/** ****************************************************************************** * @file stm32g0xx_hal_adc.c * @author MCD Application Team * @brief This file provides firmware functions to manage the following * functionalities of the Analog to Digital Convertor (ADC) * peripheral: * + Initialization and de-initialization functions * ++ Initialization and Configuration of ADC * + Operation functions * ++ Start, stop, get result of conversions of regular * group, using 3 possible modes: polling, interruption or DMA. * + Control functions * ++ Channels configuration on regular group * ++ Analog Watchdog configuration * + State functions * ++ ADC state machine management * ++ Interrupts and flags management * Other functions (extended functions) are available in file * "stm32g0xx_hal_adc_ex.c". * @verbatim ============================================================================== ##### ADC peripheral features ##### ============================================================================== [..] (+) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution. (+) Interrupt generation at the end of regular conversion and in case of analog watchdog or overrun events. (+) Single and continuous conversion modes. (+) Scan mode for conversion of several channels sequentially. (+) Data alignment with in-built data coherency. (+) Programmable sampling time (common to group of channels) (+) External trigger (timer or EXTI) with configurable polarity (+) DMA request generation for transfer of conversions data of regular group. (+) ADC calibration (+) ADC conversion of regular group. (+) ADC supply requirements: 1.62 V to 3.6 V. (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to Vdda or to an external voltage reference). ##### How to use this driver ##### ============================================================================== [..] *** Configuration of top level parameters related to ADC *** ============================================================ [..] (#) Enable the ADC interface (++) As prerequisite, ADC clock must be configured at RCC top level. Caution: On STM32G0, ADC clock frequency max is 35MHz (refer to device datasheet). Therefore, ADC clock source from RCC and ADC clock prescaler must be configured to remain below this maximum frequency. (++) Two clock settings are mandatory: (+++) ADC clock (core clock, also possibly conversion clock). (+++) ADC clock (conversions clock). Four possible clock sources: synchronous clock from APB clock (same as ADC core clock) or asynchronous clock from RCC level: SYSCLK, HSI16, PLLPCLK. (+++) Example: Into HAL_ADC_MspInit() (recommended code location) or with other device clock parameters configuration: (+++) __HAL_RCC_ADC_CLK_ENABLE(); (mandatory: core clock) (++) ADC clock source and clock prescaler are configured at ADC level with parameter "ClockPrescaler" using function HAL_ADC_Init(). (#) ADC pins configuration (++) Enable the clock for the ADC GPIOs using macro __HAL_RCC_GPIOx_CLK_ENABLE() (++) Configure these ADC pins in analog mode using function HAL_GPIO_Init() (#) Optionally, in case of usage of ADC with interruptions: (++) Configure the NVIC for ADC using function HAL_NVIC_EnableIRQ(ADCx_IRQn) (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() into the function of corresponding ADC interruption vector ADCx_IRQHandler(). (#) Optionally, in case of usage of DMA: (++) Configure the DMA (DMA channel, mode normal or circular, ...) using function HAL_DMA_Init(). (++) Configure the NVIC for DMA using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() into the function of corresponding DMA interruption vector DMAx_Channelx_IRQHandler(). *** Configuration of ADC, group regular, channels parameters *** ================================================================ [..] (#) Configure the ADC parameters (resolution, data alignment, ...) and regular group parameters (conversion trigger, sequencer, ...) using function HAL_ADC_Init(). (#) Configure the channels for regular group parameters (channel number, channel rank into sequencer, ..., into regular group) using function HAL_ADC_ConfigChannel(). (#) Optionally, configure the analog watchdog parameters (channels monitored, thresholds, ...) using function HAL_ADC_AnalogWDGConfig(). *** Execution of ADC conversions *** ==================================== [..] (#) Optionally, perform an automatic ADC calibration to improve the conversion accuracy using function HAL_ADCEx_Calibration_Start(). (#) ADC driver can be used among three modes: polling, interruption, transfer by DMA. (++) ADC conversion by polling: (+++) Activate the ADC peripheral and start conversions using function HAL_ADC_Start() (+++) Wait for ADC conversion completion using function HAL_ADC_PollForConversion() (+++) Retrieve conversion results using function HAL_ADC_GetValue() (+++) Stop conversion and disable the ADC peripheral using function HAL_ADC_Stop() (++) ADC conversion by interruption: (+++) Activate the ADC peripheral and start conversions using function HAL_ADC_Start_IT() (+++) Wait for ADC conversion completion by call of function HAL_ADC_ConvCpltCallback() (this function must be implemented in user program) (+++) Retrieve conversion results using function HAL_ADC_GetValue() (+++) Stop conversion and disable the ADC peripheral using function HAL_ADC_Stop_IT() (++) ADC conversion with transfer by DMA: (+++) Activate the ADC peripheral and start conversions using function HAL_ADC_Start_DMA() (+++) Wait for ADC conversion completion by call of function HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback() (these functions must be implemented in user program) (+++) Conversion results are automatically transferred by DMA into destination variable address. (+++) Stop conversion and disable the ADC peripheral using function HAL_ADC_Stop_DMA() [..] (@) Callback functions must be implemented in user program: (+@) HAL_ADC_ErrorCallback() (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog) (+@) HAL_ADC_ConvCpltCallback() (+@) HAL_ADC_ConvHalfCpltCallback *** Deinitialization of ADC *** ============================================================ [..] (#) Disable the ADC interface (++) ADC clock can be hard reset and disabled at RCC top level. (++) Hard reset of ADC peripherals using macro __ADCx_FORCE_RESET(), __ADCx_RELEASE_RESET(). (++) ADC clock disable using the equivalent macro/functions as configuration step. (+++) Example: Into HAL_ADC_MspDeInit() (recommended code location) or with other device clock parameters configuration: (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14; (+++) RCC_OscInitStructure.HSI14State = RCC_HSI14_OFF; (if not used for system clock) (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure); (#) ADC pins configuration (++) Disable the clock for the ADC GPIOs using macro __HAL_RCC_GPIOx_CLK_DISABLE() (#) Optionally, in case of usage of ADC with interruptions: (++) Disable the NVIC for ADC using function HAL_NVIC_EnableIRQ(ADCx_IRQn) (#) Optionally, in case of usage of DMA: (++) Deinitialize the DMA using function HAL_DMA_Init(). (++) Disable the NVIC for DMA using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) [..] *** Callback registration *** ============================================= [..] The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1, allows the user to configure dynamically the driver callbacks. Use Functions @ref HAL_ADC_RegisterCallback() to register an interrupt callback. [..] Function @ref HAL_ADC_RegisterCallback() allows to register following callbacks: (+) ConvCpltCallback : ADC conversion complete callback (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback (+) ErrorCallback : ADC error callback (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback (+) EndOfSamplingCallback : ADC end of sampling callback (+) MspInitCallback : ADC Msp Init callback (+) MspDeInitCallback : ADC Msp DeInit callback This function takes as parameters the HAL peripheral handle, the Callback ID and a pointer to the user callback function. [..] Use function @ref HAL_ADC_UnRegisterCallback to reset a callback to the default weak function. [..] @ref HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle, and the Callback ID. This function allows to reset following callbacks: (+) ConvCpltCallback : ADC conversion complete callback (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback (+) ErrorCallback : ADC error callback (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback (+) EndOfSamplingCallback : ADC end of sampling callback (+) MspInitCallback : ADC Msp Init callback (+) MspDeInitCallback : ADC Msp DeInit callback [..] By default, after the @ref HAL_ADC_Init() and when the state is @ref HAL_ADC_STATE_RESET all callbacks are set to the corresponding weak functions: examples @ref HAL_ADC_ConvCpltCallback(), @ref HAL_ADC_ErrorCallback(). Exception done for MspInit and MspDeInit functions that are reset to the legacy weak functions in the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() only when these callbacks are null (not registered beforehand). [..] If MspInit or MspDeInit are not null, the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. [..] Callbacks can be registered/unregistered in @ref HAL_ADC_STATE_READY state only. Exception done MspInit/MspDeInit functions that can be registered/unregistered in @ref HAL_ADC_STATE_READY or @ref HAL_ADC_STATE_RESET state, thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. [..] Then, the user first registers the MspInit/MspDeInit user callbacks using @ref HAL_ADC_RegisterCallback() before calling @ref HAL_ADC_DeInit() or @ref HAL_ADC_Init() function. [..] When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or not defined, the callback registration feature is not available and all callbacks are set to the corresponding weak functions. @endverbatim ****************************************************************************** * @attention * *

© Copyright (c) 2018 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32g0xx_hal.h" /** @addtogroup STM32G0xx_HAL_Driver * @{ */ /** @defgroup ADC ADC * @brief ADC HAL module driver * @{ */ #ifdef HAL_ADC_MODULE_ENABLED /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @defgroup ADC_Private_Constants ADC Private Constants * @{ */ /* Fixed timeout values for ADC calibration, enable settling time, disable */ /* settling time. */ /* Values defined to be higher than worst cases: low clock frequency, */ /* maximum prescaler. */ /* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */ /* prescaler 4, sampling time 7.5 ADC clock cycles, resolution 12 bits. */ /* Unit: ms */ #define ADC_ENABLE_TIMEOUT (2UL) #define ADC_DISABLE_TIMEOUT (2UL) #define ADC_STOP_CONVERSION_TIMEOUT (2UL) #define ADC_CHANNEL_CONF_RDY_TIMEOUT (1UL) /* Register CHSELR bits corresponding to ranks 2 to 8 . */ #define ADC_CHSELR_SQ2_TO_SQ8 (ADC_CHSELR_SQ2 | ADC_CHSELR_SQ3 | ADC_CHSELR_SQ4 | ADC_CHSELR_SQ5 | ADC_CHSELR_SQ6 | ADC_CHSELR_SQ7 | ADC_CHSELR_SQ8) /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /** @defgroup ADC_Private_Functions ADC Private Functions * @{ */ static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma); static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma); static void ADC_DMAError(DMA_HandleTypeDef *hdma); /** * @} */ /* Exported functions ---------------------------------------------------------*/ /** @defgroup ADC_Exported_Functions ADC Exported Functions * @{ */ /** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions * @brief ADC Initialization and Configuration functions * @verbatim =============================================================================== ##### Initialization and de-initialization functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the ADC. (+) De-initialize the ADC. @endverbatim * @{ */ /** * @brief Initialize the ADC peripheral and regular group according to * parameters specified in structure "ADC_InitTypeDef". * @note As prerequisite, ADC clock must be configured at RCC top level * (refer to description of RCC configuration for ADC * in header of this file). * @note Possibility to update parameters on the fly: * This function initializes the ADC MSP (HAL_ADC_MspInit()) only when * coming from ADC state reset. Following calls to this function can * be used to reconfigure some parameters of ADC_InitTypeDef * structure on the fly, without modifying MSP configuration. If ADC * MSP has to be modified again, HAL_ADC_DeInit() must be called * before HAL_ADC_Init(). * The setting of these parameters is conditioned to ADC state. * For parameters constraints, see comments of structure * "ADC_InitTypeDef". * @note This function configures the ADC within 2 scopes: scope of entire * ADC and scope of regular group. For parameters details, see comments * of structure "ADC_InitTypeDef". * @param hadc ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; uint32_t tmpCFGR1 = 0UL; uint32_t tmpCFGR2 = 0UL; uint32_t tmp_adc_reg_is_conversion_on_going; __IO uint32_t wait_loop_index = 0UL; /* Check ADC handle */ if(hadc == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler)); assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution)); assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests)); assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoPowerOff)); assert_param(IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon1)); assert_param(IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon2)); assert_param(IS_FUNCTIONAL_STATE(hadc->Init.OversamplingMode)); assert_param(IS_ADC_TRIGGER_FREQ(hadc->Init.TriggerFrequencyMode)); if(hadc->Init.ScanConvMode != ADC_SCAN_DISABLE) { assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode)); if(hadc->Init.ScanConvMode == ADC_SCAN_ENABLE) { assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion)); } } /* ADC group regular discontinuous mode can be enabled only if */ /* continuous mode is disabled. */ assert_param(!((hadc->Init.DiscontinuousConvMode == ENABLE) && (hadc->Init.ContinuousConvMode == ENABLE))); /* Actions performed only if ADC is coming from state reset: */ /* - Initialization of ADC MSP */ if(hadc->State == HAL_ADC_STATE_RESET) { #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) /* Init the ADC Callback settings */ hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */ hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */ hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */ hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */ hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback; /* Legacy weak callback */ hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback; /* Legacy weak callback */ hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback; /* Legacy weak callback */ if (hadc->MspInitCallback == NULL) { hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ } /* Init the low level hardware */ hadc->MspInitCallback(hadc); #else /* Init the low level hardware */ HAL_ADC_MspInit(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Set ADC error code to none */ ADC_CLEAR_ERRORCODE(hadc); /* Initialize Lock */ hadc->Lock = HAL_UNLOCKED; } if(LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL) { /* Enable ADC internal voltage regulator */ LL_ADC_EnableInternalRegulator(hadc->Instance); /* Delay for ADC stabilization time */ /* Wait loop initialization and execution */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles, scaling in us split to not */ /* exceed 32 bits register capacity and handle low frequency. */ wait_loop_index = ((LL_ADC_DELAY_INTERNAL_REGUL_STAB_US / 10UL) * (SystemCoreClock / (100000UL * 2UL))); while(wait_loop_index != 0UL) { wait_loop_index--; } } /* Verification that ADC voltage regulator is correctly enabled, whether */ /* or not ADC is coming from state reset (if any potential problem of */ /* clocking, voltage regulator would not be enabled). */ if(LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); tmp_hal_status = HAL_ERROR; } /* Configuration of ADC parameters if previous preliminary actions are */ /* correctly completed and if there is no conversion on going on regular */ /* group (ADC may already be enabled at this point if HAL_ADC_Init() is */ /* called to update a parameter on the fly). */ tmp_adc_reg_is_conversion_on_going = LL_ADC_REG_IsConversionOngoing(hadc->Instance); if( ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) && (tmp_adc_reg_is_conversion_on_going == 0UL) ) { /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_BUSY_INTERNAL); /* Configuration of common ADC parameters */ /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated only when ADC is disabled: */ /* - Internal voltage regulator (no parameter in HAL ADC init structure) */ /* - Clock configuration */ /* - ADC resolution */ /* Note: If low power mode AutoPowerOff is enabled, ADC enable */ /* and disable phases are performed automatically by hardware */ /* (in this case, flag ADC_FLAG_RDY is not set). */ if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) { /* Some parameters of this register are not reset, since they are set */ /* by other functions and must be kept in case of usage of this */ /* function on the fly (update of a parameter of ADC_InitTypeDef */ /* without needing to reconfigure all other ADC groups/channels */ /* parameters): */ /* - internal measurement paths: Vbat, temperature sensor, Vref */ /* (set into HAL_ADC_ConfigChannel() ) */ /* Configuration of ADC resolution */ MODIFY_REG(hadc->Instance->CFGR1, ADC_CFGR1_RES , hadc->Init.Resolution ); /* Configuration of ADC clock mode: clock source AHB or HSI with */ /* selectable prescaler. */ MODIFY_REG(hadc->Instance->CFGR2 , ADC_CFGR2_CKMODE , hadc->Init.ClockPrescaler & ADC_CFGR2_CKMODE ); if (((hadc->Init.ClockPrescaler) != ADC_CLOCK_SYNC_PCLK_DIV1) && ((hadc->Init.ClockPrescaler) != ADC_CLOCK_SYNC_PCLK_DIV2) && ((hadc->Init.ClockPrescaler) != ADC_CLOCK_SYNC_PCLK_DIV4)) { MODIFY_REG(ADC1_COMMON->CCR , ADC_CCR_PRESC , hadc->Init.ClockPrescaler & ADC_CCR_PRESC ); } } /* Configuration of ADC: */ /* - discontinuous mode */ /* - LowPowerAutoWait mode */ /* - LowPowerAutoPowerOff mode */ /* - continuous conversion mode */ /* - overrun */ /* - external trigger to start conversion */ /* - external trigger polarity */ /* - data alignment */ /* - resolution */ /* - scan direction */ /* - DMA continuous request */ tmpCFGR1 |= (ADC_CFGR1_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) | ADC_CFGR1_AUTOOFF((uint32_t)hadc->Init.LowPowerAutoPowerOff) | ADC_CFGR1_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | ADC_CFGR1_OVERRUN(hadc->Init.Overrun) | hadc->Init.DataAlign | ADC_SCAN_SEQ_MODE(hadc->Init.ScanConvMode) | ADC_CFGR1_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests) ); /* Update setting of discontinuous mode only if continuous mode is disabled */ if (hadc->Init.DiscontinuousConvMode == ENABLE) { if (hadc->Init.ContinuousConvMode == DISABLE) { /* Enable the selected ADC group regular discontinuous mode */ tmpCFGR1 |= ADC_CFGR1_DISCEN; } else { /* ADC regular group discontinuous was intended to be enabled, */ /* but ADC regular group modes continuous and sequencer discontinuous */ /* cannot be enabled simultaneously. */ /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); } } /* Enable external trigger if trigger selection is different of software */ /* start. */ /* Note: This configuration keeps the hardware feature of parameter */ /* ExternalTrigConvEdge "trigger edge none" equivalent to */ /* software start. */ if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) { tmpCFGR1 |= ( (hadc->Init.ExternalTrigConv & ADC_CFGR1_EXTSEL) | hadc->Init.ExternalTrigConvEdge ); } /* Configuration of ADC: */ /* - oversampling enable */ /* - oversampling ratio */ /* - oversampling shift */ /* - oversampling discontinuous mode (triggered mode) */ /* - trigger frequency mode */ tmpCFGR2 |= ( hadc->Init.Oversampling.Ratio | hadc->Init.Oversampling.RightBitShift | hadc->Init.Oversampling.TriggeredMode | hadc->Init.TriggerFrequencyMode ); if (hadc->Init.OversamplingMode == ENABLE) { SET_BIT(tmpCFGR2, ADC_CFGR2_OVSE); } /* Update ADC configuration register with previous settings */ MODIFY_REG(hadc->Instance->CFGR1, ADC_CFGR1_DISCEN | ADC_CFGR1_AUTOFF | ADC_CFGR1_WAIT | ADC_CFGR1_CONT | ADC_CFGR1_OVRMOD | ADC_CFGR1_EXTSEL | ADC_CFGR1_EXTEN | ADC_CFGR1_ALIGN | ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG , tmpCFGR1 ); MODIFY_REG(hadc->Instance->CFGR2, ADC_CFGR2_LFTRIG | ADC_CFGR2_OVSE | ADC_CFGR2_OVSR | ADC_CFGR2_OVSS | ADC_CFGR2_TOVS , tmpCFGR2 ); /* Channel sampling time configuration */ LL_ADC_SetSamplingTimeCommonChannels(hadc->Instance, LL_ADC_SAMPLINGTIME_COMMON_1, hadc->Init.SamplingTimeCommon1); LL_ADC_SetSamplingTimeCommonChannels(hadc->Instance, LL_ADC_SAMPLINGTIME_COMMON_2, hadc->Init.SamplingTimeCommon2); /* Configuration of regular group sequencer: */ /* - if scan mode is disabled, regular channels sequence length is set to */ /* 0x00: 1 channel converted (channel on regular rank 1) */ /* Parameter "NbrOfConversion" is discarded. */ /* Note: Scan mode is not present by hardware on this device, but */ /* emulated by software for alignment over all STM32 devices. */ /* - if scan mode is enabled, regular channels sequence length is set to */ /* parameter "NbrOfConversion". */ /* Channels must be configured into each rank using function */ /* "HAL_ADC_ConfigChannel()". */ if(hadc->Init.ScanConvMode == ADC_SCAN_DISABLE) { /* Set sequencer scan length by clearing ranks above rank 1 */ /* and do not modify rank 1 value. */ SET_BIT(hadc->Instance->CHSELR, ADC_CHSELR_SQ2_TO_SQ8); } else if(hadc->Init.ScanConvMode == ADC_SCAN_ENABLE) { /* Count number of ranks available in HAL ADC handle variable */ uint32_t ADCGroupRegularSequencerRanksCount; /* Parse all ranks from 1 to 8 */ for(ADCGroupRegularSequencerRanksCount = 0UL; ADCGroupRegularSequencerRanksCount < (8UL); ADCGroupRegularSequencerRanksCount++) { /* Check each sequencer rank until value of end of sequence */ if(((hadc->ADCGroupRegularSequencerRanks >> (ADCGroupRegularSequencerRanksCount * 4UL)) & ADC_CHSELR_SQ1) == ADC_CHSELR_SQ1) { break; } } if(ADCGroupRegularSequencerRanksCount == 1UL) { /* Set ADC group regular sequencer: */ /* Set sequencer scan length by clearing ranks above rank 1 */ /* and do not modify rank 1 value. */ SET_BIT(hadc->Instance->CHSELR, ADC_CHSELR_SQ2_TO_SQ8); } else { /* Set ADC group regular sequencer: */ /* - Set ADC group regular sequencer to value memorized */ /* in HAL ADC handle */ /* Note: This value maybe be initialized at a unknown value, */ /* therefore afer the first call of "HAL_ADC_Init()", */ /* each rank corresponding to parameter "NbrOfConversion" */ /* must be set using "HAL_ADC_ConfigChannel()". */ /* - Set sequencer scan length by clearing ranks above maximum rank */ /* and do not modify other ranks value. */ MODIFY_REG(hadc->Instance->CHSELR, ADC_CHSELR_SQ_ALL, (ADC_CHSELR_SQ2_TO_SQ8 << (((hadc->Init.NbrOfConversion - 1UL) * ADC_REGULAR_RANK_2) & 0x1FUL)) | (hadc->ADCGroupRegularSequencerRanks) ); } } /* Check back that ADC registers have effectively been configured to */ /* ensure of no potential problem of ADC core peripheral clocking. */ /* Check through register CFGR1 (excluding analog watchdog configuration: */ /* set into separate dedicated function, and bits of ADC resolution set */ /* out of temporary variable 'tmpCFGR1'). */ if ((hadc->Instance->CFGR1 & ~(ADC_CFGR1_AWD1CH | ADC_CFGR1_AWD1EN | ADC_CFGR1_AWD1SGL | ADC_CFGR1_RES)) == tmpCFGR1) { /* Set ADC error code to none */ ADC_CLEAR_ERRORCODE(hadc); /* Set the ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_READY); } else { /* Update ADC state machine to error */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); tmp_hal_status = HAL_ERROR; } } else { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); tmp_hal_status = HAL_ERROR; } /* Return function status */ return tmp_hal_status; } /** * @brief Deinitialize the ADC peripheral registers to their default reset * values, with deinitialization of the ADC MSP. * @note For devices with several ADCs: reset of ADC common registers is done * only if all ADCs sharing the same common group are disabled. * (function "HAL_ADC_MspDeInit()" is also called under the same conditions: * all ADC instances use the same core clock at RCC level, disabling * the core clock reset all ADC instances). * If this is not the case, reset of these common parameters reset is * bypassed without error reporting: it can be the intended behavior in * case of reset of a single ADC while the other ADCs sharing the same * common group is still running. * @note By default, HAL_ADC_DeInit() set ADC in mode deep power-down: * this saves more power by reducing leakage currents * and is particularly interesting before entering MCU low-power modes. * @param hadc ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status; /* Check ADC handle */ if(hadc == NULL) { return HAL_ERROR; } /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL); /* Stop potential conversion on going, on regular group */ tmp_hal_status = ADC_ConversionStop(hadc); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmp_hal_status == HAL_OK) { /* Disable the ADC peripheral */ tmp_hal_status = ADC_Disable(hadc); /* Check if ADC is effectively disabled */ if (tmp_hal_status == HAL_OK) { /* Change ADC state */ hadc->State = HAL_ADC_STATE_READY; } } /* Note: HAL ADC deInit is done independently of ADC conversion stop */ /* and disable return status. In case of status fail, attempt to */ /* perform deinitialization anyway and it is up user code in */ /* in HAL_ADC_MspDeInit() to reset the ADC peripheral using */ /* system RCC hard reset. */ /* ========== Reset ADC registers ========== */ /* Reset register IER */ __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD3 | ADC_IT_AWD2 | ADC_IT_AWD1 | ADC_IT_OVR | ADC_IT_EOS | ADC_IT_EOC | ADC_IT_EOSMP | ADC_IT_RDY ) ); /* Reset register ISR */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD3 | ADC_FLAG_AWD2 | ADC_FLAG_AWD1 | ADC_FLAG_OVR | ADC_FLAG_EOS | ADC_FLAG_EOC | ADC_FLAG_EOSMP | ADC_FLAG_RDY ) ); /* Reset register CR */ /* Bits ADC_CR_ADCAL, ADC_CR_ADSTP, ADC_CR_ADSTART are in access mode */ /* "read-set": no direct reset applicable. */ /* Reset register CFGR1 */ hadc->Instance->CFGR1 &= ~(ADC_CFGR1_AWD1CH | ADC_CFGR1_AWD1EN | ADC_CFGR1_AWD1SGL | ADC_CFGR1_DISCEN | ADC_CFGR1_AUTOFF | ADC_CFGR1_WAIT | ADC_CFGR1_CONT | ADC_CFGR1_OVRMOD | ADC_CFGR1_EXTEN | ADC_CFGR1_EXTSEL | ADC_CFGR1_ALIGN | ADC_CFGR1_RES | ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG | ADC_CFGR1_DMAEN ); /* Reset register CFGR2 */ /* Note: Update of ADC clock mode is conditioned to ADC state disabled: */ /* already done above. */ hadc->Instance->CFGR2 &= ~ADC_CFGR2_CKMODE; /* Reset register SMPR */ hadc->Instance->SMPR &= ~ADC_SMPR_SMP1; /* Reset register TR1 */ hadc->Instance->TR1 &= ~(ADC_TR1_HT1 | ADC_TR1_LT1); /* Reset register CHSELR */ hadc->Instance->CHSELR &= ~(ADC_CHSELR_SQ_ALL); /* Reset register DR */ /* bits in access mode read only, no direct reset applicable */ /* Reset register CCR */ ADC1_COMMON->CCR &= ~(ADC_CCR_VBATEN | ADC_CCR_TSEN | ADC_CCR_VREFEN | ADC_CCR_PRESC); /* ========== Hard reset ADC peripheral ========== */ /* Performs a global reset of the entire ADC peripheral: ADC state is */ /* forced to a similar state after device power-on. */ /* If needed, copy-paste and uncomment the following reset code into */ /* function "void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)": */ /* */ /* __HAL_RCC_ADC1_FORCE_RESET() */ /* __HAL_RCC_ADC1_RELEASE_RESET() */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) if (hadc->MspDeInitCallback == NULL) { hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ } /* DeInit the low level hardware */ hadc->MspDeInitCallback(hadc); #else /* DeInit the low level hardware */ HAL_ADC_MspDeInit(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Reset HAL ADC handle variable */ hadc->ADCGroupRegularSequencerRanks = 0x00000000UL; /* Set ADC error code to none */ ADC_CLEAR_ERRORCODE(hadc); /* Set ADC state */ hadc->State = HAL_ADC_STATE_RESET; /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Initialize the ADC MSP. * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_MspInit must be implemented in the user file. */ } /** * @brief DeInitialize the ADC MSP. * @param hadc ADC handle * @note All ADC instances use the same core clock at RCC level, disabling * the core clock reset all ADC instances). * @retval None */ __weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_MspDeInit must be implemented in the user file. */ } #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) /** * @brief Register a User ADC Callback * To be used instead of the weak predefined callback * @param hadc Pointer to a ADC_HandleTypeDef structure that contains * the configuration information for the specified ADC. * @param CallbackID ID of the callback to be registered * This parameter can be one of the following values: * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID * @param pCallback pointer to the Callback function * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback) { HAL_StatusTypeDef status = HAL_OK; if (pCallback == NULL) { /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; return HAL_ERROR; } if ((hadc->State & HAL_ADC_STATE_READY) != 0UL) { switch (CallbackID) { case HAL_ADC_CONVERSION_COMPLETE_CB_ID : hadc->ConvCpltCallback = pCallback; break; case HAL_ADC_CONVERSION_HALF_CB_ID : hadc->ConvHalfCpltCallback = pCallback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : hadc->LevelOutOfWindowCallback = pCallback; break; case HAL_ADC_ERROR_CB_ID : hadc->ErrorCallback = pCallback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID : hadc->LevelOutOfWindow2Callback = pCallback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID : hadc->LevelOutOfWindow3Callback = pCallback; break; case HAL_ADC_END_OF_SAMPLING_CB_ID : hadc->EndOfSamplingCallback = pCallback; break; case HAL_ADC_MSPINIT_CB_ID : hadc->MspInitCallback = pCallback; break; case HAL_ADC_MSPDEINIT_CB_ID : hadc->MspDeInitCallback = pCallback; break; default : /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else if (HAL_ADC_STATE_RESET == hadc->State) { switch (CallbackID) { case HAL_ADC_MSPINIT_CB_ID : hadc->MspInitCallback = pCallback; break; case HAL_ADC_MSPDEINIT_CB_ID : hadc->MspDeInitCallback = pCallback; break; default : /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else { /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } /** * @brief Unregister a ADC Callback * ADC callback is redirected to the weak predefined callback * @param hadc Pointer to a ADC_HandleTypeDef structure that contains * the configuration information for the specified ADC. * @param CallbackID ID of the callback to be unregistered * This parameter can be one of the following values: * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID) { HAL_StatusTypeDef status = HAL_OK; if ((hadc->State & HAL_ADC_STATE_READY) != 0) { switch (CallbackID) { case HAL_ADC_CONVERSION_COMPLETE_CB_ID : hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; break; case HAL_ADC_CONVERSION_HALF_CB_ID : hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; break; case HAL_ADC_ERROR_CB_ID : hadc->ErrorCallback = HAL_ADC_ErrorCallback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID : hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback; break; case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID : hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback; break; case HAL_ADC_END_OF_SAMPLING_CB_ID : hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback; break; case HAL_ADC_MSPINIT_CB_ID : hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ break; case HAL_ADC_MSPDEINIT_CB_ID : hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ break; default : /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else if (HAL_ADC_STATE_RESET == hadc->State) { switch (CallbackID) { case HAL_ADC_MSPINIT_CB_ID : hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ break; case HAL_ADC_MSPDEINIT_CB_ID : hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ break; default : /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; break; } } else { /* Update the error code */ hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; /* Return error status */ status = HAL_ERROR; } return status; } #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /** * @} */ /** @defgroup ADC_Exported_Functions_Group2 ADC Input and Output operation functions * @brief ADC IO operation functions * @verbatim =============================================================================== ##### IO operation functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Start conversion of regular group. (+) Stop conversion of regular group. (+) Poll for conversion complete on regular group. (+) Poll for conversion event. (+) Get result of regular channel conversion. (+) Start conversion of regular group and enable interruptions. (+) Stop conversion of regular group and disable interruptions. (+) Handle ADC interrupt request (+) Start conversion of regular group and enable DMA transfer. (+) Stop conversion of regular group and disable ADC DMA transfer. @endverbatim * @{ */ /** * @brief Enable ADC, start conversion of regular group. * @note Interruptions enabled in this function: None. * @param hadc ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Perform ADC enable and conversion start if no conversion is on going */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) { /* Process locked */ __HAL_LOCK(hadc); /* Enable the ADC peripheral */ tmp_hal_status = ADC_Enable(hadc); /* Start conversion if ADC is effectively enabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ /* - Clear state bitfield related to regular group conversion results */ /* - Set state bitfield related to regular operation */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, HAL_ADC_STATE_REG_BUSY); /* Set ADC error code */ /* Reset all ADC error code fields */ ADC_CLEAR_ERRORCODE(hadc); /* Clear ADC group regular conversion flag and overrun flag */ /* (To ensure of no unknown state from potential previous ADC operations) */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); /* Process unlocked */ /* Unlock before starting ADC conversions: in case of potential */ /* interruption, to let the process to ADC IRQ Handler. */ __HAL_UNLOCK(hadc); /* Enable conversion of regular group. */ /* If software start has been selected, conversion starts immediately. */ /* If external trigger has been selected, conversion will start at next */ /* trigger event. */ /* Start ADC group regular conversion */ LL_ADC_REG_StartConversion(hadc->Instance); } else { /* Process unlocked */ __HAL_UNLOCK(hadc); } } else { tmp_hal_status = HAL_BUSY; } /* Return function status */ return tmp_hal_status; } /** * @brief Stop ADC conversion of regular group (and injected channels in * case of auto_injection mode), disable ADC peripheral. * @note: ADC peripheral disable is forcing stop of potential * conversion on injected group. If injected group is under use, it * should be preliminarily stopped using HAL_ADCEx_InjectedStop function. * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* 1. Stop potential conversion on going, on ADC group regular */ tmp_hal_status = ADC_ConversionStop(hadc); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmp_hal_status == HAL_OK) { /* 2. Disable the ADC peripheral */ tmp_hal_status = ADC_Disable(hadc); /* Check if ADC is effectively disabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_READY); } } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Wait for regular group conversion to be completed. * @note ADC conversion flags EOS (end of sequence) and EOC (end of * conversion) are cleared by this function, with an exception: * if low power feature "LowPowerAutoWait" is enabled, flags are * not cleared to not interfere with this feature until data register * is read using function HAL_ADC_GetValue(). * @note This function cannot be used in a particular setup: ADC configured * in DMA mode and polling for end of each conversion (ADC init * parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV). * In this case, DMA resets the flag EOC and polling cannot be * performed on each conversion. Nevertheless, polling can still * be performed on the complete sequence (ADC init * parameter "EOCSelection" set to ADC_EOC_SEQ_CONV). * @param hadc ADC handle * @param Timeout Timeout value in millisecond. * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout) { uint32_t tickstart; uint32_t tmp_Flag_End; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* If end of conversion selected to end of sequence conversions */ if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV) { tmp_Flag_End = ADC_FLAG_EOS; } /* If end of conversion selected to end of unitary conversion */ else /* ADC_EOC_SINGLE_CONV */ { /* Verification that ADC configuration is compliant with polling for */ /* each conversion: */ /* Particular case is ADC configured in DMA mode and ADC sequencer with */ /* several ranks and polling for end of each conversion. */ /* For code simplicity sake, this particular case is generalized to */ /* ADC configured in DMA mode and and polling for end of each conversion. */ if ((hadc->Instance->CFGR1 & ADC_CFGR1_DMAEN) != 0UL) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); return HAL_ERROR; } else { tmp_Flag_End = (ADC_FLAG_EOC); } } /* Get tick count */ tickstart = HAL_GetTick(); /* Wait until End of unitary conversion or sequence conversions flag is raised */ while((hadc->Instance->ISR & tmp_Flag_End) == 0UL) { /* Check if timeout is disabled (set to infinite wait) */ if(Timeout != HAL_MAX_DELAY) { if(((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL)) { /* Update ADC state machine to timeout */ SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); /* Process unlocked */ __HAL_UNLOCK(hadc); return HAL_TIMEOUT; } } } /* Update ADC state machine */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); /* Determine whether any further conversion upcoming on group regular */ /* by external trigger, continuous mode or scan sequence on going. */ if( (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) && (hadc->Init.ContinuousConvMode == DISABLE) ) { /* Check whether end of sequence is reached */ if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) ) { /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ /* ADSTART==0 (no conversion on going) */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) { /* Disable ADC end of single conversion interrupt on group regular */ /* Note: Overrun interrupt was enabled with EOC interrupt in */ /* HAL_Start_IT(), but is not disabled here because can be used */ /* by overrun IRQ process below. */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_READY); } else { /* Change ADC state to error state */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); } } } /* Clear end of conversion flag of regular group if low power feature */ /* "LowPowerAutoWait " is disabled, to not interfere with this feature */ /* until data register is read using function HAL_ADC_GetValue(). */ if (hadc->Init.LowPowerAutoWait == DISABLE) { /* Clear regular group conversion flag */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); } /* Return function status */ return HAL_OK; } /** * @brief Poll for ADC event. * @param hadc ADC handle * @param EventType the ADC event type. * This parameter can be one of the following values: * @arg @ref ADC_EOSMP_EVENT ADC End of Sampling event * @arg @ref ADC_AWD1_EVENT ADC Analog watchdog 1 event (main analog watchdog, present on all STM32 devices) * @arg @ref ADC_AWD2_EVENT ADC Analog watchdog 2 event (additional analog watchdog, not present on all STM32 families) * @arg @ref ADC_AWD3_EVENT ADC Analog watchdog 3 event (additional analog watchdog, not present on all STM32 families) * @arg @ref ADC_OVR_EVENT ADC Overrun event * @param Timeout Timeout value in millisecond. * @note The relevant flag is cleared if found to be set, except for ADC_FLAG_OVR. * Indeed, the latter is reset only if hadc->Init.Overrun field is set * to ADC_OVR_DATA_OVERWRITTEN. Otherwise, data register may be potentially overwritten * by a new converted data as soon as OVR is cleared. * To reset OVR flag once the preserved data is retrieved, the user can resort * to macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout) { uint32_t tickstart; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_EVENT_TYPE(EventType)); /* Get tick count */ tickstart = HAL_GetTick(); /* Check selected event flag */ while(__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL) { /* Check if timeout is disabled (set to infinite wait) */ if(Timeout != HAL_MAX_DELAY) { if(((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL)) { /* Update ADC state machine to timeout */ SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); /* Process unlocked */ __HAL_UNLOCK(hadc); return HAL_TIMEOUT; } } } switch(EventType) { /* End Of Sampling event */ case ADC_EOSMP_EVENT: /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP); /* Clear the End Of Sampling flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP); break; /* Analog watchdog (level out of window) event */ /* Note: In case of several analog watchdog enabled, if needed to know */ /* which one triggered and on which ADCx, test ADC state of analog watchdog */ /* flags HAL_ADC_STATE_AWD1/2/3 using function "HAL_ADC_GetState()". */ /* For example: */ /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " */ /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD2) != 0UL) " */ /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD3) != 0UL) " */ /* Check analog watchdog 1 flag */ case ADC_AWD_EVENT: /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1); break; /* Check analog watchdog 2 flag */ case ADC_AWD2_EVENT: /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD2); /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2); break; /* Check analog watchdog 3 flag */ case ADC_AWD3_EVENT: /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD3); /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3); break; /* Overrun event */ default: /* Case ADC_OVR_EVENT */ /* If overrun is set to overwrite previous data, overrun event is not */ /* considered as an error. */ /* (cf ref manual "Managing conversions without using the DMA and without */ /* overrun ") */ if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); /* Set ADC error code to overrun */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); } else { /* Clear ADC Overrun flag only if Overrun is set to ADC_OVR_DATA_OVERWRITTEN otherwise, data register is potentially overwritten by new converted data as soon as OVR is cleared. */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); } break; } /* Return function status */ return HAL_OK; } /** * @brief Enable ADC, start conversion of regular group with interruption. * @note Interruptions enabled in this function according to initialization * setting : EOC (end of conversion), EOS (end of sequence), * OVR overrun. * Each of these interruptions has its dedicated callback function. * @note To guarantee a proper reset of all interruptions once all the needed * conversions are obtained, HAL_ADC_Stop_IT() must be called to ensure * a correct stop of the IT-based conversions. * @note By default, HAL_ADC_Start_IT() does not enable the End Of Sampling * interruption. If required (e.g. in case of oversampling with trigger * mode), the user must: * 1. first clear the EOSMP flag if set with macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP) * 2. then enable the EOSMP interrupt with macro __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOSMP) * before calling HAL_ADC_Start_IT(). * @param hadc ADC handle * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Perform ADC enable and conversion start if no conversion is on going */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) { /* Process locked */ __HAL_LOCK(hadc); /* Enable the ADC peripheral */ tmp_hal_status = ADC_Enable(hadc); /* Start conversion if ADC is effectively enabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ /* - Clear state bitfield related to regular group conversion results */ /* - Set state bitfield related to regular operation */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, HAL_ADC_STATE_REG_BUSY); /* Set ADC error code */ /* Reset all ADC error code fields */ ADC_CLEAR_ERRORCODE(hadc); /* Clear ADC group regular conversion flag and overrun flag */ /* (To ensure of no unknown state from potential previous ADC operations) */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); /* Process unlocked */ /* Unlock before starting ADC conversions: in case of potential */ /* interruption, to let the process to ADC IRQ Handler. */ __HAL_UNLOCK(hadc); /* Disable all interruptions before enabling the desired ones */ __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); /* Enable ADC end of conversion interrupt */ switch(hadc->Init.EOCSelection) { case ADC_EOC_SEQ_CONV: __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOS); break; /* case ADC_EOC_SINGLE_CONV */ default: __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC); break; } /* Enable ADC overrun interrupt */ /* If hadc->Init.Overrun is set to ADC_OVR_DATA_PRESERVED, only then is ADC_IT_OVR enabled; otherwise data overwrite is considered as normal behavior and no CPU time is lost for a non-processed interruption */ if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) { __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); } /* Enable conversion of regular group. */ /* If software start has been selected, conversion starts immediately. */ /* If external trigger has been selected, conversion will start at next */ /* trigger event. */ /* Start ADC group regular conversion */ LL_ADC_REG_StartConversion(hadc->Instance); } else { /* Process unlocked */ __HAL_UNLOCK(hadc); } } else { tmp_hal_status = HAL_BUSY; } /* Return function status */ return tmp_hal_status; } /** * @brief Stop ADC conversion of regular group (and injected group in * case of auto_injection mode), disable interrution of * end-of-conversion, disable ADC peripheral. * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* 1. Stop potential conversion on going, on ADC group regular */ tmp_hal_status = ADC_ConversionStop(hadc); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmp_hal_status == HAL_OK) { /* Disable ADC end of conversion interrupt for regular group */ /* Disable ADC overrun interrupt */ __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); /* 2. Disable the ADC peripheral */ tmp_hal_status = ADC_Disable(hadc); /* Check if ADC is effectively disabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_READY); } } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Enable ADC, start conversion of regular group and transfer result through DMA. * @note Interruptions enabled in this function: * overrun (if applicable), DMA half transfer, DMA transfer complete. * Each of these interruptions has its dedicated callback function. * @param hadc ADC handle * @param pData Destination Buffer address. * @param Length Number of data to be transferred from ADC peripheral to memory * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length) { HAL_StatusTypeDef tmp_hal_status; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Perform ADC enable and conversion start if no conversion is on going */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) { /* Process locked */ __HAL_LOCK(hadc); /* Specific case for first call occurrence of this function (DMA transfer */ /* not activated and ADC disabled), DMA transfer must be activated */ /* with ADC disabled. */ if ((hadc->Instance->CFGR1 & ADC_CFGR1_DMAEN) == 0UL) { if (LL_ADC_IsEnabled(hadc->Instance) != 0UL) { /* Disable ADC */ LL_ADC_Disable(hadc->Instance); } /* Enable ADC DMA mode */ hadc->Instance->CFGR1 |= ADC_CFGR1_DMAEN; } /* Enable the ADC peripheral */ tmp_hal_status = ADC_Enable(hadc); /* Start conversion if ADC is effectively enabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ /* - Clear state bitfield related to regular group conversion results */ /* - Set state bitfield related to regular operation */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, HAL_ADC_STATE_REG_BUSY); /* Set ADC error code */ /* Reset all ADC error code fields */ ADC_CLEAR_ERRORCODE(hadc); /* Set the DMA transfer complete callback */ hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; /* Set the DMA half transfer complete callback */ hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; /* Set the DMA error callback */ hadc->DMA_Handle->XferErrorCallback = ADC_DMAError; /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */ /* start (in case of SW start): */ /* Clear regular group conversion flag and overrun flag */ /* (To ensure of no unknown state from potential previous ADC */ /* operations) */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); /* Process unlocked */ /* Unlock before starting ADC conversions: in case of potential */ /* interruption, to let the process to ADC IRQ Handler. */ __HAL_UNLOCK(hadc); /* Enable ADC overrun interrupt */ __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); /* Start the DMA channel */ tmp_hal_status = HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length); /* Enable conversion of regular group. */ /* If software start has been selected, conversion starts immediately. */ /* If external trigger has been selected, conversion will start at next */ /* trigger event. */ /* Start ADC group regular conversion */ LL_ADC_REG_StartConversion(hadc->Instance); } } else { tmp_hal_status = HAL_BUSY; } /* Return function status */ return tmp_hal_status; } /** * @brief Stop ADC conversion of regular group (and injected group in * case of auto_injection mode), disable ADC DMA transfer, disable * ADC peripheral. * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc) { HAL_StatusTypeDef tmp_hal_status; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Process locked */ __HAL_LOCK(hadc); /* 1. Stop potential ADC group regular conversion on going */ tmp_hal_status = ADC_ConversionStop(hadc); /* Disable ADC peripheral if conversions are effectively stopped */ if (tmp_hal_status == HAL_OK) { /* Disable the DMA channel (in case of DMA in circular mode or stop */ /* while DMA transfer is on going) */ if(hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY) { tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); /* Check if DMA channel effectively disabled */ if (tmp_hal_status != HAL_OK) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); } } /* Disable ADC overrun interrupt */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); /* 2. Disable the ADC peripheral */ /* Update "tmp_hal_status" only if DMA channel disabling passed, to keep */ /* in memory a potential failing status. */ if (tmp_hal_status == HAL_OK) { tmp_hal_status = ADC_Disable(hadc); } else { (void)ADC_Disable(hadc); } /* Check if ADC is effectively disabled */ if (tmp_hal_status == HAL_OK) { /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_READY); } /* Disable ADC DMA (ADC DMA configuration of continuous requests is kept) */ CLEAR_BIT(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN); } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Get ADC regular group conversion result. * @note Reading register DR automatically clears ADC flag EOC * (ADC group regular end of unitary conversion). * @note This function does not clear ADC flag EOS * (ADC group regular end of sequence conversion). * Occurrence of flag EOS rising: * - If sequencer is composed of 1 rank, flag EOS is equivalent * to flag EOC. * - If sequencer is composed of several ranks, during the scan * sequence flag EOC only is raised, at the end of the scan sequence * both flags EOC and EOS are raised. * To clear this flag, either use function: * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming * model polling: @ref HAL_ADC_PollForConversion() * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS). * @param hadc ADC handle * @retval ADC group regular conversion data */ uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc) { /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Note: EOC flag is not cleared here by software because automatically */ /* cleared by hardware when reading register DR. */ /* Return ADC converted value */ return hadc->Instance->DR; } /** * @brief Handle ADC interrupt request. * @param hadc ADC handle * @retval None */ void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc) { uint32_t overrun_error = 0UL; /* flag set if overrun occurrence has to be considered as an error */ uint32_t tmp_isr = hadc->Instance->ISR; uint32_t tmp_ier = hadc->Instance->IER; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); /* ========== Check End of Sampling flag for ADC group regular ========== */ if(((tmp_isr & ADC_FLAG_EOSMP) == ADC_FLAG_EOSMP) && ((tmp_ier & ADC_IT_EOSMP) == ADC_IT_EOSMP)) { /* Update state machine on end of sampling status if not in error state */ if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP); } /* End Of Sampling callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->EndOfSamplingCallback(hadc); #else HAL_ADCEx_EndOfSamplingCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Clear regular group conversion flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP ); } /* ====== Check ADC group regular end of unitary conversion sequence conversions ===== */ if((((tmp_isr & ADC_FLAG_EOC) == ADC_FLAG_EOC) && ((tmp_ier & ADC_IT_EOC) == ADC_IT_EOC)) || (((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS) && ((tmp_ier & ADC_IT_EOS) == ADC_IT_EOS)) ) { /* Update state machine on conversion status if not in error state */ if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); } /* Determine whether any further conversion upcoming on group regular */ /* by external trigger, continuous mode or scan sequence on going */ /* to disable interruption. */ if( (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) && (hadc->Init.ContinuousConvMode == DISABLE) ) { /* If End of Sequence is reached, disable interrupts */ if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) ) { /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ /* ADSTART==0 (no conversion on going) */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) { /* Disable ADC end of single conversion interrupt on group regular */ /* Note: Overrun interrupt was enabled with EOC interrupt in */ /* HAL_Start_IT(), but is not disabled here because can be used */ /* by overrun IRQ process below. */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_READY); } else { /* Change ADC state to error state */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); } } } /* Conversion complete callback */ /* Note: Into callback function "HAL_ADC_ConvCpltCallback()", */ /* to determine if conversion has been triggered from EOC or EOS, */ /* possibility to use: */ /* " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ConvCpltCallback(hadc); #else HAL_ADC_ConvCpltCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Clear regular group conversion flag */ /* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of */ /* conversion flags clear induces the release of the preserved data.*/ /* Therefore, if the preserved data value is needed, it must be */ /* read preliminarily into HAL_ADC_ConvCpltCallback(). */ __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS) ); } /* ========== Check Analog watchdog 1 flag ========== */ if (((tmp_isr & ADC_FLAG_AWD1) == ADC_FLAG_AWD1) && ((tmp_ier & ADC_IT_AWD1) == ADC_IT_AWD1)) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); /* Level out of window 1 callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->LevelOutOfWindowCallback(hadc); #else HAL_ADC_LevelOutOfWindowCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1); } /* ========== Check analog watchdog 2 flag ========== */ if (((tmp_isr & ADC_FLAG_AWD2) == ADC_FLAG_AWD2) && ((tmp_ier & ADC_IT_AWD2) == ADC_IT_AWD2)) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD2); /* Level out of window 2 callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->LevelOutOfWindow2Callback(hadc); #else HAL_ADCEx_LevelOutOfWindow2Callback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2); } /* ========== Check analog watchdog 3 flag ========== */ if (((tmp_isr & ADC_FLAG_AWD3) == ADC_FLAG_AWD3) && ((tmp_ier & ADC_IT_AWD3) == ADC_IT_AWD3)) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_AWD3); /* Level out of window 3 callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->LevelOutOfWindow3Callback(hadc); #else HAL_ADCEx_LevelOutOfWindow3Callback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3); } /* ========== Check Overrun flag ========== */ if (((tmp_isr & ADC_FLAG_OVR) == ADC_FLAG_OVR) && ((tmp_ier & ADC_IT_OVR) == ADC_IT_OVR)) { /* If overrun is set to overwrite previous data (default setting), */ /* overrun event is not considered as an error. */ /* (cf ref manual "Managing conversions without using the DMA and without */ /* overrun ") */ /* Exception for usage with DMA overrun event always considered as an */ /* error. */ if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) { overrun_error = 1UL; } else { /* Check DMA configuration */ if (LL_ADC_REG_GetDMATransfer(hadc->Instance) != LL_ADC_REG_DMA_TRANSFER_NONE) { overrun_error = 1UL; } } if (overrun_error == 1UL) { /* Change ADC state to error state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); /* Set ADC error code to overrun */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); /* Error callback */ /* Note: In case of overrun, ADC conversion data is preserved until */ /* flag OVR is reset. */ /* Therefore, old ADC conversion data can be retrieved in */ /* function "HAL_ADC_ErrorCallback()". */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ErrorCallback(hadc); #else HAL_ADC_ErrorCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } /* Clear ADC overrun flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); } /* ========== Check channel configuration ready flag ========== */ if (((tmp_isr & ADC_FLAG_CCRDY) == ADC_FLAG_CCRDY) && ((tmp_ier & ADC_IT_CCRDY) == ADC_IT_CCRDY)) { /* Level out of window 1 callback */ HAL_ADCEx_ChannelConfigReadyCallback(hadc); /* Clear ADC analog watchdog flag */ __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_CCRDY); } } /** * @brief Conversion complete callback in non-blocking mode. * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_ConvCpltCallback must be implemented in the user file. */ } /** * @brief Conversion DMA half-transfer callback in non-blocking mode. * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file. */ } /** * @brief Analog watchdog 1 callback in non-blocking mode. * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file. */ } /** * @brief ADC error callback in non-blocking mode * (ADC conversion with interruption or transfer by DMA). * @note In case of error due to overrun when using ADC with DMA transfer * (HAL ADC handle parameter "ErrorCode" to state "HAL_ADC_ERROR_OVR"): * - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()". * - If needed, restart a new ADC conversion using function * "HAL_ADC_Start_DMA()" * (this function is also clearing overrun flag) * @param hadc ADC handle * @retval None */ __weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) { /* Prevent unused argument(s) compilation warning */ UNUSED(hadc); /* NOTE : This function should not be modified. When the callback is needed, function HAL_ADC_ErrorCallback must be implemented in the user file. */ } /** * @} */ /** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions * @brief Peripheral Control functions * @verbatim =============================================================================== ##### Peripheral Control functions ##### =============================================================================== [..] This section provides functions allowing to: (+) Configure channels on regular group (+) Configure the analog watchdog @endverbatim * @{ */ /** * @brief Configure a channel to be assigned to ADC group regular. * @note In case of usage of internal measurement channels: * Vbat/VrefInt/TempSensor. * These internal paths can be disabled using function * HAL_ADC_DeInit(). * @note Possibility to update parameters on the fly: * This function initializes channel into ADC group regular, * following calls to this function can be used to reconfigure * some parameters of structure "ADC_ChannelConfTypeDef" on the fly, * without resetting the ADC. * The setting of these parameters is conditioned to ADC state: * Refer to comments of structure "ADC_ChannelConfTypeDef". * @param hadc ADC handle * @param sConfig Structure of ADC channel assigned to ADC group regular. * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; uint32_t tmp_config_internal_channel; __IO uint32_t wait_loop_index = 0UL; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_CHANNEL(sConfig->Channel)); assert_param(IS_ADC_SAMPLING_TIME_COMMON(sConfig->SamplingTime)); if((hadc->Init.ScanConvMode == ADC_SCAN_SEQ_FIXED) || (hadc->Init.ScanConvMode == ADC_SCAN_SEQ_FIXED_BACKWARD) ) { assert_param(IS_ADC_REGULAR_RANK_SEQ_FIXED(sConfig->Rank)); } else { assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion)); assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank)); } /* Process locked */ __HAL_LOCK(hadc); /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated when ADC is disabled or enabled without */ /* conversion on going on regular group: */ /* - Channel number */ /* - Channel sampling time */ /* - Management of internal measurement channels: VrefInt/TempSensor/Vbat */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) { /* Configure channel: depending on rank setting, add it or remove it from */ /* ADC sequencer. */ /* If sequencer set to not fully configurable with channel rank set to */ /* none, remove the channel from the sequencer. */ /* Otherwise (sequencer set to fully configurable or to to not fully */ /* configurable with channel rank to be set), configure the selected */ /* channel. */ if(sConfig->Rank != ADC_RANK_NONE) { /* Regular sequence configuration */ /* Note: ADC channel configuration requires few ADC clock cycles */ /* to be ready. Processing of ADC settings in this function */ /* induce that a specific wait time is not necessary. */ /* For more details on ADC channel configuration ready, */ /* refer to function "LL_ADC_IsActiveFlag_CCRDY()". */ if((hadc->Init.ScanConvMode == ADC_SCAN_SEQ_FIXED) || (hadc->Init.ScanConvMode == ADC_SCAN_SEQ_FIXED_BACKWARD) ) { /* Sequencer set to not fully configurable: */ /* Set the channel by enabling the corresponding bitfield. */ LL_ADC_REG_SetSequencerChAdd(hadc->Instance, sConfig->Channel); } else { /* Sequencer set to fully configurable: */ /* Set the channel by entering it into the selected rank. */ /* Memorize the channel set into variable in HAL ADC handle */ MODIFY_REG(hadc->ADCGroupRegularSequencerRanks, ADC_CHSELR_SQ1 << (sConfig->Rank & 0x1FUL), __LL_ADC_CHANNEL_TO_DECIMAL_NB(sConfig->Channel) << (sConfig->Rank & 0x1FUL)); /* If the selected rank is below ADC group regular sequencer length, */ /* apply the configuration in ADC register. */ /* Note: Otherwise, configuration is not applied. */ /* To apply it, parameter'NbrOfConversion' must be increased. */ if(((sConfig->Rank >> 2UL) + 1UL) <= hadc->Init.NbrOfConversion) { LL_ADC_REG_SetSequencerRanks(hadc->Instance, sConfig->Rank, sConfig->Channel); } } /* Set sampling time of the selected ADC channel */ LL_ADC_SetChannelSamplingTime(hadc->Instance, sConfig->Channel, sConfig->SamplingTime); /* Management of internal measurement channels: VrefInt/TempSensor/Vbat */ /* internal measurement paths enable: If internal channel selected, */ /* enable dedicated internal buffers and path. */ /* Note: these internal measurement paths can be disabled using */ /* HAL_ADC_DeInit() or removing the channel from sequencer with */ /* channel configuration parameter "Rank". */ if(__LL_ADC_IS_CHANNEL_INTERNAL(sConfig->Channel)) { tmp_config_internal_channel = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); /* If the requested internal measurement path has already been enabled, */ /* bypass the configuration processing. */ if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_TEMPSENSOR) == 0UL)) { LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_TEMPSENSOR | tmp_config_internal_channel); /* Delay for temperature sensor stabilization time */ /* Wait loop initialization and execution */ /* Note: Variable divided by 2 to compensate partially */ /* CPU processing cycles, scaling in us split to not */ /* exceed 32 bits register capacity and handle low frequency. */ wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US / 10UL) * (SystemCoreClock / (100000UL * 2UL))); while(wait_loop_index != 0UL) { wait_loop_index--; } } else if ((sConfig->Channel == ADC_CHANNEL_VBAT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VBAT) == 0UL)) { LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VBAT | tmp_config_internal_channel); } else if ((sConfig->Channel == ADC_CHANNEL_VREFINT) && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VREFINT) == 0UL)) { LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), LL_ADC_PATH_INTERNAL_VREFINT | tmp_config_internal_channel); } else { /* nothing to do */ } } } else { /* Regular sequencer configuration */ /* Note: Case of sequencer set to fully configurable: */ /* Sequencer rank cannot be disabled, only affected to */ /* another channel. */ /* To remove a rank, use parameter 'NbrOfConversion". */ if((hadc->Init.ScanConvMode == ADC_SCAN_SEQ_FIXED) || (hadc->Init.ScanConvMode == ADC_SCAN_SEQ_FIXED_BACKWARD) ) { /* Sequencer set to not fully configurable: */ /* Reset the channel by disabling the corresponding bitfield. */ LL_ADC_REG_SetSequencerChRem(hadc->Instance, sConfig->Channel); } /* Management of internal measurement channels: Vbat/VrefInt/TempSensor. */ /* If internal channel selected, enable dedicated internal buffers and */ /* paths. */ if(__LL_ADC_IS_CHANNEL_INTERNAL(sConfig->Channel)) { tmp_config_internal_channel = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance)); if (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) { LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), ~LL_ADC_PATH_INTERNAL_TEMPSENSOR & tmp_config_internal_channel); } else if (sConfig->Channel == ADC_CHANNEL_VBAT) { LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), ~LL_ADC_PATH_INTERNAL_VBAT & tmp_config_internal_channel); } else if (sConfig->Channel == ADC_CHANNEL_VREFINT) { LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance), ~LL_ADC_PATH_INTERNAL_VREFINT & tmp_config_internal_channel); } else { /* nothing to do */ } } } } /* If a conversion is on going on regular group, no update on regular */ /* channel could be done on neither of the channel configuration structure */ /* parameters. */ else { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); tmp_hal_status = HAL_ERROR; } /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @brief Configure the analog watchdog. * @note Possibility to update parameters on the fly: * This function initializes the selected analog watchdog, successive * calls to this function can be used to reconfigure some parameters * of structure "ADC_AnalogWDGConfTypeDef" on the fly, without resetting * the ADC. * The setting of these parameters is conditioned to ADC state. * For parameters constraints, see comments of structure * "ADC_AnalogWDGConfTypeDef". * @note On this STM32 serie, analog watchdog thresholds can be modified * while ADC conversion is on going. * In this case, some constraints must be taken into account: * the programmed threshold values are effective from the next * ADC EOC (end of unitary conversion). * Considering that registers write delay may happen due to * bus activity, this might cause an uncertainty on the * effective timing of the new programmed threshold values. * @param hadc ADC handle * @param AnalogWDGConfig Structure of ADC analog watchdog configuration * @retval HAL status */ HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig) { HAL_StatusTypeDef tmp_hal_status = HAL_OK; uint32_t tmpAWDHighThresholdShifted; uint32_t tmpAWDLowThresholdShifted; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); assert_param(IS_ADC_ANALOG_WATCHDOG_NUMBER(AnalogWDGConfig->WatchdogNumber)); assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode)); assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode)); if(AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) { assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel)); } /* Verify thresholds range */ if (hadc->Init.OversamplingMode == ENABLE) { /* Case of oversampling enabled: depending on ratio and shift configuration, analog watchdog thresholds can be higher than ADC resolution. Verify if thresholds are within maximum thresholds range. */ assert_param(IS_ADC_RANGE(ADC_RESOLUTION_12B, AnalogWDGConfig->HighThreshold)); assert_param(IS_ADC_RANGE(ADC_RESOLUTION_12B, AnalogWDGConfig->LowThreshold)); } else { /* Verify if thresholds are within the selected ADC resolution */ assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold)); assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold)); } /* Process locked */ __HAL_LOCK(hadc); /* Parameters update conditioned to ADC state: */ /* Parameters that can be updated when ADC is disabled or enabled without */ /* conversion on going on ADC group regular: */ /* - Analog watchdog channels */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) { /* Analog watchdog configuration */ if(AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1) { /* Configuration of analog watchdog: */ /* - Set the analog watchdog enable mode: one or overall group of */ /* channels. */ switch(AnalogWDGConfig->WatchdogMode) { case ADC_ANALOGWATCHDOG_SINGLE_REG: LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, __LL_ADC_ANALOGWD_CHANNEL_GROUP(AnalogWDGConfig->Channel, LL_ADC_GROUP_REGULAR)); break; case ADC_ANALOGWATCHDOG_ALL_REG: LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG); break; default: /* ADC_ANALOGWATCHDOG_NONE */ LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_DISABLE); break; } /* Update state, clear previous result related to AWD1 */ CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD1); /* Clear flag ADC analog watchdog */ /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ /* (in case left enabled by previous ADC operations). */ LL_ADC_ClearFlag_AWD1(hadc->Instance); /* Configure ADC analog watchdog interrupt */ if(AnalogWDGConfig->ITMode == ENABLE) { LL_ADC_EnableIT_AWD1(hadc->Instance); } else { LL_ADC_DisableIT_AWD1(hadc->Instance); } } /* Case of ADC_ANALOGWATCHDOG_2 or ADC_ANALOGWATCHDOG_3 */ else { switch(AnalogWDGConfig->WatchdogMode) { case ADC_ANALOGWATCHDOG_SINGLE_REG: /* Update AWD by bitfield to keep the possibility to monitor */ /* several channels by successive calls of this function. */ if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) { SET_BIT(hadc->Instance->AWD2CR, (1UL << __LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel))); } else { SET_BIT(hadc->Instance->AWD3CR, (1UL << __LL_ADC_CHANNEL_TO_DECIMAL_NB(AnalogWDGConfig->Channel))); } break; case ADC_ANALOGWATCHDOG_ALL_REG: LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, AnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_ALL_CHANNELS_REG); break; default: /* ADC_ANALOGWATCHDOG_NONE */ LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, AnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_DISABLE); break; } if (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2) { /* Update state, clear previous result related to AWD2 */ CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD2); /* Clear flag ADC analog watchdog */ /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ /* (in case left enabled by previous ADC operations). */ LL_ADC_ClearFlag_AWD2(hadc->Instance); /* Configure ADC analog watchdog interrupt */ if(AnalogWDGConfig->ITMode == ENABLE) { LL_ADC_EnableIT_AWD2(hadc->Instance); } else { LL_ADC_DisableIT_AWD2(hadc->Instance); } } /* (AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_3) */ else { /* Update state, clear previous result related to AWD3 */ CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD3); /* Clear flag ADC analog watchdog */ /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */ /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */ /* (in case left enabled by previous ADC operations). */ LL_ADC_ClearFlag_AWD3(hadc->Instance); /* Configure ADC analog watchdog interrupt */ if(AnalogWDGConfig->ITMode == ENABLE) { LL_ADC_EnableIT_AWD3(hadc->Instance); } else { LL_ADC_DisableIT_AWD3(hadc->Instance); } } } } /* Analog watchdog thresholds configuration */ if(AnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1) { /* Shift the offset with respect to the selected ADC resolution: */ /* Thresholds have to be left-aligned on bit 11, the LSB (right bits) */ /* are set to 0. */ tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold); tmpAWDLowThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold); } /* Case of ADC_ANALOGWATCHDOG_2 and ADC_ANALOGWATCHDOG_3 */ else { /* No need to shift the offset with respect to the selected ADC resolution: */ /* Thresholds have to be left-aligned on bit 11, the LSB (right bits) */ /* are set to 0. */ tmpAWDHighThresholdShifted = AnalogWDGConfig->HighThreshold; tmpAWDLowThresholdShifted = AnalogWDGConfig->LowThreshold; } /* Set ADC analog watchdog thresholds value of both thresholds high and low */ LL_ADC_ConfigAnalogWDThresholds(hadc->Instance, AnalogWDGConfig->WatchdogNumber, tmpAWDHighThresholdShifted, tmpAWDLowThresholdShifted); /* Process unlocked */ __HAL_UNLOCK(hadc); /* Return function status */ return tmp_hal_status; } /** * @} */ /** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions * @brief ADC Peripheral State functions * @verbatim =============================================================================== ##### Peripheral state and errors functions ##### =============================================================================== [..] This subsection provides functions to get in run-time the status of the peripheral. (+) Check the ADC state (+) Check the ADC error code @endverbatim * @{ */ /** * @brief Return the ADC handle state. * @note ADC state machine is managed by bitfields, ADC status must be * compared with states bits. * For example: * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_REG_BUSY) != 0UL) " * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " * @param hadc ADC handle * @retval ADC handle state (bitfield on 32 bits) */ uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc) { /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Return ADC handle state */ return hadc->State; } /** * @brief Return the ADC error code. * @param hadc ADC handle * @retval ADC error code (bitfield on 32 bits) */ uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc) { /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); return hadc->ErrorCode; } /** * @} */ /** * @} */ /** @defgroup ADC_Private_Functions ADC Private Functions * @{ */ /** * @brief Stop ADC conversion. * @note Prerequisite condition to use this function: ADC conversions must be * stopped to disable the ADC. * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc) { uint32_t tickstart; /* Check the parameters */ assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); /* Verification if ADC is not already stopped on regular group to bypass */ /* this function if not needed. */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL) { /* Stop potential conversion on going on regular group */ /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */ if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL) { /* Stop ADC group regular conversion */ LL_ADC_REG_StopConversion(hadc->Instance); } /* Wait for conversion effectively stopped */ /* Get tick count */ tickstart = HAL_GetTick(); while((hadc->Instance->CR & ADC_CR_ADSTART) != 0UL) { if((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } } } /* Return HAL status */ return HAL_OK; } /** * @brief Enable the selected ADC. * @note Prerequisite condition to use this function: ADC must be disabled * and voltage regulator must be enabled (done into HAL_ADC_Init()). * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc) { uint32_t tickstart; /* ADC enable and wait for ADC ready (in case of ADC is disabled or */ /* enabling phase not yet completed: flag ADC ready not yet set). */ /* Timeout implemented to not be stuck if ADC cannot be enabled (possible */ /* causes: ADC clock not running, ...). */ if (LL_ADC_IsEnabled(hadc->Instance) == 0UL) { /* Check if conditions to enable the ADC are fulfilled */ if ((hadc->Instance->CR & (ADC_CR_ADCAL | ADC_CR_ADSTP | ADC_CR_ADSTART | ADC_CR_ADDIS | ADC_CR_ADEN)) != 0UL) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } /* Enable the ADC peripheral */ LL_ADC_Enable(hadc->Instance); /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ /* performed automatically by hardware and flag ADC ready is not set. */ if (hadc->Init.LowPowerAutoPowerOff != ENABLE) { /* Wait for ADC effectively enabled */ tickstart = HAL_GetTick(); while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL) { /* If ADEN bit is set less than 4 ADC clock cycles after the ADCAL bit has been cleared (after a calibration), ADEN bit is reset by the calibration logic. The workaround is to continue setting ADEN until ADRDY is becomes 1. Additionally, ADC_ENABLE_TIMEOUT is defined to encompass this 4 ADC clock cycle duration */ /* Note: Test of ADC enabled required due to hardware constraint to */ /* not enable ADC if already enabled. */ if(LL_ADC_IsEnabled(hadc->Instance) == 0UL) { LL_ADC_Enable(hadc->Instance); } if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } } } } /* Return HAL status */ return HAL_OK; } /** * @brief Disable the selected ADC. * @note Prerequisite condition to use this function: ADC conversions must be * stopped. * @param hadc ADC handle * @retval HAL status. */ HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc) { uint32_t tickstart; const uint32_t tmp_adc_is_disable_on_going = LL_ADC_IsDisableOngoing(hadc->Instance); /* Verification if ADC is not already disabled: */ /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already */ /* disabled. */ if ( (LL_ADC_IsEnabled(hadc->Instance) != 0UL) && (tmp_adc_is_disable_on_going == 0UL) ) { /* Check if conditions to disable the ADC are fulfilled */ if((hadc->Instance->CR & (ADC_CR_ADSTART | ADC_CR_ADEN)) == ADC_CR_ADEN) { /* Disable the ADC peripheral */ LL_ADC_Disable(hadc->Instance); __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOSMP | ADC_FLAG_RDY)); } else { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } /* Wait for ADC effectively disabled */ /* Get tick count */ tickstart = HAL_GetTick(); while((hadc->Instance->CR & ADC_CR_ADEN) != 0UL) { if((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT) { /* Update ADC state machine to error */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); return HAL_ERROR; } } } /* Return HAL status */ return HAL_OK; } /** * @brief DMA transfer complete callback. * @param hdma pointer to DMA handle. * @retval None */ static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) { /* Retrieve ADC handle corresponding to current DMA handle */ ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* Update state machine on conversion status if not in error state */ if ((hadc->State & (HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) == 0UL) { /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); /* Determine whether any further conversion upcoming on group regular */ /* by external trigger, continuous mode or scan sequence on going */ /* to disable interruption. */ if( (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL) && (hadc->Init.ContinuousConvMode == DISABLE) ) { /* If End of Sequence is reached, disable interrupts */ if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) ) { /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ /* ADSTART==0 (no conversion on going) */ if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL) { /* Disable ADC end of single conversion interrupt on group regular */ /* Note: Overrun interrupt was enabled with EOC interrupt in */ /* HAL_Start_IT(), but is not disabled here because can be used */ /* by overrun IRQ process below. */ __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); /* Set ADC state */ ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_REG_BUSY, HAL_ADC_STATE_READY); } else { /* Change ADC state to error state */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); /* Set ADC error code to ADC peripheral internal error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); } } } /* Conversion complete callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ConvCpltCallback(hadc); #else HAL_ADC_ConvCpltCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } else /* DMA and-or internal error occurred */ { if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) != 0UL) { /* Call HAL ADC Error Callback function */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ErrorCallback(hadc); #else HAL_ADC_ErrorCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } else { /* Call ADC DMA error callback */ hadc->DMA_Handle->XferErrorCallback(hdma); } } } /** * @brief DMA half transfer complete callback. * @param hdma pointer to DMA handle. * @retval None */ static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma) { /* Retrieve ADC handle corresponding to current DMA handle */ ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* Half conversion callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ConvHalfCpltCallback(hadc); #else HAL_ADC_ConvHalfCpltCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } /** * @brief DMA error callback. * @param hdma pointer to DMA handle. * @retval None */ static void ADC_DMAError(DMA_HandleTypeDef *hdma) { /* Retrieve ADC handle corresponding to current DMA handle */ ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; /* Set ADC state */ SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); /* Set ADC error code to DMA error */ SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA); /* Error callback */ #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) hadc->ErrorCallback(hadc); #else HAL_ADC_ErrorCallback(hadc); #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ } /** * @} */ #endif /* HAL_ADC_MODULE_ENABLED */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/