/**************************************************************************************** | Description: bootloader flash driver source file | File Name: flash.c | |---------------------------------------------------------------------------------------- | C O P Y R I G H T |---------------------------------------------------------------------------------------- | Copyright (c) 2012 by Feaser http://www.feaser.com All rights reserved | |---------------------------------------------------------------------------------------- | L I C E N S E |---------------------------------------------------------------------------------------- | This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or | modify it under the terms of the GNU General Public License as published by the Free | Software Foundation, either version 3 of the License, or (at your option) any later | version. | | OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; | without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | PURPOSE. See the GNU General Public License for more details. | | You should have received a copy of the GNU General Public License along with OpenBLT. | If not, see . | | A special exception to the GPL is included to allow you to distribute a combined work | that includes OpenBLT without being obliged to provide the source code for any | proprietary components. The exception text is included at the bottom of the license | file . | ****************************************************************************************/ /**************************************************************************************** * Include files ****************************************************************************************/ #include "boot.h" /* bootloader generic header */ #include "efm32_msc.h" /* MSC driver from EFM32 library */ /**************************************************************************************** * Macro definitions ****************************************************************************************/ #define FLASH_INVALID_SECTOR (0xff) #define FLASH_INVALID_ADDRESS (0xffffffff) #define FLASH_WRITE_BLOCK_SIZE (512) #define FLASH_TOTAL_SECTORS (sizeof(flashLayout)/sizeof(flashLayout[0])) #define FLASH_VECTOR_TABLE_CS_OFFSET (0x0B8) /**************************************************************************************** * Type definitions ****************************************************************************************/ /* flash sector descriptor type */ typedef struct { blt_addr sector_start; /* sector start address */ blt_int32u sector_size; /* sector size in bytes */ blt_int8u sector_num; /* sector number */ } tFlashSector; /* flash sector description */ /* programming is done per block of max FLASH_WRITE_BLOCK_SIZE. for this a flash block * manager is implemented in this driver. this flash block manager depends on this * flash block info structure. It holds the base address of the flash block and the * data that should be programmed into the flash block. The .base_addr must be a multiple * of FLASH_WRITE_BLOCK_SIZE. */ typedef struct { blt_addr base_addr; blt_int8u data[FLASH_WRITE_BLOCK_SIZE]; } tFlashBlockInfo; /**************************************************************************************** * Function prototypes ****************************************************************************************/ static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address); static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr); static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address, blt_int8u *data, blt_int16u len); static blt_bool FlashWriteBlock(tFlashBlockInfo *block); static blt_bool FlashEraseSectors(blt_int8u first_sector, blt_int8u last_sector); static blt_int8u FlashGetSector(blt_addr address); static blt_addr FlashGetSectorBaseAddr(blt_int8u sector); static blt_addr FlashGetSectorSize(blt_int8u sector); static blt_int32u FlashCalcPageSize(void); /**************************************************************************************** * Local constant declarations ****************************************************************************************/ /* The current flash layout does not reflect the minimum sector size of the physical * flash (1 - 2kb), because this would make the table quit long and a waste of ROM. The * minimum sector size is only really needed when erasing the flash. This can still be * done in combination with macro FLASH_ERASE_BLOCK_SIZE. */ static const tFlashSector flashLayout[] = { /* { 0x00000000, 0x02000, 0}, flash sector 0 - reserved for bootloader */ { 0x00002000, 0x02000, 1}, /* flash sector 1 - 8kb */ { 0x00004000, 0x02000, 2}, /* flash sector 2 - 8kb */ { 0x00006000, 0x02000, 3}, /* flash sector 3 - 8kb */ #if (BOOT_NVM_SIZE_KB > 32) { 0x00008000, 0x02000, 4}, /* flash sector 4 - 8kb */ { 0x0000A000, 0x02000, 5}, /* flash sector 5 - 8kb */ { 0x0000C000, 0x02000, 6}, /* flash sector 6 - 8kb */ { 0x0000E000, 0x02000, 7}, /* flash sector 7 - 8kb */ #endif #if (BOOT_NVM_SIZE_KB > 64) { 0x00010000, 0x02000, 8}, /* flash sector 8 - 8kb */ { 0x00012000, 0x02000, 9}, /* flash sector 9 - 8kb */ { 0x00014000, 0x02000, 10}, /* flash sector 10 - 8kb */ { 0x00016000, 0x02000, 11}, /* flash sector 11 - 8kb */ { 0x00018000, 0x02000, 12}, /* flash sector 12 - 8kb */ { 0x0001A000, 0x02000, 13}, /* flash sector 13 - 8kb */ { 0x0001C000, 0x02000, 14}, /* flash sector 14 - 8kb */ { 0x0001E000, 0x02000, 15}, /* flash sector 15 - 8kb */ #endif #if (BOOT_NVM_SIZE_KB > 128) { 0x00020000, 0x08000, 16}, /* flash sector 16 - 32kb */ { 0x00028000, 0x08000, 17}, /* flash sector 17 - 32kb */ { 0x00030000, 0x08000, 18}, /* flash sector 18 - 32kb */ { 0x00038000, 0x08000, 19}, /* flash sector 19 - 32kb */ #endif #if (BOOT_NVM_SIZE_KB > 256) { 0x00040000, 0x08000, 20}, /* flash sector 20 - 32kb */ { 0x00048000, 0x08000, 21}, /* flash sector 21 - 32kb */ { 0x00050000, 0x08000, 22}, /* flash sector 22 - 32kb */ { 0x00058000, 0x08000, 23}, /* flash sector 23 - 32kb */ { 0x00060000, 0x08000, 24}, /* flash sector 24 - 32kb */ { 0x00068000, 0x08000, 25}, /* flash sector 25 - 32kb */ { 0x00070000, 0x08000, 26}, /* flash sector 26 - 32kb */ { 0x00078000, 0x08000, 27}, /* flash sector 27 - 32kb */ #endif #if (BOOT_NVM_SIZE_KB > 512) #error "BOOT_NVM_SIZE_KB > 512 is currently not supported." #endif }; /**************************************************************************************** * Local data declarations ****************************************************************************************/ /* The smallest amount of flash that can be programmed is FLASH_WRITE_BLOCK_SIZE. A flash * block manager is implemented in this driver and stores info in this variable. Whenever * new data should be flashed, it is first added to a RAM buffer, which is part of this * variable. Whenever the RAM buffer, which has the size of a flash block, is full or * data needs to be written to a different block, the contents of the RAM buffer are * programmed to flash. The flash block manager requires some software overhead, yet * results is faster flash programming because data is first harvested, ideally until * there is enough to program an entire flash block, before the flash device is actually * operated on. */ static tFlashBlockInfo blockInfo; /* The first block of the user program holds the vector table, which on the STM32 is * also the where the checksum is written to. Is it likely that the vector table is * first flashed and then, at the end of the programming sequence, the checksum. This * means that this flash block need to be written to twice. Normally this is not a * problem with flash memory, as long as you write the same values to those bytes that * are not supposed to be changed and the locations where you do write to are still in * the erased 0xFF state. Unfortunately, writing twice to flash this way, does not work * reliably on all micros. This is why we need to have an extra block, the bootblock, * placed under the management of the block manager. This way is it possible to implement * functionality so that the bootblock is only written to once at the end of the * programming sequency. */ static tFlashBlockInfo bootBlockInfo; /**************************************************************************************** ** NAME: FlashInit ** PARAMETER: none ** RETURN VALUE: none ** DESCRIPTION: Initializes the flash driver. ** ****************************************************************************************/ void FlashInit(void) { /* enable the flash controller for writing */ MSC_Init(); /* init the flash block info structs by setting the address to an invalid address */ blockInfo.base_addr = FLASH_INVALID_ADDRESS; bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS; } /*** end of FlashInit ***/ /**************************************************************************************** ** NAME: FlashWrite ** PARAMETER: addr start address ** len length in bytes ** data pointer to the data buffer. ** RETURN VALUE: BLT_TRUE if successful, BLT_FALSE otherwise. ** DESCRIPTION: Writes the data to flash through a flash block manager. Note that this ** function also checks that no data is programmed outside the flash ** memory region, so the bootloader can never be overwritten. ** ****************************************************************************************/ blt_bool FlashWrite(blt_addr addr, blt_int32u len, blt_int8u *data) { blt_addr base_addr; /* make sure the addresses are within the flash device */ if ( (FlashGetSector(addr) == FLASH_INVALID_SECTOR) || \ (FlashGetSector(addr+len-1) == FLASH_INVALID_SECTOR) ) { return BLT_FALSE; } /* if this is the bootblock, then let the boot block manager handle it */ base_addr = (addr/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE; if (base_addr == flashLayout[0].sector_start) { /* let the boot block manager handle it */ return FlashAddToBlock(&bootBlockInfo, addr, data, len); } /* let the block manager handle it */ return FlashAddToBlock(&blockInfo, addr, data, len); } /*** end of FlashWrite ***/ /**************************************************************************************** ** NAME: FlashErase ** PARAMETER: addr start address ** len length in bytes ** RETURN VALUE: BLT_TRUE if successful, BLT_FALSE otherwise. ** DESCRIPTION: Erases the flash memory. Note that this function also checks that no ** data is erased outside the flash memory region, so the bootloader can ** never be erased. ** ****************************************************************************************/ blt_bool FlashErase(blt_addr addr, blt_int32u len) { blt_int8u first_sector; blt_int8u last_sector; /* obtain the first and last sector number */ first_sector = FlashGetSector(addr); last_sector = FlashGetSector(addr+len-1); /* check them */ if ( (first_sector == FLASH_INVALID_SECTOR) || (last_sector == FLASH_INVALID_SECTOR) ) { return BLT_FALSE; } /* erase the sectors */ return FlashEraseSectors(first_sector, last_sector); } /*** end of FlashErase ***/ /**************************************************************************************** ** NAME: FlashWriteChecksum ** PARAMETER: none ** RETURN VALUE: BLT_TRUE is successful, BTL_FALSE otherwise. ** DESCRIPTION: Writes a checksum of the user program to non-volatile memory. This is ** performed once the entire user program has been programmed. Through ** the checksum, the bootloader can check if the programming session ** was completed, which indicates that a valid user programming is ** present and can be started. ** ****************************************************************************************/ blt_bool FlashWriteChecksum(void) { blt_int32u signature_checksum = 0; /* for the STM32 target we defined the checksum as the Two's complement value of the * sum of the first 7 exception addresses. * * Layout of the vector table: * 0x00000000 Initial stack pointer * 0x00000004 Reset Handler * 0x00000008 NMI Handler * 0x0000000C Hard Fault Handler * 0x00000010 MPU Fault Handler * 0x00000014 Bus Fault Handler * 0x00000018 Usage Fault Handler * * signature_checksum = Two's complement of (SUM(exception address values)) * * the bootloader writes this 32-bit checksum value right after the vector table * of the user program. note that this means one extra dummy entry must be added * at the end of the user program's vector table to reserve storage space for the * checksum. */ /* first check that the bootblock contains valid data. if not, this means the * bootblock is not part of the reprogramming this time and therefore no * new checksum needs to be written */ if (bootBlockInfo.base_addr == FLASH_INVALID_ADDRESS) { return BLT_TRUE; } /* compute the checksum. note that the user program's vectors are not yet written * to flash but are present in the bootblock data structure at this point. */ signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x00])); signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x04])); signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x08])); signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x0C])); signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x10])); signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x14])); signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x18])); signature_checksum = ~signature_checksum; /* one's complement */ signature_checksum += 1; /* two's complement */ /* write the checksum */ return FlashWrite(flashLayout[0].sector_start+FLASH_VECTOR_TABLE_CS_OFFSET, sizeof(blt_addr), (blt_int8u*)&signature_checksum); } /*** end of FlashWriteChecksum ***/ /**************************************************************************************** ** NAME: FlashVerifyChecksum ** PARAMETER: none ** RETURN VALUE: BLT_TRUE is successful, BTL_FALSE otherwise. ** DESCRIPTION: Verifies the checksum, which indicates that a valid user program is ** present and can be started. ** ****************************************************************************************/ blt_bool FlashVerifyChecksum(void) { blt_int32u signature_checksum = 0; /* verify the checksum based on how it was written by CpuWriteChecksum() */ signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start)); signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+0x04)); signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+0x08)); signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+0x0C)); signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+0x10)); signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+0x14)); signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+0x18)); signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+FLASH_VECTOR_TABLE_CS_OFFSET)); /* sum should add up to an unsigned 32-bit value of 0 */ if (signature_checksum == 0) { /* checksum okay */ return BLT_TRUE; } /* checksum incorrect */ return BLT_FALSE; } /*** end of FlashVerifyChecksum ***/ /**************************************************************************************** ** NAME: FlashDone ** PARAMETER: none ** RETURN VALUE: BLT_TRUE is succesful, BLT_FALSE otherwise. ** DESCRIPTION: Finilizes the flash driver operations. There could still be data in ** the currently active block that needs to be flashed. ** ****************************************************************************************/ blt_bool FlashDone(void) { /* check if there is still data waiting to be programmed in the boot block */ if (bootBlockInfo.base_addr != FLASH_INVALID_ADDRESS) { if (FlashWriteBlock(&bootBlockInfo) == BLT_FALSE) { return BLT_FALSE; } } /* check if there is still data waiting to be programmed */ if (blockInfo.base_addr != FLASH_INVALID_ADDRESS) { if (FlashWriteBlock(&blockInfo) == BLT_FALSE) { return BLT_FALSE; } } /* disable the flash controller for writing */ MSC_Deinit(); /* still here so all is okay */ return BLT_TRUE; } /*** end of FlashDone ***/ /**************************************************************************************** ** NAME: FlashInitBlock ** PARAMETER: block pointer to flash block info structure to operate on. ** address base address of the block data. ** RETURN VALUE: BLT_TRUE is succesful, BLT_FALSE otherwise. ** DESCRIPTION: Copies data currently in flash to the block->data and sets the ** base address. ** ****************************************************************************************/ static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address) { /* check address alignment */ if ((address % FLASH_WRITE_BLOCK_SIZE) != 0) { return BLT_FALSE; } /* make sure that we are initializing a new block and not the same one */ if (block->base_addr == address) { /* block already initialized, so nothing to do */ return BLT_TRUE; } /* set the base address and copies the current data from flash */ block->base_addr = address; CpuMemCopy((blt_addr)block->data, address, FLASH_WRITE_BLOCK_SIZE); return BLT_TRUE; } /*** end of FlashInitBlock ***/ /**************************************************************************************** ** NAME: FlashSwitchBlock ** PARAMETER: block pointer to flash block info structure to operate on. ** base_addr base address for the next block ** RETURN VALUE: the pointer of the block info struct that is no being used, or a NULL ** pointer in case of error. ** DESCRIPTION: Switches blocks by programming the current one and initializing the ** next. ** ****************************************************************************************/ static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr) { /* check if a switch needs to be made away from the boot block. in this case the boot * block shouldn't be written yet, because this is done at the end of the programming * session by FlashDone(), this is right after the checksum was written. */ if (block == &bootBlockInfo) { /* switch from the boot block to the generic block info structure */ block = &blockInfo; } /* check if a switch back into the bootblock is needed. in this case the generic block * doesn't need to be written here yet. */ else if (base_addr == flashLayout[0].sector_start) { /* switch from the generic block to the boot block info structure */ block = &bootBlockInfo; base_addr = flashLayout[0].sector_start; } else { /* need to switch to a new block, so program the current one and init the next */ if (FlashWriteBlock(block) == BLT_FALSE) { return BLT_NULL; } } /* initialize tne new block when necessary */ if (FlashInitBlock(block, base_addr) == BLT_FALSE) { return BLT_NULL; } /* still here to all is okay */ return block; } /*** end of FlashSwitchBlock ***/ /**************************************************************************************** ** NAME: FlashAddToBlock ** PARAMETER: block pointer to flash block info structure to operate on. ** address flash destination address ** data pointer to the byte array with data ** len number of bytes to add to the block ** RETURN VALUE: BLT_TRUE if successful, BLT_FALSE otherwise. ** DESCRIPTION: Programming is done per block. This function adds data to the block ** that is currently collecting data to be written to flash. If the ** address is outside of the current block, the current block is written ** to flash an a new block is initialized. ** ****************************************************************************************/ static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address, blt_int8u *data, blt_int16u len) { blt_addr current_base_addr; blt_int8u *dst; blt_int8u *src; /* determine the current base address */ current_base_addr = (address/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE; /* make sure the blockInfo is not uninitialized */ if (block->base_addr == FLASH_INVALID_ADDRESS) { /* initialize the blockInfo struct for the current block */ if (FlashInitBlock(block, current_base_addr) == BLT_FALSE) { return BLT_FALSE; } } /* check if the new data fits in the current block */ if (block->base_addr != current_base_addr) { /* need to switch to a new block, so program the current one and init the next */ block = FlashSwitchBlock(block, current_base_addr); if (block == BLT_NULL) { return BLT_FALSE; } } /* add the data to the current block, but check for block overflow */ dst = &(block->data[address - block->base_addr]); src = data; do { /* keep the watchdog happy */ CopService(); /* buffer overflow? */ if ((blt_addr)(dst-&(block->data[0])) >= FLASH_WRITE_BLOCK_SIZE) { /* need to switch to a new block, so program the current one and init the next */ block = FlashSwitchBlock(block, current_base_addr+FLASH_WRITE_BLOCK_SIZE); if (block == BLT_NULL) { return BLT_FALSE; } /* reset destination pointer */ dst = &(block->data[0]); } /* write the data to the buffer */ *dst = *src; /* update pointers */ dst++; src++; /* decrement byte counter */ len--; } while (len > 0); /* still here so all is good */ return BLT_TRUE; } /*** end of FlashAddToBlock ***/ /**************************************************************************************** ** NAME: FlashWriteBlock ** PARAMETER: block pointer to flash block info structure to operate on. ** RETURN VALUE: BLT_TRUE if successful, BLT_FALSE otherwise. ** DESCRIPTION: Programs FLASH_WRITE_BLOCK_SIZE bytes to flash from the block->data ** array. ** ****************************************************************************************/ static blt_bool FlashWriteBlock(tFlashBlockInfo *block) { blt_int8u sector_num; blt_bool result = BLT_TRUE; blt_addr prog_addr; blt_int32u prog_data; blt_int32u word_cnt; /* check that address is actually within flash */ sector_num = FlashGetSector(block->base_addr); if (sector_num == FLASH_INVALID_SECTOR) { return BLT_FALSE; } /* program all words in the block one by one */ for (word_cnt=0; word_cnt<(FLASH_WRITE_BLOCK_SIZE/sizeof(blt_int32u)); word_cnt++) { prog_addr = block->base_addr + (word_cnt * sizeof(blt_int32u)); prog_data = *(volatile blt_int32u*)(&block->data[word_cnt * sizeof(blt_int32u)]); /* keep the watchdog happy */ CopService(); /* program a word */ if (MSC_WriteWord((uint32_t *)prog_addr, &prog_data, sizeof(blt_int32u)) != mscReturnOk) { result = BLT_FALSE; break; } /* verify that the written data is actually there */ if (*(volatile blt_int32u*)prog_addr != prog_data) { result = BLT_FALSE; break; } } /* still here so all is okay */ return result; } /*** end of FlashWriteBlock ***/ /**************************************************************************************** ** NAME: FlashCalcPageSize ** PARAMETER: none ** RETURN VALUE: The flash page size ** DESCRIPTION: Determines the flash page size for the specific EFM32 derivative. This ** is the minimum erase size. ** ****************************************************************************************/ static blt_int32u FlashCalcPageSize(void) { blt_int8u family = *(blt_int8u*)0x0FE081FE; if ( ( family == 71 ) || ( family == 73 ) ) { /* Gecko and Tiny, 'G' or 'I' */ return 512; } else if ( family == 72 ) { /* Giant, 'H' */ return 4096; } else { /* Leopard, 'J' */ return 2048; } } /*** end of FlashCalcPageSize ***/ /**************************************************************************************** ** NAME: FlashEraseSectors ** PARAMETER: first_sector first flash sector number ** last_sector last flash sector number ** RETURN VALUE: BLT_TRUE if successful, BLT_FALSE otherwise. ** DESCRIPTION: Erases the flash sectors from first_sector up until last_sector ** ****************************************************************************************/ static blt_bool FlashEraseSectors(blt_int8u first_sector, blt_int8u last_sector) { blt_int16u nr_of_blocks; blt_int16u block_cnt; blt_addr start_addr; blt_addr end_addr; blt_int32u erase_block_size; /* validate the sector numbers */ if (first_sector > last_sector) { return BLT_FALSE; } if ( (first_sector < flashLayout[0].sector_num) || \ (last_sector > flashLayout[FLASH_TOTAL_SECTORS-1].sector_num) ) { return BLT_FALSE; } /* determine the minimum erase size */ erase_block_size = FlashCalcPageSize(); /* determine how many blocks need to be erased */ start_addr = FlashGetSectorBaseAddr(first_sector); end_addr = FlashGetSectorBaseAddr(last_sector) + FlashGetSectorSize(last_sector) - 1; nr_of_blocks = (end_addr - start_addr + 1) / erase_block_size; /* erase all blocks one by one */ for (block_cnt=0; block_cnt= flashLayout[sectorIdx].sector_start) && \ (address < (flashLayout[sectorIdx].sector_start + \ flashLayout[sectorIdx].sector_size)) ) { /* return the sector number */ return flashLayout[sectorIdx].sector_num; } } /* still here so no valid sector found */ return FLASH_INVALID_SECTOR; } /*** end of FlashGetSector ***/ /**************************************************************************************** ** NAME: FlashGetSectorBaseAddr ** PARAMETER: sector sector to get the base address of. ** RETURN VALUE: flash sector base address or FLASH_INVALID_ADDRESS ** DESCRIPTION: Determines the flash sector base address. ** ****************************************************************************************/ static blt_addr FlashGetSectorBaseAddr(blt_int8u sector) { blt_int8u sectorIdx; /* search through the sectors to find the right one */ for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++) { /* keep the watchdog happy */ CopService(); if (flashLayout[sectorIdx].sector_num == sector) { return flashLayout[sectorIdx].sector_start; } } /* still here so no valid sector found */ return FLASH_INVALID_ADDRESS; } /*** end of FlashGetSectorBaseAddr ***/ /**************************************************************************************** ** NAME: FlashGetSectorSize ** PARAMETER: sector sector to get the size of. ** RETURN VALUE: flash sector size or 0 ** DESCRIPTION: Determines the flash sector size. ** ****************************************************************************************/ static blt_addr FlashGetSectorSize(blt_int8u sector) { blt_int8u sectorIdx; /* search through the sectors to find the right one */ for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++) { /* keep the watchdog happy */ CopService(); if (flashLayout[sectorIdx].sector_num == sector) { return flashLayout[sectorIdx].sector_size; } } /* still here so no valid sector found */ return 0; } /*** end of FlashGetSectorSize ***/ /*********************************** end of flash.c ************************************/