openblt/Target/Demo/ARMCM3_STM32F1_Olimex_STM32.../Boot/main.c

217 lines
9.4 KiB
C

/************************************************************************************//**
* \file Demo\ARMCM3_STM32F1_Olimex_STM32P103_TrueStudio\Boot\main.c
* \brief Bootloader application source file.
* \ingroup Boot_ARMCM3_STM32F1_Olimex_STM32P103_TrueStudio
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2018 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You have received a copy of the GNU General Public License along with OpenBLT. It
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
*
* \endinternal
****************************************************************************************/
/****************************************************************************************
* Include files
****************************************************************************************/
#include "boot.h" /* bootloader generic header */
#include "stm32f10x.h" /* microcontroller registers */
#if (BOOT_FILE_LOGGING_ENABLE > 0) && (BOOT_COM_UART_ENABLE == 0)
#include "stm32f10x_conf.h" /* STM32 peripheral drivers */
#endif
/****************************************************************************************
* Function prototypes
****************************************************************************************/
static void Init(void);
/************************************************************************************//**
** \brief This is the entry point for the bootloader application and is called
** by the reset interrupt vector after the C-startup routines executed.
** \return Program return code.
**
****************************************************************************************/
int main(void)
{
/* initialize the microcontroller */
Init();
/* initialize the bootloader */
BootInit();
/* start the infinite program loop */
while (1)
{
/* run the bootloader task */
BootTask();
}
/* program should never get here */
return 0;
} /*** end of main ***/
/************************************************************************************//**
** \brief Initializes the microcontroller.
** \return none.
**
****************************************************************************************/
static void Init(void)
{
volatile blt_int32u StartUpCounter = 0, HSEStatus = 0;
blt_int32u pll_multiplier;
#if (BOOT_FILE_LOGGING_ENABLE > 0) && (BOOT_COM_UART_ENABLE == 0)
GPIO_InitTypeDef GPIO_InitStruct;
USART_InitTypeDef USART_InitStruct;
#endif
/* reset the RCC clock configuration to the default reset state (for debug purpose) */
/* set HSION bit */
RCC->CR |= (blt_int32u)0x00000001;
/* reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
RCC->CFGR &= (blt_int32u)0xF8FF0000;
/* reset HSEON, CSSON and PLLON bits */
RCC->CR &= (blt_int32u)0xFEF6FFFF;
/* reset HSEBYP bit */
RCC->CR &= (blt_int32u)0xFFFBFFFF;
/* reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */
RCC->CFGR &= (blt_int32u)0xFF80FFFF;
/* disable all interrupts and clear pending bits */
RCC->CIR = 0x009F0000;
/* enable HSE */
RCC->CR |= ((blt_int32u)RCC_CR_HSEON);
/* wait till HSE is ready and if Time out is reached exit */
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
}
while((HSEStatus == 0) && (StartUpCounter != 1500));
/* check if time out was reached */
if ((RCC->CR & RCC_CR_HSERDY) == RESET)
{
/* cannot continue when HSE is not ready */
ASSERT_RT(BLT_FALSE);
}
/* enable flash prefetch buffer */
FLASH->ACR |= FLASH_ACR_PRFTBE;
/* reset flash wait state configuration to default 0 wait states */
FLASH->ACR &= (blt_int32u)((blt_int32u)~FLASH_ACR_LATENCY);
#if (BOOT_CPU_SYSTEM_SPEED_KHZ > 48000)
/* configure 2 flash wait states */
FLASH->ACR |= (blt_int32u)FLASH_ACR_LATENCY_2;
#elif (BOOT_CPU_SYSTEM_SPEED_KHZ > 24000)
/* configure 1 flash wait states */
FLASH->ACR |= (blt_int32u)FLASH_ACR_LATENCY_1;
#endif
/* HCLK = SYSCLK */
RCC->CFGR |= (blt_int32u)RCC_CFGR_HPRE_DIV1;
/* PCLK2 = HCLK/2 */
RCC->CFGR |= (blt_int32u)RCC_CFGR_PPRE2_DIV2;
/* PCLK1 = HCLK/2 */
RCC->CFGR |= (blt_int32u)RCC_CFGR_PPRE1_DIV2;
/* reset PLL configuration */
RCC->CFGR &= (blt_int32u)((blt_int32u)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | \
RCC_CFGR_PLLMULL));
/* assert that the pll_multiplier is between 2 and 16 */
ASSERT_CT((BOOT_CPU_SYSTEM_SPEED_KHZ/BOOT_CPU_XTAL_SPEED_KHZ) >= 2);
ASSERT_CT((BOOT_CPU_SYSTEM_SPEED_KHZ/BOOT_CPU_XTAL_SPEED_KHZ) <= 16);
/* calculate multiplier value */
pll_multiplier = BOOT_CPU_SYSTEM_SPEED_KHZ/BOOT_CPU_XTAL_SPEED_KHZ;
/* convert to register value */
pll_multiplier = (blt_int32u)((pll_multiplier - 2) << 18);
/* set the PLL multiplier and clock source */
RCC->CFGR |= (blt_int32u)(RCC_CFGR_PLLSRC_HSE | pll_multiplier);
/* enable PLL */
RCC->CR |= RCC_CR_PLLON;
/* wait till PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}
/* select PLL as system clock source */
RCC->CFGR &= (blt_int32u)((blt_int32u)~(RCC_CFGR_SW));
RCC->CFGR |= (blt_int32u)RCC_CFGR_SW_PLL;
/* wait till PLL is used as system clock source */
while ((RCC->CFGR & (blt_int32u)RCC_CFGR_SWS) != (blt_int32u)0x08)
{
}
#if (BOOT_COM_CAN_ENABLE > 0)
/* enable clocks for CAN transmitter and receiver pins (GPIOB and AFIO) */
RCC->APB2ENR |= (blt_int32u)(0x00000008 | 0x00000001);
/* configure CAN Rx (GPIOB8) as alternate function input pull-up */
/* first reset the configuration */
GPIOB->CRH &= ~(blt_int32u)((blt_int32u)0xf << 0);
/* CNF8[1:0] = %10 and MODE8[1:0] = %00 */
GPIOB->CRH |= (blt_int32u)((blt_int32u)0x8 << 0);
/* configure CAN Tx (GPIOB9) as alternate function push-pull */
/* first reset the configuration */
GPIOB->CRH &= ~(blt_int32u)((blt_int32u)0xf << 4);
/* CNF9[1:0] = %10 and MODE9[1:0] = %11 */
GPIOB->CRH |= (blt_int32u)((blt_int32u)0xb << 4);
/* remap CAN1 pins to PortB */
AFIO->MAPR &= ~(blt_int32u)((blt_int32u)0x3 << 13);
AFIO->MAPR |= (blt_int32u)((blt_int32u)0x2 << 13);
/* enable clocks for CAN controller peripheral */
RCC->APB1ENR |= (blt_int32u)0x02000000;
#endif
#if (BOOT_COM_UART_ENABLE > 0)
/* enable clock for USART2 peripheral */
RCC->APB1ENR |= (blt_int32u)0x00020000;
/* enable clocks for USART2 transmitter and receiver pins (GPIOA and AFIO) */
RCC->APB2ENR |= (blt_int32u)(0x00000004 | 0x00000001);
/* configure USART2 Tx (GPIOA2) as alternate function push-pull */
/* first reset the configuration */
GPIOA->CRL &= ~(blt_int32u)((blt_int32u)0xf << 8);
/* CNF2[1:0] = %10 and MODE2[1:0] = %11 */
GPIOA->CRL |= (blt_int32u)((blt_int32u)0xb << 8);
/* configure USART2 Rx (GPIOA3) as alternate function input floating */
/* first reset the configuration */
GPIOA->CRL &= ~(blt_int32u)((blt_int32u)0xf << 12);
/* CNF2[1:0] = %01 and MODE2[1:0] = %00 */
GPIOA->CRL |= (blt_int32u)((blt_int32u)0x4 << 12);
#elif (BOOT_FILE_LOGGING_ENABLE > 0)
/* enable UART peripheral clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
/* enable GPIO peripheral clock for transmitter and receiver pins */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);
/* configure USART Tx as alternate function push-pull */
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStruct);
/* Configure USART Rx as alternate function input floating */
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_3;
GPIO_Init(GPIOA, &GPIO_InitStruct);
/* configure UART communcation parameters */
USART_InitStruct.USART_BaudRate = BOOT_COM_UART_BAUDRATE;
USART_InitStruct.USART_WordLength = USART_WordLength_8b;
USART_InitStruct.USART_StopBits = USART_StopBits_1;
USART_InitStruct.USART_Parity = USART_Parity_No;
USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStruct.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART2, &USART_InitStruct);
/* enable UART */
USART_Cmd(USART2, ENABLE);
#endif
} /*** end of Init ***/
/*********************************** end of main.c *************************************/