/************************************************************************************//** * \file Demo\ARMCM3_STM32F1_Olimex_STM32P103_IAR\Prog\boot.c * \brief Demo program bootloader interface source file. * \ingroup Prog_ARMCM3_STM32F1_Olimex_STM32P103_IAR * \internal *---------------------------------------------------------------------------------------- * C O P Y R I G H T *---------------------------------------------------------------------------------------- * Copyright (c) 2012 by Feaser http://www.feaser.com All rights reserved * *---------------------------------------------------------------------------------------- * L I C E N S E *---------------------------------------------------------------------------------------- * This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any later * version. * * OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You have received a copy of the GNU General Public License along with OpenBLT. It * should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy. * * \endinternal ****************************************************************************************/ /**************************************************************************************** * Include files ****************************************************************************************/ #include "header.h" /* generic header */ /**************************************************************************************** * Function prototypes ****************************************************************************************/ #if (BOOT_COM_UART_ENABLE > 0) static void BootComUartInit(void); static void BootComUartCheckActivationRequest(void); #endif #if (BOOT_COM_CAN_ENABLE > 0) static void BootComCanInit(void); static void BootComCanCheckActivationRequest(void); #endif /************************************************************************************//** ** \brief Initializes the communication interface. ** \return none. ** ****************************************************************************************/ void BootComInit(void) { #if (BOOT_COM_UART_ENABLE > 0) BootComUartInit(); #endif #if (BOOT_COM_CAN_ENABLE > 0) BootComCanInit(); #endif } /*** end of BootComInit ***/ /************************************************************************************//** ** \brief Receives the CONNECT request from the host, which indicates that the ** bootloader should be activated and, if so, activates it. ** \return none. ** ****************************************************************************************/ void BootComCheckActivationRequest(void) { #if (BOOT_COM_UART_ENABLE > 0) BootComUartCheckActivationRequest(); #endif #if (BOOT_COM_CAN_ENABLE > 0) BootComCanCheckActivationRequest(); #endif } /*** end of BootComCheckActivationRequest ***/ /************************************************************************************//** ** \brief Bootloader activation function. ** \return none. ** ****************************************************************************************/ void BootActivate(void) { /* perform software reset to activate the bootoader again */ NVIC_SystemReset(); } /*** end of BootActivate ***/ #if (BOOT_COM_UART_ENABLE > 0) /**************************************************************************************** * U N I V E R S A L A S Y N C H R O N O U S R X T X I N T E R F A C E ****************************************************************************************/ /**************************************************************************************** * Macro definitions ****************************************************************************************/ /** \brief Timeout time for the reception of a CTO packet. The timer is started upon * reception of the first packet byte. */ #define UART_CTO_RX_PACKET_TIMEOUT_MS (100u) /**************************************************************************************** * Function prototypes ****************************************************************************************/ static unsigned char UartReceiveByte(unsigned char *data); /************************************************************************************//** ** \brief Initializes the UART communication interface. ** \return none. ** ****************************************************************************************/ static void BootComUartInit(void) { GPIO_InitTypeDef GPIO_InitStruct; USART_InitTypeDef USART_InitStruct; /* enable UART peripheral clock */ RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); /* enable GPIO peripheral clock for transmitter and receiver pins */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE); /* configure USART Tx as alternate function push-pull */ GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStruct.GPIO_Pin = GPIO_Pin_2; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStruct); /* Configure USART Rx as alternate function input floating */ GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_InitStruct.GPIO_Pin = GPIO_Pin_3; GPIO_Init(GPIOA, &GPIO_InitStruct); /* configure UART communcation parameters */ USART_InitStruct.USART_BaudRate = BOOT_COM_UART_BAUDRATE; USART_InitStruct.USART_WordLength = USART_WordLength_8b; USART_InitStruct.USART_StopBits = USART_StopBits_1; USART_InitStruct.USART_Parity = USART_Parity_No; USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStruct.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART2, &USART_InitStruct); /* enable UART */ USART_Cmd(USART2, ENABLE); } /*** end of BootComUartInit ***/ /************************************************************************************//** ** \brief Receives the CONNECT request from the host, which indicates that the ** bootloader should be activated and, if so, activates it. ** \return none. ** ****************************************************************************************/ static void BootComUartCheckActivationRequest(void) { static unsigned char xcpCtoReqPacket[BOOT_COM_UART_RX_MAX_DATA+1]; static unsigned char xcpCtoRxLength; static unsigned char xcpCtoRxInProgress = 0; static unsigned long xcpCtoRxStartTime = 0; /* start of cto packet received? */ if (xcpCtoRxInProgress == 0) { /* store the message length when received */ if (UartReceiveByte(&xcpCtoReqPacket[0]) == 1) { /* check that the length has a valid value. it should not be 0 */ if (xcpCtoReqPacket[0] > 0) { /* store the start time */ xcpCtoRxStartTime = TimerGet(); /* indicate that a cto packet is being received */ xcpCtoRxInProgress = 1; /* reset packet data count */ xcpCtoRxLength = 0; } } } else { /* store the next packet byte */ if (UartReceiveByte(&xcpCtoReqPacket[xcpCtoRxLength+1]) == 1) { /* increment the packet data count */ xcpCtoRxLength++; /* check to see if the entire packet was received */ if (xcpCtoRxLength == xcpCtoReqPacket[0]) { /* done with cto packet reception */ xcpCtoRxInProgress = 0; /* check if this was an XCP CONNECT command */ if ((xcpCtoReqPacket[1] == 0xff) && (xcpCtoReqPacket[2] == 0x00)) { /* connection request received so start the bootloader */ BootActivate(); } } } else { /* check packet reception timeout */ if (TimerGet() > (xcpCtoRxStartTime + UART_CTO_RX_PACKET_TIMEOUT_MS)) { /* cancel cto packet reception due to timeout. note that this automatically * discards the already received packet bytes, allowing the host to retry. */ xcpCtoRxInProgress = 0; } } } } /*** end of BootComUartCheckActivationRequest ***/ /************************************************************************************//** ** \brief Receives a communication interface byte if one is present. ** \param data Pointer to byte where the data is to be stored. ** \return 1 if a byte was received, 0 otherwise. ** ****************************************************************************************/ static unsigned char UartReceiveByte(unsigned char *data) { /* check flag to see if a byte was received */ if (USART_GetFlagStatus(USART2, USART_FLAG_RXNE) == SET) { /* retrieve and store the newly received byte */ *data = (unsigned char)USART_ReceiveData(USART2); /* all done */ return 1; } /* still here to no new byte received */ return 0; } /*** end of UartReceiveByte ***/ #endif /* BOOT_COM_UART_ENABLE > 0 */ #if (BOOT_COM_CAN_ENABLE > 0) /**************************************************************************************** * C O N T R O L L E R A R E A N E T W O R K I N T E R F A C E ****************************************************************************************/ /**************************************************************************************** * Type definitions ****************************************************************************************/ /** \brief Structure type for grouping CAN bus timing related information. */ typedef struct t_can_bus_timing { unsigned char tseg1; /**< CAN time segment 1 */ unsigned char tseg2; /**< CAN time segment 2 */ } tCanBusTiming; /**************************************************************************************** * Local constant declarations ****************************************************************************************/ /** \brief CAN bittiming table for dynamically calculating the bittiming settings. * \details According to the CAN protocol 1 bit-time can be made up of between 8..25 * time quanta (TQ). The total TQ in a bit is SYNC + TSEG1 + TSEG2 with SYNC * always being 1. The sample point is (SYNC + TSEG1) / (SYNC + TSEG1 + SEG2) * * 100%. This array contains possible and valid time quanta configurations with * a sample point between 68..78%. */ static const tCanBusTiming canTiming[] = { /* TQ | TSEG1 | TSEG2 | SP */ /* ------------------------- */ { 5, 2 }, /* 8 | 5 | 2 | 75% */ { 6, 2 }, /* 9 | 6 | 2 | 78% */ { 6, 3 }, /* 10 | 6 | 3 | 70% */ { 7, 3 }, /* 11 | 7 | 3 | 73% */ { 8, 3 }, /* 12 | 8 | 3 | 75% */ { 9, 3 }, /* 13 | 9 | 3 | 77% */ { 9, 4 }, /* 14 | 9 | 4 | 71% */ { 10, 4 }, /* 15 | 10 | 4 | 73% */ { 11, 4 }, /* 16 | 11 | 4 | 75% */ { 12, 4 }, /* 17 | 12 | 4 | 76% */ { 12, 5 }, /* 18 | 12 | 5 | 72% */ { 13, 5 }, /* 19 | 13 | 5 | 74% */ { 14, 5 }, /* 20 | 14 | 5 | 75% */ { 15, 5 }, /* 21 | 15 | 5 | 76% */ { 15, 6 }, /* 22 | 15 | 6 | 73% */ { 16, 6 }, /* 23 | 16 | 6 | 74% */ { 16, 7 }, /* 24 | 16 | 7 | 71% */ { 16, 8 } /* 25 | 16 | 8 | 68% */ }; /************************************************************************************//** ** \brief Search algorithm to match the desired baudrate to a possible bus ** timing configuration. ** \param baud The desired baudrate in kbps. Valid values are 10..1000. ** \param prescaler Pointer to where the value for the prescaler will be stored. ** \param tseg1 Pointer to where the value for TSEG2 will be stored. ** \param tseg2 Pointer to where the value for TSEG2 will be stored. ** \return 1 if the CAN bustiming register values were found, 0 otherwise. ** ****************************************************************************************/ static unsigned char CanGetSpeedConfig(unsigned short baud, unsigned short *prescaler, unsigned char *tseg1, unsigned char *tseg2) { unsigned char cnt; /* loop through all possible time quanta configurations to find a match */ for (cnt=0; cnt < sizeof(canTiming)/sizeof(canTiming[0]); cnt++) { if (((BOOT_CPU_SYSTEM_SPEED_KHZ/2) % (baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))) == 0) { /* compute the prescaler that goes with this TQ configuration */ *prescaler = (BOOT_CPU_SYSTEM_SPEED_KHZ/2)/(baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1)); /* make sure the prescaler is valid */ if ( (*prescaler > 0) && (*prescaler <= 1024) ) { /* store the bustiming configuration */ *tseg1 = canTiming[cnt].tseg1; *tseg2 = canTiming[cnt].tseg2; /* found a good bus timing configuration */ return 1; } } } /* could not find a good bus timing configuration */ return 0; } /*** end of CanGetSpeedConfig ***/ /************************************************************************************//** ** \brief Initializes the CAN communication interface. ** \return none. ** ****************************************************************************************/ static void BootComCanInit(void) { GPIO_InitTypeDef GPIO_InitStructure; CAN_InitTypeDef CAN_InitStructure; CAN_FilterInitTypeDef CAN_FilterInitStructure; unsigned short prescaler; unsigned char tseg1, tseg2; /* GPIO clock enable */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); /* Configure CAN pin: RX */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOB, &GPIO_InitStructure); /* Configure CAN pin: TX */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStructure); /* Remap CAN1 pins to PortB */ GPIO_PinRemapConfig(GPIO_Remap1_CAN1 , ENABLE); /* CAN1 Periph clock enable */ RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE); /* CAN register init */ CAN_DeInit(CAN1); CAN_StructInit(&CAN_InitStructure); /* obtain the bittiming configuration for this baudrate */ CanGetSpeedConfig(BOOT_COM_CAN_BAUDRATE/1000, &prescaler, &tseg1, &tseg2); /* CAN controller init */ CAN_InitStructure.CAN_TTCM = DISABLE; CAN_InitStructure.CAN_ABOM = DISABLE; CAN_InitStructure.CAN_AWUM = DISABLE; CAN_InitStructure.CAN_NART = DISABLE; CAN_InitStructure.CAN_RFLM = DISABLE; CAN_InitStructure.CAN_TXFP = DISABLE; CAN_InitStructure.CAN_Mode = CAN_Mode_Normal; /* CAN Baudrate init */ CAN_InitStructure.CAN_SJW = CAN_SJW_1tq; CAN_InitStructure.CAN_BS1 = tseg1 - 1; CAN_InitStructure.CAN_BS2 = tseg2 - 1; CAN_InitStructure.CAN_Prescaler = prescaler; CAN_Init(CAN1, &CAN_InitStructure); /* CAN filter init - receive all messages */ CAN_FilterInitStructure.CAN_FilterNumber = 0; CAN_FilterInitStructure.CAN_FilterMode = CAN_FilterMode_IdMask; CAN_FilterInitStructure.CAN_FilterScale = CAN_FilterScale_32bit; CAN_FilterInitStructure.CAN_FilterIdHigh = 0x0000; CAN_FilterInitStructure.CAN_FilterIdLow = 0x0000; CAN_FilterInitStructure.CAN_FilterMaskIdHigh = 0x0000; CAN_FilterInitStructure.CAN_FilterMaskIdLow = 0x0000; CAN_FilterInitStructure.CAN_FilterFIFOAssignment = 0; CAN_FilterInitStructure.CAN_FilterActivation = ENABLE; CAN_FilterInit(&CAN_FilterInitStructure); } /*** end of BootCanComInit ***/ /************************************************************************************//** ** \brief Receives the CONNECT request from the host, which indicates that the ** bootloader should be activated and, if so, activates it. ** \return none. ** ****************************************************************************************/ static void BootComCanCheckActivationRequest(void) { CanRxMsg RxMessage; unsigned char canIdMatched = 0; /* check if a new message was received */ if (CAN_MessagePending(CAN1, CAN_FIFO0) > 0) { /* receive the message */ CAN_Receive(CAN1, CAN_FIFO0, &RxMessage); /* check if the message identifier matches the bootloader reception message */ if ( (RxMessage.IDE == CAN_Id_Standard) && (RxMessage.StdId == BOOT_COM_CAN_RX_MSG_ID) ) { canIdMatched = 1; } if ( (RxMessage.IDE == CAN_Id_Extended) && ((RxMessage.ExtId | 0x80000000) == BOOT_COM_CAN_RX_MSG_ID) ) { canIdMatched = 1; } /* is the identifier a match to the bootloader reception message identifier? */ if (canIdMatched == 1) { /* check if this was an XCP CONNECT command */ if ((RxMessage.Data[0] == 0xff) && (RxMessage.Data[1] == 0x00)) { /* connection request received so start the bootloader */ BootActivate(); } } } } /*** end of BootComCanCheckActivationRequest ***/ #endif /* BOOT_COM_CAN_ENABLE > 0 */ /*********************************** end of boot.c *************************************/