//***************************************************************************** // // flash.c - Driver for programming the on-chip flash. // // Copyright (c) 2005-2011 Texas Instruments Incorporated. All rights reserved. // Software License Agreement // // Texas Instruments (TI) is supplying this software for use solely and // exclusively on TI's microcontroller products. The software is owned by // TI and/or its suppliers, and is protected under applicable copyright // laws. You may not combine this software with "viral" open-source // software in order to form a larger program. // // THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS. // NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT // NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY // CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL // DAMAGES, FOR ANY REASON WHATSOEVER. // // This is part of revision 6852 of the Stellaris Peripheral Driver Library. // //***************************************************************************** //***************************************************************************** // //! \addtogroup flash_api //! @{ // //***************************************************************************** #include "inc/hw_flash.h" #include "inc/hw_ints.h" #include "inc/hw_sysctl.h" #include "inc/hw_types.h" #include "driverlib/debug.h" #include "driverlib/flashlib.h" #include "driverlib/interrupt.h" //***************************************************************************** // // An array that maps the specified memory bank to the appropriate Flash // Memory Protection Program Enable (FMPPE) register. // //***************************************************************************** static const unsigned long g_pulFMPPERegs[] = { FLASH_FMPPE, FLASH_FMPPE1, FLASH_FMPPE2, FLASH_FMPPE3 }; //***************************************************************************** // // An array that maps the specified memory bank to the appropriate Flash // Memory Protection Read Enable (FMPRE) register. // //***************************************************************************** static const unsigned long g_pulFMPRERegs[] = { FLASH_FMPRE, FLASH_FMPRE1, FLASH_FMPRE2, FLASH_FMPRE3 }; //***************************************************************************** // //! Gets the number of processor clocks per micro-second. //! //! This function returns the number of clocks per micro-second, as presently //! known by the flash controller. //! //! \return Returns the number of processor clocks per micro-second. // //***************************************************************************** unsigned long FlashUsecGet(void) { // // Return the number of clocks per micro-second. // return(HWREG(FLASH_USECRL) + 1); } //***************************************************************************** // //! Sets the number of processor clocks per micro-second. //! //! \param ulClocks is the number of processor clocks per micro-second. //! //! This function is used to tell the flash controller the number of processor //! clocks per micro-second. This value must be programmed correctly or the //! flash most likely will not program correctly; it has no affect on reading //! flash. //! //! \return None. // //***************************************************************************** void FlashUsecSet(unsigned long ulClocks) { // // Set the number of clocks per micro-second. // HWREG(FLASH_USECRL) = ulClocks - 1; } //***************************************************************************** // //! Erases a block of flash. //! //! \param ulAddress is the start address of the flash block to be erased. //! //! This function will erase a 1 kB block of the on-chip flash. After erasing, //! the block will be filled with 0xFF bytes. Read-only and execute-only //! blocks cannot be erased. //! //! This function will not return until the block has been erased. //! //! \return Returns 0 on success, or -1 if an invalid block address was //! specified or the block is write-protected. // //***************************************************************************** long FlashClear(unsigned long ulAddress) { // // Check the arguments. // ASSERT(!(ulAddress & (FLASH_ERASE_SIZE - 1))); // // Clear the flash access interrupt. // HWREG(FLASH_FCMISC) = FLASH_FCMISC_AMISC; // // Erase the block. // HWREG(FLASH_FMA) = ulAddress; HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_ERASE; // // Wait until the block has been erased. // while(HWREG(FLASH_FMC) & FLASH_FMC_ERASE) { } // // Return an error if an access violation occurred. // if(HWREG(FLASH_FCRIS) & FLASH_FCRIS_ARIS) { return(-1); } // // Success. // return(0); } //***************************************************************************** // //! Programs flash. //! //! \param pulData is a pointer to the data to be programmed. //! \param ulAddress is the starting address in flash to be programmed. Must //! be a multiple of four. //! \param ulCount is the number of bytes to be programmed. Must be a multiple //! of four. //! //! This function will program a sequence of words into the on-chip flash. //! Programming each location consists of the result of an AND operation //! of the new data and the existing data; in other words bits that contain //! 1 can remain 1 or be changed to 0, but bits that are 0 cannot be changed //! to 1. Therefore, a word can be programmed multiple times as long as these //! rules are followed; if a program operation attempts to change a 0 bit to //! a 1 bit, that bit will not have its value changed. //! //! Since the flash is programmed one word at a time, the starting address and //! byte count must both be multiples of four. It is up to the caller to //! verify the programmed contents, if such verification is required. //! //! This function will not return until the data has been programmed. //! //! \return Returns 0 on success, or -1 if a programming error is encountered. // //***************************************************************************** long FlashProgram(unsigned long *pulData, unsigned long ulAddress, unsigned long ulCount) { // // Check the arguments. // ASSERT(!(ulAddress & 3)); ASSERT(!(ulCount & 3)); // // Clear the flash access interrupt. // HWREG(FLASH_FCMISC) = FLASH_FCMISC_AMISC; // // See if this device has a write buffer. // if(HWREG(SYSCTL_NVMSTAT) & SYSCTL_NVMSTAT_FWB) { // // Loop over the words to be programmed. // while(ulCount) { // // Set the address of this block of words. // HWREG(FLASH_FMA) = ulAddress & ~(0x7f); // // Loop over the words in this 32-word block. // while(((ulAddress & 0x7c) || (HWREG(FLASH_FWBVAL) == 0)) && (ulCount != 0)) { // // Write this word into the write buffer. // HWREG(FLASH_FWBN + (ulAddress & 0x7c)) = *pulData++; ulAddress += 4; ulCount -= 4; } // // Program the contents of the write buffer into flash. // HWREG(FLASH_FMC2) = FLASH_FMC2_WRKEY | FLASH_FMC2_WRBUF; // // Wait until the write buffer has been programmed. // while(HWREG(FLASH_FMC2) & FLASH_FMC2_WRBUF) { } } } else { // // Loop over the words to be programmed. // while(ulCount) { // // Program the next word. // HWREG(FLASH_FMA) = ulAddress; HWREG(FLASH_FMD) = *pulData; HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_WRITE; // // Wait until the word has been programmed. // while(HWREG(FLASH_FMC) & FLASH_FMC_WRITE) { } // // Increment to the next word. // pulData++; ulAddress += 4; ulCount -= 4; } } // // Return an error if an access violation occurred. // if(HWREG(FLASH_FCRIS) & FLASH_FCRIS_ARIS) { return(-1); } // // Success. // return(0); } //***************************************************************************** // //! Gets the protection setting for a block of flash. //! //! \param ulAddress is the start address of the flash block to be queried. //! //! This function will get the current protection for the specified 2 kB block //! of flash. Each block can be read/write, read-only, or execute-only. //! Read/write blocks can be read, executed, erased, and programmed. Read-only //! blocks can be read and executed. Execute-only blocks can only be executed; //! processor and debugger data reads are not allowed. //! //! \return Returns the protection setting for this block. See //! FlashProtectSet() for possible values. // //***************************************************************************** tFlashProtection FlashProtectGet(unsigned long ulAddress) { unsigned long ulFMPRE, ulFMPPE; unsigned long ulBank; // // Check the argument. // ASSERT(!(ulAddress & (FLASH_PROTECT_SIZE - 1))); // // Calculate the Flash Bank from Base Address, and mask off the Bank // from ulAddress for subsequent reference. // ulBank = (((ulAddress / FLASH_PROTECT_SIZE) / 32) % 4); ulAddress &= ((FLASH_PROTECT_SIZE * 32) - 1); // // Read the appropriate flash protection registers for the specified // flash bank. // ulFMPRE = HWREG(g_pulFMPRERegs[ulBank]); ulFMPPE = HWREG(g_pulFMPPERegs[ulBank]); // // For Stellaris Sandstorm-class devices, revision C1 and C2, the upper // bits of the FMPPE register are used for JTAG protect options, and are // not available for the FLASH protection scheme. When Querying Block // Protection, assume these bits are 1. // if(CLASS_IS_SANDSTORM && (REVISION_IS_C1 || REVISION_IS_C2)) { ulFMPRE |= (FLASH_FMP_BLOCK_31 | FLASH_FMP_BLOCK_30); } // // Check the appropriate protection bits for the block of memory that // is specified by the address. // switch((((ulFMPRE >> (ulAddress / FLASH_PROTECT_SIZE)) & FLASH_FMP_BLOCK_0) << 1) | ((ulFMPPE >> (ulAddress / FLASH_PROTECT_SIZE)) & FLASH_FMP_BLOCK_0)) { // // This block is marked as execute only (that is, it can not be erased // or programmed, and the only reads allowed are via the instruction // fetch interface). // case 0: case 1: { return(FlashExecuteOnly); } // // This block is marked as read only (that is, it can not be erased or // programmed). // case 2: { return(FlashReadOnly); } // // This block is read/write; it can be read, erased, and programmed. // case 3: default: { return(FlashReadWrite); } } } //***************************************************************************** // //! Sets the protection setting for a block of flash. //! //! \param ulAddress is the start address of the flash block to be protected. //! \param eProtect is the protection to be applied to the block. Can be one //! of \b FlashReadWrite, \b FlashReadOnly, or \b FlashExecuteOnly. //! //! This function will set the protection for the specified 2 kB block of //! flash. Blocks which are read/write can be made read-only or execute-only. //! Blocks which are read-only can be made execute-only. Blocks which are //! execute-only cannot have their protection modified. Attempts to make the //! block protection less stringent (that is, read-only to read/write) will //! result in a failure (and be prevented by the hardware). //! //! Changes to the flash protection are maintained only until the next reset. //! This allows the application to be executed in the desired flash protection //! environment to check for inappropriate flash access (via the flash //! interrupt). To make the flash protection permanent, use the //! FlashProtectSave() function. //! //! \return Returns 0 on success, or -1 if an invalid address or an invalid //! protection was specified. // //***************************************************************************** long FlashProtectSet(unsigned long ulAddress, tFlashProtection eProtect) { unsigned long ulProtectRE, ulProtectPE; unsigned long ulBank; // // Check the argument. // ASSERT(!(ulAddress & (FLASH_PROTECT_SIZE - 1))); ASSERT((eProtect == FlashReadWrite) || (eProtect == FlashReadOnly) || (eProtect == FlashExecuteOnly)); // // Convert the address into a block number. // ulAddress /= FLASH_PROTECT_SIZE; // // ulAddress contains a "raw" block number. Derive the Flash Bank from // the "raw" block number, and convert ulAddress to a "relative" // block number. // ulBank = ((ulAddress / 32) % 4); ulAddress %= 32; // // Get the current protection for the specified flash bank. // ulProtectRE = HWREG(g_pulFMPRERegs[ulBank]); ulProtectPE = HWREG(g_pulFMPPERegs[ulBank]); // // For Stellaris Sandstorm-class devices, revision C1 and C2, the upper // bits of the FMPPE register are used for JTAG protect options, and are // not available for the FLASH protection scheme. When setting protection, // check to see if block 30 or 31 and protection is FlashExecuteOnly. If // so, return an error condition. // if(CLASS_IS_SANDSTORM && (REVISION_IS_C1 || REVISION_IS_C2)) { if((ulAddress >= 30) && (eProtect == FlashExecuteOnly)) { return(-1); } } // // Set the protection based on the requested proection. // switch(eProtect) { // // Make this block execute only. // case FlashExecuteOnly: { // // Turn off the read and program bits for this block. // ulProtectRE &= ~(FLASH_FMP_BLOCK_0 << ulAddress); ulProtectPE &= ~(FLASH_FMP_BLOCK_0 << ulAddress); // // We're done handling this protection. // break; } // // Make this block read only. // case FlashReadOnly: { // // The block can not be made read only if it is execute only. // if(((ulProtectRE >> ulAddress) & FLASH_FMP_BLOCK_0) != FLASH_FMP_BLOCK_0) { return(-1); } // // Make this block read only. // ulProtectPE &= ~(FLASH_FMP_BLOCK_0 << ulAddress); // // We're done handling this protection. // break; } // // Make this block read/write. // case FlashReadWrite: default: { // // The block can not be made read/write if it is not already // read/write. // if((((ulProtectRE >> ulAddress) & FLASH_FMP_BLOCK_0) != FLASH_FMP_BLOCK_0) || (((ulProtectPE >> ulAddress) & FLASH_FMP_BLOCK_0) != FLASH_FMP_BLOCK_0)) { return(-1); } // // The block is already read/write, so there is nothing to do. // return(0); } } // // For Stellaris Sandstorm-class devices, revision C1 and C2, the upper // bits of the FMPPE register are used for JTAG options, and are not // available for the FLASH protection scheme. When setting block // protection, ensure that these bits are not altered. // if(CLASS_IS_SANDSTORM && (REVISION_IS_C1 || REVISION_IS_C2)) { ulProtectRE &= ~(FLASH_FMP_BLOCK_31 | FLASH_FMP_BLOCK_30); ulProtectRE |= (HWREG(g_pulFMPRERegs[ulBank]) & (FLASH_FMP_BLOCK_31 | FLASH_FMP_BLOCK_30)); } // // Set the new protection for the specified flash bank. // HWREG(g_pulFMPRERegs[ulBank]) = ulProtectRE; HWREG(g_pulFMPPERegs[ulBank]) = ulProtectPE; // // Success. // return(0); } //***************************************************************************** // //! Saves the flash protection settings. //! //! This function will make the currently programmed flash protection settings //! permanent. This is a non-reversible operation; a chip reset or power cycle //! will not change the flash protection. //! //! This function will not return until the protection has been saved. //! //! \return Returns 0 on success, or -1 if a hardware error is encountered. // //***************************************************************************** long FlashProtectSave(void) { int ulTemp, ulLimit; // // If running on a Sandstorm-class device, only trigger a save of the first // two protection registers (FMPRE and FMPPE). Otherwise, save the // entire bank of flash protection registers. // ulLimit = CLASS_IS_SANDSTORM ? 2 : 8; for(ulTemp = 0; ulTemp < ulLimit; ulTemp++) { // // Tell the flash controller to write the flash protection register. // HWREG(FLASH_FMA) = ulTemp; HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_COMT; // // Wait until the write has completed. // while(HWREG(FLASH_FMC) & FLASH_FMC_COMT) { } } // // Success. // return(0); } //***************************************************************************** // //! Gets the user registers. //! //! \param pulUser0 is a pointer to the location to store USER Register 0. //! \param pulUser1 is a pointer to the location to store USER Register 1. //! //! This function will read the contents of user registers (0 and 1), and //! store them in the specified locations. //! //! \return Returns 0 on success, or -1 if a hardware error is encountered. // //***************************************************************************** long FlashUserGet(unsigned long *pulUser0, unsigned long *pulUser1) { // // Verify that the pointers are valid. // ASSERT(pulUser0 != 0); ASSERT(pulUser1 != 0); // // Verify that hardware supports user registers. // if(CLASS_IS_SANDSTORM) { return(-1); } // // Get and store the current value of the user registers. // *pulUser0 = HWREG(FLASH_USERREG0); *pulUser1 = HWREG(FLASH_USERREG1); // // Success. // return(0); } //***************************************************************************** // //! Sets the user registers. //! //! \param ulUser0 is the value to store in USER Register 0. //! \param ulUser1 is the value to store in USER Register 1. //! //! This function will set the contents of the user registers (0 and 1) to //! the specified values. //! //! \return Returns 0 on success, or -1 if a hardware error is encountered. // //***************************************************************************** long FlashUserSet(unsigned long ulUser0, unsigned long ulUser1) { // // Verify that hardware supports user registers. // if(CLASS_IS_SANDSTORM) { return(-1); } // // Save the new values into the user registers. // HWREG(FLASH_USERREG0) = ulUser0; HWREG(FLASH_USERREG1) = ulUser1; // // Success. // return(0); } //***************************************************************************** // //! Saves the user registers. //! //! This function will make the currently programmed user register settings //! permanent. This is a non-reversible operation; a chip reset or power cycle //! will not change this setting. //! //! This function will not return until the protection has been saved. //! //! \return Returns 0 on success, or -1 if a hardware error is encountered. // //***************************************************************************** long FlashUserSave(void) { // // Verify that hardware supports user registers. // if(CLASS_IS_SANDSTORM) { return(-1); } // // Setting the MSB of FMA will trigger a permanent save of a USER // register. Bit 0 will indicate User 0 (0) or User 1 (1). // HWREG(FLASH_FMA) = 0x80000000; HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_COMT; // // Wait until the write has completed. // while(HWREG(FLASH_FMC) & FLASH_FMC_COMT) { } // // Tell the flash controller to write the USER1 Register. // HWREG(FLASH_FMA) = 0x80000001; HWREG(FLASH_FMC) = FLASH_FMC_WRKEY | FLASH_FMC_COMT; // // Wait until the write has completed. // while(HWREG(FLASH_FMC) & FLASH_FMC_COMT) { } // // Success. // return(0); } //***************************************************************************** // //! Registers an interrupt handler for the flash interrupt. //! //! \param pfnHandler is a pointer to the function to be called when the flash //! interrupt occurs. //! //! This sets the handler to be called when the flash interrupt occurs. The //! flash controller can generate an interrupt when an invalid flash access //! occurs, such as trying to program or erase a read-only block, or trying to //! read from an execute-only block. It can also generate an interrupt when a //! program or erase operation has completed. The interrupt will be //! automatically enabled when the handler is registered. //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void FlashIntRegister(void (*pfnHandler)(void)) { // // Register the interrupt handler, returning an error if an error occurs. // IntRegister(INT_FLASH, pfnHandler); // // Enable the flash interrupt. // IntEnable(INT_FLASH); } //***************************************************************************** // //! Unregisters the interrupt handler for the flash interrupt. //! //! This function will clear the handler to be called when the flash interrupt //! occurs. This will also mask off the interrupt in the interrupt controller //! so that the interrupt handler is no longer called. //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void FlashIntUnregister(void) { // // Disable the interrupt. // IntDisable(INT_FLASH); // // Unregister the interrupt handler. // IntUnregister(INT_FLASH); } //***************************************************************************** // //! Enables individual flash controller interrupt sources. //! //! \param ulIntFlags is a bit mask of the interrupt sources to be enabled. //! Can be any of the \b FLASH_INT_PROGRAM or \b FLASH_INT_ACCESS values. //! //! Enables the indicated flash controller interrupt sources. Only the sources //! that are enabled can be reflected to the processor interrupt; disabled //! sources have no effect on the processor. //! //! \return None. // //***************************************************************************** void FlashIntEnable(unsigned long ulIntFlags) { // // Enable the specified interrupts. // HWREG(FLASH_FCIM) |= ulIntFlags; } //***************************************************************************** // //! Disables individual flash controller interrupt sources. //! //! \param ulIntFlags is a bit mask of the interrupt sources to be disabled. //! Can be any of the \b FLASH_INT_PROGRAM or \b FLASH_INT_ACCESS values. //! //! Disables the indicated flash controller interrupt sources. Only the //! sources that are enabled can be reflected to the processor interrupt; //! disabled sources have no effect on the processor. //! //! \return None. // //***************************************************************************** void FlashIntDisable(unsigned long ulIntFlags) { // // Disable the specified interrupts. // HWREG(FLASH_FCIM) &= ~(ulIntFlags); } //***************************************************************************** // //! Gets the current interrupt status. //! //! \param bMasked is false if the raw interrupt status is required and true if //! the masked interrupt status is required. //! //! This returns the interrupt status for the flash controller. Either the raw //! interrupt status or the status of interrupts that are allowed to reflect to //! the processor can be returned. //! //! \return The current interrupt status, enumerated as a bit field of //! \b FLASH_INT_PROGRAM and \b FLASH_INT_ACCESS. // //***************************************************************************** unsigned long FlashIntStatus(tBoolean bMasked) { // // Return either the interrupt status or the raw interrupt status as // requested. // if(bMasked) { return(HWREG(FLASH_FCMISC)); } else { return(HWREG(FLASH_FCRIS)); } } //***************************************************************************** // //! Clears flash controller interrupt sources. //! //! \param ulIntFlags is the bit mask of the interrupt sources to be cleared. //! Can be any of the \b FLASH_INT_PROGRAM or \b FLASH_INT_AMISC values. //! //! The specified flash controller interrupt sources are cleared, so that they //! no longer assert. This must be done in the interrupt handler to keep it //! from being called again immediately upon exit. //! //! \note Because there is a write buffer in the Cortex-M3 processor, it may //! take several clock cycles before the interrupt source is actually cleared. //! Therefore, it is recommended that the interrupt source be cleared early in //! the interrupt handler (as opposed to the very last action) to avoid //! returning from the interrupt handler before the interrupt source is //! actually cleared. Failure to do so may result in the interrupt handler //! being immediately reentered (because the interrupt controller still sees //! the interrupt source asserted). //! //! \return None. // //***************************************************************************** void FlashIntClear(unsigned long ulIntFlags) { // // Clear the flash interrupt. // HWREG(FLASH_FCMISC) = ulIntFlags; } //***************************************************************************** // // Close the Doxygen group. //! @} // //*****************************************************************************