gpio.h" /* STM32 LL GPIO header */ #include "stm32f4xx_ll_spi.h" /* STM32 LL SPI header */ #include "boot.h" /*-------------------------------------------------------------------------- Macro Definitions ---------------------------------------------------------------------------*/ /* MMC card type flags (MMC_GET_TYPE) */ #define CT_MMC 0x01 /* MMC ver 3 */ #define CT_SD1 0x02 /* SD ver 1 */ #define CT_SD2 0x04 /* SD ver 2 */ #define CT_SDC (CT_SD1|CT_SD2) /* SD */ #define CT_BLOCK 0x08 /* Block addressing */ /*-------------------------------------------------------------------------- Module Private Functions ---------------------------------------------------------------------------*/ /* Definitions for MMC/SDC command */ #define CMD0 (0) /* GO_IDLE_STATE */ #define CMD1 (1) /* SEND_OP_COND */ #define ACMD41 (41|0x80) /* SEND_OP_COND (SDC) */ #define CMD8 (8) /* SEND_IF_COND */ #define CMD9 (9) /* SEND_CSD */ #define CMD10 (10) /* SEND_CID */ #define CMD12 (12) /* STOP_TRANSMISSION */ #define ACMD13 (13|0x80) /* SD_STATUS (SDC) */ #define CMD16 (16) /* SET_BLOCKLEN */ #define CMD17 (17) /* READ_SINGLE_BLOCK */ #define CMD18 (18) /* READ_MULTIPLE_BLOCK */ #define CMD23 (23) /* SET_BLOCK_COUNT */ #define ACMD23 (23|0x80) /* SET_WR_BLK_ERASE_COUNT (SDC) */ #define CMD24 (24) /* WRITE_BLOCK */ #define CMD25 (25) /* WRITE_MULTIPLE_BLOCK */ #define CMD41 (41) /* SEND_OP_COND (ACMD) */ #define CMD55 (55) /* APP_CMD */ #define CMD58 (58) /* READ_OCR */ /* Control signals (Platform dependent) */ #define CS_LOW() LL_GPIO_ResetOutputPin(GPIOB, LL_GPIO_PIN_12) /* MMC CS = L */ #define CS_HIGH() LL_GPIO_SetOutputPin(GPIOB, LL_GPIO_PIN_12) /* MMC CS = H */ #define FCLK_SLOW() /* Set slow clock (100k-400k) */ #define FCLK_FAST() set_max_speed() /* Set fast clock (depends on the CSD) */ static volatile DSTATUS Stat = STA_NOINIT; /* Disk status */ static UINT CardType; /*-----------------------------------------------------------------------*/ /* Send 80 or so clock transitions with CS and DI held high. This is */ /* required after card power up to get it into SPI mode */ /*-----------------------------------------------------------------------*/ static void send_initial_clock_train(void) { LL_GPIO_InitTypeDef GPIO_InitStruct; unsigned int i; DWORD timeoutTime; /* Ensure CS is held high. */ CS_HIGH(); /* Switch the SSI TX line to a GPIO and drive it high too. */ GPIO_InitStruct.Pin = LL_GPIO_PIN_15; GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT; GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; LL_GPIO_Init(GPIOB, &GPIO_InitStruct); LL_GPIO_SetOutputPin(GPIOB, LL_GPIO_PIN_15); /* Send 10 bytes over the SSI. This causes the clock to wiggle the */ /* required number of times. */ for(i = 0 ; i < 10 ; i++) { /* Set timeout time to wait for DR register empty */ timeoutTime = TimerGet() + 100; /* Loop while DR register in not empty */ while (LL_SPI_IsActiveFlag_TXE(SPI2) == 0) { /* Break wait loop upon timeout */ if (TimerGet() > timeoutTime) { break; } } /* Send byte through the SPI peripheral */ LL_SPI_TransmitData8(SPI2, 0xff); /* Set timeout time to wait for byte reception */ timeoutTime = TimerGet() + 100; /* Wait to receive a byte */ while (LL_SPI_IsActiveFlag_RXNE(SPI2) == 0) { /* Break wait loop upon timeout */ if (TimerGet() > timeoutTime) { break; } } } /* Revert to hardware control of the SSI TX line. */ GPIO_InitStruct.Pin = LL_GPIO_PIN_15; GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE; GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; GPIO_InitStruct.Alternate = LL_GPIO_AF_5; LL_GPIO_Init(GPIOB, &GPIO_InitStruct); } /*-----------------------------------------------------------------------*/ /* Power Control (Platform dependent) */ /*-----------------------------------------------------------------------*/ /* When the target system does not support socket power control, there */ /* is nothing to do in these functions. */ static void power_on (void) { LL_SPI_InitTypeDef SPI_InitStruct; LL_GPIO_InitTypeDef GPIO_InitStruct; /* * This doesn't really turn the power on, but initializes the * SSI port and pins needed to talk to the card. */ /* Enable SPI and GPIO peripheral clocks. */ LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOB); LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_SPI2); /* Configure I/O for Chip select (PB12) */ GPIO_InitStruct.Pin = LL_GPIO_PIN_12; GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT; GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; LL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* De-select the Card: Chip Select high */ LL_GPIO_SetOutputPin(GPIOB, LL_GPIO_PIN_12); /* Configure SPI pins: SCK (PB13), MOSI (PB15) and MISO (PB14) */ GPIO_InitStruct.Pin = LL_GPIO_PIN_13|LL_GPIO_PIN_14|LL_GPIO_PIN_15; GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE; GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL; GPIO_InitStruct.Pull = LL_GPIO_PULL_NO; GPIO_InitStruct.Alternate = LL_GPIO_AF_5; LL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* SPI2 parameter configuration */ SPI_InitStruct.TransferDirection = LL_SPI_FULL_DUPLEX; SPI_InitStruct.Mode = LL_SPI_MODE_MASTER; SPI_InitStruct.DataWidth = LL_SPI_DATAWIDTH_8BIT; SPI_InitStruct.ClockPolarity = LL_SPI_POLARITY_LOW; SPI_InitStruct.ClockPhase = LL_SPI_PHASE_1EDGE; SPI_InitStruct.NSS = LL_SPI_NSS_SOFT; SPI_InitStruct.BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV128; // 168MHz/4/128=328kHz < 400kHz SPI_InitStruct.BitOrder = LL_SPI_MSB_FIRST; SPI_InitStruct.CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE; SPI_InitStruct.CRCPoly = 7; LL_SPI_Init(SPI2, &SPI_InitStruct); LL_SPI_SetStandard(SPI2, LL_SPI_PROTOCOL_MOTOROLA); LL_SPI_Enable(SPI2); /* Set DI and CS high and apply more than 74 pulses to SCLK for the card */ /* to be able to accept a native command. */ send_initial_clock_train(); } // set the SSI speed to the max setting static void set_max_speed(void) { LL_SPI_InitTypeDef SPI_InitStruct; /* Disable the SPI system */ LL_SPI_Disable(SPI2); /* MMC/SDC can work at the clock frequency up to 20/25MHz so pick a speed close to * this but not higher */ SPI_InitStruct.TransferDirection = LL_SPI_FULL_DUPLEX; SPI_InitStruct.Mode = LL_SPI_MODE_MASTER; SPI_InitStruct.DataWidth = LL_SPI_DATAWIDTH_8BIT; SPI_InitStruct.ClockPolarity = LL_SPI_POLARITY_LOW; SPI_InitStruct.ClockPhase = LL_SPI_PHASE_1EDGE; SPI_InitStruct.NSS = LL_SPI_NSS_SOFT; SPI_InitStruct.BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV4; // 168MHz/4/4=10.5MHz < 25MHz SPI_InitStruct.BitOrder = LL_SPI_MSB_FIRST; SPI_InitStruct.CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE; SPI_InitStruct.CRCPoly = 7; LL_SPI_Init(SPI2, &SPI_InitStruct); LL_SPI_SetStandard(SPI2, LL_SPI_PROTOCOL_MOTOROLA); LL_SPI_Enable(SPI2); } static void power_off (void) { Stat |= STA_NOINIT; /* Force uninitialized */ } /*-----------------------------------------------------------------------*/ /* Transmit/Receive data to/from MMC via SPI (Platform dependent) */ /*-----------------------------------------------------------------------*/ static BYTE xchg_spi (BYTE dat) { BYTE result = 0; DWORD timeOutTime; BYTE timeoutDetected = 0; /* Send byte through the SPI peripheral */ LL_SPI_TransmitData8(SPI2, dat); /* Set timeout for 50 ms from now */ timeOutTime = TimerGet() + 50; /* Wait to receive a byte with timeout */ while (LL_SPI_IsActiveFlag_RXNE(SPI2) == 0) { /* Service the watchdog */ CopService(); /* Check for timeout */ if (TimerGet() > timeOutTime) { /* Set flag to remember that a timeout occurred and nothing was received */ timeoutDetected = 1; /* Stop waiting */ break; } } /* Read the value of the received byte */ if (timeoutDetected == 0) { result = LL_SPI_ReceiveData8(SPI2); } /* Give the result back to the caller */ return result; } static void rcvr_spi_m (BYTE *dst) { *dst = xchg_spi(0xFF); } /*-----------------------------------------------------------------------*/ /* Wait for card ready */ /*-----------------------------------------------------------------------*/ static int wait_ready (void) { BYTE d; DWORD timeOutTime; /* set timeout for 500 ms from now */ timeOutTime = TimerGet() + 500; do { d = xchg_spi(0xFF); /* Service the watchdog */ CopService(); } while ((d != 0xFF) && (TimerGet() < timeOutTime)); return (d == 0xFF) ? 1 : 0; } /*-----------------------------------------------------------------------*/ /* Deselect the card and release SPI bus */ /*-----------------------------------------------------------------------*/ static void deselect_card (void) { CS_HIGH(); xchg_spi(0xFF); /* Dummy clock (force DO hi-z for multiple slave SPI) */ } /*-----------------------------------------------------------------------*/ /* Select the card and wait ready */ /*-----------------------------------------------------------------------*/ static int select_card (void) /* 1:Successful, 0:Timeout */ { CS_LOW(); xchg_spi(0xFF); /* Dummy clock (force DO enabled) */ if (wait_ready()) return 1; /* OK */ deselect_card(); return 0; /* Timeout */ } /*-----------------------------------------------------------------------*/ /* Receive a data packet from MMC */ /*-----------------------------------------------------------------------*/ static int rcvr_datablock ( /* 1:OK, 0:Failed */ BYTE *buff, /* Data buffer to store received data */ UINT btr /* Byte count (must be multiple of 4) */ ) { BYTE token; DWORD timeOutTime; /* set timeout for 100 ms from now */ timeOutTime = TimerGet() + 100; do { /* Wait for data packet in timeout of 100ms */ token = xchg_spi(0xFF); /* Service the watchdog */ CopService(); } while ((token == 0xFF) && (TimerGet() < timeOutTime)); if(token != 0xFE) return 0; /* If not valid data token, retutn with error */ do { /* Receive the data block into buffer */ rcvr_spi_m(buff++); rcvr_spi_m(buff++); /* Service the watchdog */ CopService(); } while (btr -= 2); xchg_spi(0xFF); /* Discard CRC */ xchg_spi(0xFF); return 1; /* Return with success */ } /*-----------------------------------------------------------------------*/ /* Send a data packet to MMC */ /*-----------------------------------------------------------------------*/ static int xmit_datablock ( /* 1:OK, 0:Failed */ const BYTE *buff, /* 512 byte data block to be transmitted */ BYTE token /* Data token */ ) { BYTE resp; UINT wc; if (!wait_ready()) return 0; xchg_spi(token); /* Xmit a token */ if (token != 0xFD) { /* Not StopTran token */ wc = 512; do { /* Xmit the 512 byte data block to MMC */ xchg_spi(*buff++); xchg_spi(*buff++); /* Service the watchdog */ CopService(); } while (wc -= 2); xchg_spi(0xFF); /* CRC (Dummy) */ xchg_spi(0xFF); resp = xchg_spi(0xFF); /* Receive a data response */ if ((resp & 0x1F) != 0x05) /* If not accepted, return with error */ return 0; } return 1; } /*-----------------------------------------------------------------------*/ /* Send a command packet to MMC */ /*-----------------------------------------------------------------------*/ static BYTE send_cmd ( BYTE cmd, /* Command byte */ DWORD arg /* Argument */ ) { BYTE n, res; if (cmd & 0x80) { /* ACMD is the command sequense of CMD55-CMD */ cmd &= 0x7F; res = send_cmd(CMD55, 0); if (res > 1) return res; } /* Select the card and wait for ready */ deselect_card(); if (!select_card()) return 0xFF; /* Send command packet */ xchg_spi(0x40 | cmd); /* Start + Command index */ xchg_spi((BYTE)(arg >> 24)); /* Argument[31..24] */ xchg_spi((BYTE)(arg >> 16)); /* Argument[23..16] */ xchg_spi((BYTE)(arg >> 8)); /* Argument[15..8] */ xchg_spi((BYTE)arg); /* Argument[7..0] */ n = 0x01; /* Dummy CRC + Stop */ if (cmd == CMD0) n = 0x95; /* Valid CRC for CMD0(0) + Stop */ if (cmd == CMD8) n = 0x87; /* Valid CRC for CMD8(0x1AA) + Stop */ xchg_spi(n); /* Receive command response */ if (cmd == CMD12) xchg_spi(0xFF); /* Skip a stuff byte on stop to read */ n = 10; /* Wait for a valid response in timeout of 10 attempts */ do { res = xchg_spi(0xFF); /* Service the watchdog */ CopService(); } while ((res & 0x80) && --n); return res; /* Return with the response value */ } /*-------------------------------------------------------------------------- Public Functions ---------------------------------------------------------------------------*/ /*-----------------------------------------------------------------------*/ /* Initialize Disk Drive */ /*-----------------------------------------------------------------------*/ DSTATUS disk_initialize ( BYTE pdrv /* Physical drive nmuber (0) */ ) { BYTE n, cmd, ty, ocr[4]; DWORD timeOutTime; if (pdrv) return STA_NOINIT; /* Supports only single drive */ if (Stat & STA_NODISK) return Stat; /* No card in the socket */ power_on(); /* Force socket power on */ CS_LOW(); /* CS = L */ ty = 0; if (send_cmd(CMD0, 0) == 1) { /* Enter Idle state */ timeOutTime = TimerGet() + 1000; /* Initialization timeout of 1000 msec */ if (send_cmd(CMD8, 0x1AA) == 1) { /* SDv2? */ for (n = 0; n < 4; n++) ocr[n] = xchg_spi(0xFF); /* Get trailing return value of R7 resp */ if (ocr[2] == 0x01 && ocr[3] == 0xAA) { /* The card can work at vdd range of 2.7-3.6V */ while ((TimerGet() < timeOutTime) && send_cmd(ACMD41, 0x40000000)); /* Wait for leaving idle state (ACMD41 with HCS bit) */ if ((TimerGet() < timeOutTime) && send_cmd(CMD58, 0) == 0) { /* Check CCS bit in the OCR */ for (n = 0; n < 4; n++) ocr[n] = xchg_spi(0xFF); ty = (ocr[0] & 0x40) ? CT_SD2|CT_BLOCK : CT_SD2; /* SDv2 */ } } } else { /* SDv1 or MMCv3 */ if (send_cmd(ACMD41, 0) <= 1) { ty = CT_SD1; cmd = ACMD41; /* SDv1 */ } else { ty = CT_MMC; cmd = CMD1; /* MMCv3 */ } while ((TimerGet() < timeOutTime) && send_cmd(cmd, 0)) { /* Wait for leaving idle state */ /* Service the watchdog */ CopService(); } if (!(TimerGet() < timeOutTime) || send_cmd(CMD16, 512) != 0) /* Set read/write block length to 512 */ ty = 0; } } CardType = ty; deselect_card(); if (ty) { /* Initialization succeded */ Stat &= ~STA_NOINIT; /* Clear STA_NOINIT */ FCLK_FAST(); } else { /* Initialization failed */ power_off(); } return Stat; } /*-----------------------------------------------------------------------*/ /* Get Disk Status */ /*-----------------------------------------------------------------------*/ DSTATUS disk_status ( BYTE pdrv /* Physical drive nmuber (0) */ ) { if (pdrv) return STA_NOINIT; /* Supports only single drive */ return Stat; } /*-----------------------------------------------------------------------*/ /* Read Sector(s) */ /*-----------------------------------------------------------------------*/ DRESULT disk_read ( BYTE pdrv, /* Physical drive nmuber to identify the drive */ BYTE *buff, /* Data buffer to store read data */ DWORD sector, /* Sector address in LBA */ UINT count /* Number of sectors to read */ ) { if (pdrv || !count) return RES_PARERR; if (Stat & STA_NOINIT) return RES_NOTRDY; if (!(CardType & CT_BLOCK)) sector *= 512; /* Convert to byte address if needed */ if (count == 1) { /* Single block read */ if ((send_cmd(CMD17, sector) == 0) /* READ_SINGLE_BLOCK */ && rcvr_datablock(buff, 512)) count = 0; } else { /* Multiple block read */ if (send_cmd(CMD18, sector) == 0) { /* READ_MULTIPLE_BLOCK */ do { if (!rcvr_datablock(buff, 512)) break; buff += 512; /* Service the watchdog */ CopService(); } while (--count); send_cmd(CMD12, 0); /* STOP_TRANSMISSION */ } } deselect_card(); return count ? RES_ERROR : RES_OK; } /*-----------------------------------------------------------------------*/ /* Write Sector(s) */ /*-----------------------------------------------------------------------*/ DRESULT disk_write ( BYTE pdrv, /* Physical drive nmuber to identify the drive */ const BYTE *buff, /* Data to be written */ DWORD sector, /* Sector address in LBA */ UINT count /* Number of sectors to write */ ) { if (pdrv || !count) return RES_PARERR; if (Stat & STA_NOINIT) return RES_NOTRDY; if (Stat & STA_PROTECT) return RES_WRPRT; if (!(CardType & CT_BLOCK)) sector *= 512; /* Convert to byte address if needed */ if (count == 1) { /* Single block write */ if ((send_cmd(CMD24, sector) == 0) /* WRITE_BLOCK */ && xmit_datablock(buff, 0xFE)) count = 0; } else { /* Multiple block write */ if (CardType & CT_SDC) send_cmd(ACMD23, count); if (send_cmd(CMD25, sector) == 0) { /* WRITE_MULTIPLE_BLOCK */ do { if (!xmit_datablock(buff, 0xFC)) break; buff += 512; /* Service the watchdog */ CopService(); } while (--count); if (!xmit_datablock(0, 0xFD)) /* STOP_TRAN token */ count = 1; } } deselect_card(); return count ? RES_ERROR : RES_OK; } /*-----------------------------------------------------------------------*/ /* Miscellaneous Functions */ /*-----------------------------------------------------------------------*/ DRESULT disk_ioctl ( BYTE pdrv, /* Physical drive nmuber (0) */ BYTE cmd, /* Control code */ void *buff /* Buffer to send/receive data block */ ) { DRESULT res; BYTE n, csd[16], *ptr = buff; DWORD csz; if (pdrv) return RES_PARERR; if (Stat & STA_NOINIT) return RES_NOTRDY; res = RES_ERROR; switch (cmd) { case CTRL_SYNC : /* Flush write-back cache, Wait for end of internal process */ if (select_card()) res = RES_OK; break; case GET_SECTOR_COUNT : /* Get number of sectors on the disk (WORD) */ if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16)) { if ((csd[0] >> 6) == 1) { /* SDv2? */ csz = csd[9] + ((WORD)csd[8] << 8) + ((DWORD)(csd[7] & 63) << 16) + 1; *(DWORD*)buff = csz << 10; } else { /* SDv1 or MMCv3 */ n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2; csz = (csd[8] >> 6) + ((WORD)csd[7] << 2) + ((WORD)(csd[6] & 3) << 10) + 1; *(DWORD*)buff = csz << (n - 9); } res = RES_OK; } break; case GET_BLOCK_SIZE : /* Get erase block size in unit of sectors (DWORD) */ if (CardType & CT_SD2) { /* SDv2? */ if (send_cmd(ACMD13, 0) == 0) { /* Read SD status */ xchg_spi(0xFF); if (rcvr_datablock(csd, 16)) { /* Read partial block */ for (n = 64 - 16; n; n--) xchg_spi(0xFF); /* Purge trailing data */ *(DWORD*)buff = 16UL << (csd[10] >> 4); res = RES_OK; } } } else { /* SDv1 or MMCv3 */ if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16)) { /* Read CSD */ if (CardType & CT_SD1) { /* SDv1 */ *(DWORD*)buff = (((csd[10] & 63) << 1) + ((WORD)(csd[11] & 128) >> 7) + 1) << ((csd[13] >> 6) - 1); } else { /* MMCv3 */ *(DWORD*)buff = ((WORD)((csd[10] & 124) >> 2) + 1) * (((csd[11] & 3) << 3) + ((csd[11] & 224) >> 5) + 1); } res = RES_OK; } } break; case MMC_GET_TYPE : /* Get card type flags (1 byte) */ *ptr = CardType; res = RES_OK; break; case MMC_GET_CSD : /* Receive CSD as a data block (16 bytes) */ if ((send_cmd(CMD9, 0) == 0) /* READ_CSD */ && rcvr_datablock(buff, 16)) res = RES_OK; break; case MMC_GET_CID : /* Receive CID as a data block (16 bytes) */ if ((send_cmd(CMD10, 0) == 0) /* READ_CID */ && rcvr_datablock(buff, 16)) res = RES_OK; break; case MMC_GET_OCR : /* Receive OCR as an R3 resp (4 bytes) */ if (send_cmd(CMD58, 0) == 0) { /* READ_OCR */ for (n = 0; n < 4; n++) { *((BYTE*)buff+n) = xchg_spi(0xFF); /* Service the watchdog */ CopService(); } res = RES_OK; } break; case MMC_GET_SDSTAT : /* Receive SD status as a data block (64 bytes) */ if ((CardType & CT_SD2) && send_cmd(ACMD13, 0) == 0) { /* SD_STATUS */ xchg_spi(0xFF); if (rcvr_datablock(buff, 64)) res = RES_OK; } break; default: res = RES_PARERR; } deselect_card(); return res; }