openblt/Target/Demo/ARMCM4_STM32F4_Olimex_STM32.../Boot/lib/SPL/src/stm32f4xx_cryp_aes.c

1677 lines
56 KiB
C

/**
******************************************************************************
* @file stm32f4xx_cryp_aes.c
* @author MCD Application Team
* @version V1.1.0
* @date 11-January-2013
* @brief This file provides high level functions to encrypt and decrypt an
* input message using AES in ECB/CBC/CTR/GCM/CCM modes.
* It uses the stm32f4xx_cryp.c/.h drivers to access the STM32F4xx CRYP
* peripheral.
* AES-ECB/CBC/CTR/GCM/CCM modes are available on STM32F437x Devices.
* For STM32F41xx Devices, only AES-ECB/CBC/CTR modes are available.
*
@verbatim
===================================================================
##### How to use this driver #####
===================================================================
[..]
(#) Enable The CRYP controller clock using
RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_CRYP, ENABLE); function.
(#) Encrypt and decrypt using AES in ECB Mode using CRYP_AES_ECB() function.
(#) Encrypt and decrypt using AES in CBC Mode using CRYP_AES_CBC() function.
(#) Encrypt and decrypt using AES in CTR Mode using CRYP_AES_CTR() function.
(#) Encrypt and decrypt using AES in GCM Mode using CRYP_AES_GCM() function.
(#) Encrypt and decrypt using AES in CCM Mode using CRYP_AES_CCM() function.
@endverbatim
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_cryp.h"
/** @addtogroup STM32F4xx_StdPeriph_Driver
* @{
*/
/** @defgroup CRYP
* @brief CRYP driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define AESBUSY_TIMEOUT ((uint32_t) 0x00010000)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup CRYP_Private_Functions
* @{
*/
/** @defgroup CRYP_Group6 High Level AES functions
* @brief High Level AES functions
*
@verbatim
===============================================================================
##### High Level AES functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Encrypt and decrypt using AES in ECB Mode
* @param Mode: encryption or decryption Mode.
* This parameter can be one of the following values:
* @arg MODE_ENCRYPT: Encryption
* @arg MODE_DECRYPT: Decryption
* @param Key: Key used for AES algorithm.
* @param Keysize: length of the Key, must be a 128, 192 or 256.
* @param Input: pointer to the Input buffer.
* @param Ilength: length of the Input buffer, must be a multiple of 16.
* @param Output: pointer to the returned buffer.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Operation done
* - ERROR: Operation failed
*/
ErrorStatus CRYP_AES_ECB(uint8_t Mode, uint8_t* Key, uint16_t Keysize,
uint8_t* Input, uint32_t Ilength, uint8_t* Output)
{
CRYP_InitTypeDef AES_CRYP_InitStructure;
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure;
__IO uint32_t counter = 0;
uint32_t busystatus = 0;
ErrorStatus status = SUCCESS;
uint32_t keyaddr = (uint32_t)Key;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
uint32_t i = 0;
/* Crypto structures initialisation*/
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure);
switch(Keysize)
{
case 128:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
case 192:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
case 256:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b;
AES_CRYP_KeyInitStructure.CRYP_Key0Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key0Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
default:
break;
}
/*------------------ AES Decryption ------------------*/
if(Mode == MODE_DECRYPT) /* AES decryption */
{
/* Flush IN/OUT FIFOs */
CRYP_FIFOFlush();
/* Crypto Init for Key preparation for decryption process */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_Key;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_32b;
CRYP_Init(&AES_CRYP_InitStructure);
/* Key Initialisation */
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
/* wait until the Busy flag is RESET */
do
{
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
counter++;
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
if (busystatus != RESET)
{
status = ERROR;
}
else
{
/* Crypto Init for decryption process */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
}
}
/*------------------ AES Encryption ------------------*/
else /* AES encryption */
{
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/* Crypto Init for Encryption process */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
}
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_ECB;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
CRYP_Init(&AES_CRYP_InitStructure);
/* Flush IN/OUT FIFOs */
CRYP_FIFOFlush();
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
for(i=0; ((i<Ilength) && (status != ERROR)); i+=16)
{
/* Write the Input block in the IN FIFO */
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
/* Wait until the complete message has been processed */
counter = 0;
do
{
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
counter++;
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
if (busystatus != RESET)
{
status = ERROR;
}
else
{
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
}
}
/* Disable Crypto */
CRYP_Cmd(DISABLE);
return status;
}
/**
* @brief Encrypt and decrypt using AES in CBC Mode
* @param Mode: encryption or decryption Mode.
* This parameter can be one of the following values:
* @arg MODE_ENCRYPT: Encryption
* @arg MODE_DECRYPT: Decryption
* @param InitVectors: Initialisation Vectors used for AES algorithm.
* @param Key: Key used for AES algorithm.
* @param Keysize: length of the Key, must be a 128, 192 or 256.
* @param Input: pointer to the Input buffer.
* @param Ilength: length of the Input buffer, must be a multiple of 16.
* @param Output: pointer to the returned buffer.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Operation done
* - ERROR: Operation failed
*/
ErrorStatus CRYP_AES_CBC(uint8_t Mode, uint8_t InitVectors[16], uint8_t *Key,
uint16_t Keysize, uint8_t *Input, uint32_t Ilength,
uint8_t *Output)
{
CRYP_InitTypeDef AES_CRYP_InitStructure;
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure;
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure;
__IO uint32_t counter = 0;
uint32_t busystatus = 0;
ErrorStatus status = SUCCESS;
uint32_t keyaddr = (uint32_t)Key;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
uint32_t ivaddr = (uint32_t)InitVectors;
uint32_t i = 0;
/* Crypto structures initialisation*/
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure);
switch(Keysize)
{
case 128:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
case 192:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
case 256:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b;
AES_CRYP_KeyInitStructure.CRYP_Key0Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key0Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
default:
break;
}
/* CRYP Initialization Vectors */
AES_CRYP_IVInitStructure.CRYP_IV0Left = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
AES_CRYP_IVInitStructure.CRYP_IV0Right= __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
AES_CRYP_IVInitStructure.CRYP_IV1Left = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
AES_CRYP_IVInitStructure.CRYP_IV1Right= __REV(*(uint32_t*)(ivaddr));
/*------------------ AES Decryption ------------------*/
if(Mode == MODE_DECRYPT) /* AES decryption */
{
/* Flush IN/OUT FIFOs */
CRYP_FIFOFlush();
/* Crypto Init for Key preparation for decryption process */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_Key;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_32b;
CRYP_Init(&AES_CRYP_InitStructure);
/* Key Initialisation */
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
/* wait until the Busy flag is RESET */
do
{
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
counter++;
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
if (busystatus != RESET)
{
status = ERROR;
}
else
{
/* Crypto Init for decryption process */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
}
}
/*------------------ AES Encryption ------------------*/
else /* AES encryption */
{
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/* Crypto Init for Encryption process */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
}
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CBC;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
CRYP_Init(&AES_CRYP_InitStructure);
/* CRYP Initialization Vectors */
CRYP_IVInit(&AES_CRYP_IVInitStructure);
/* Flush IN/OUT FIFOs */
CRYP_FIFOFlush();
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
for(i=0; ((i<Ilength) && (status != ERROR)); i+=16)
{
/* Write the Input block in the IN FIFO */
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
/* Wait until the complete message has been processed */
counter = 0;
do
{
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
counter++;
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
if (busystatus != RESET)
{
status = ERROR;
}
else
{
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
}
}
/* Disable Crypto */
CRYP_Cmd(DISABLE);
return status;
}
/**
* @brief Encrypt and decrypt using AES in CTR Mode
* @param Mode: encryption or decryption Mode.
* This parameter can be one of the following values:
* @arg MODE_ENCRYPT: Encryption
* @arg MODE_DECRYPT: Decryption
* @param InitVectors: Initialisation Vectors used for AES algorithm.
* @param Key: Key used for AES algorithm.
* @param Keysize: length of the Key, must be a 128, 192 or 256.
* @param Input: pointer to the Input buffer.
* @param Ilength: length of the Input buffer, must be a multiple of 16.
* @param Output: pointer to the returned buffer.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Operation done
* - ERROR: Operation failed
*/
ErrorStatus CRYP_AES_CTR(uint8_t Mode, uint8_t InitVectors[16], uint8_t *Key,
uint16_t Keysize, uint8_t *Input, uint32_t Ilength,
uint8_t *Output)
{
CRYP_InitTypeDef AES_CRYP_InitStructure;
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure;
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure;
__IO uint32_t counter = 0;
uint32_t busystatus = 0;
ErrorStatus status = SUCCESS;
uint32_t keyaddr = (uint32_t)Key;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
uint32_t ivaddr = (uint32_t)InitVectors;
uint32_t i = 0;
/* Crypto structures initialisation*/
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure);
switch(Keysize)
{
case 128:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
case 192:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
case 256:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b;
AES_CRYP_KeyInitStructure.CRYP_Key0Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key0Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
default:
break;
}
/* CRYP Initialization Vectors */
AES_CRYP_IVInitStructure.CRYP_IV0Left = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
AES_CRYP_IVInitStructure.CRYP_IV0Right= __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
AES_CRYP_IVInitStructure.CRYP_IV1Left = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
AES_CRYP_IVInitStructure.CRYP_IV1Right= __REV(*(uint32_t*)(ivaddr));
/* Key Initialisation */
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/*------------------ AES Decryption ------------------*/
if(Mode == MODE_DECRYPT) /* AES decryption */
{
/* Crypto Init for decryption process */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
}
/*------------------ AES Encryption ------------------*/
else /* AES encryption */
{
/* Crypto Init for Encryption process */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
}
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CTR;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
CRYP_Init(&AES_CRYP_InitStructure);
/* CRYP Initialization Vectors */
CRYP_IVInit(&AES_CRYP_IVInitStructure);
/* Flush IN/OUT FIFOs */
CRYP_FIFOFlush();
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
for(i=0; ((i<Ilength) && (status != ERROR)); i+=16)
{
/* Write the Input block in the IN FIFO */
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
/* Wait until the complete message has been processed */
counter = 0;
do
{
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
counter++;
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
if (busystatus != RESET)
{
status = ERROR;
}
else
{
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
}
}
/* Disable Crypto */
CRYP_Cmd(DISABLE);
return status;
}
/**
* @brief Encrypt and decrypt using AES in GCM Mode. The GCM and CCM modes
* are available only on STM32F437x Devices.
* @param Mode: encryption or decryption Mode.
* This parameter can be one of the following values:
* @arg MODE_ENCRYPT: Encryption
* @arg MODE_DECRYPT: Decryption
* @param InitVectors: Initialisation Vectors used for AES algorithm.
* @param Key: Key used for AES algorithm.
* @param Keysize: length of the Key, must be a 128, 192 or 256.
* @param Input: pointer to the Input buffer.
* @param Ilength: length of the Input buffer in bytes, must be a multiple of 16.
* @param Header: pointer to the header buffer.
* @param Hlength: length of the header buffer in bytes, must be a multiple of 16.
* @param Output: pointer to the returned buffer.
* @param AuthTAG: pointer to the authentication TAG buffer.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Operation done
* - ERROR: Operation failed
*/
ErrorStatus CRYP_AES_GCM(uint8_t Mode, uint8_t InitVectors[16],
uint8_t *Key, uint16_t Keysize,
uint8_t *Input, uint32_t ILength,
uint8_t *Header, uint32_t HLength,
uint8_t *Output, uint8_t *AuthTAG)
{
CRYP_InitTypeDef AES_CRYP_InitStructure;
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure;
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure;
__IO uint32_t counter = 0;
uint32_t busystatus = 0;
ErrorStatus status = SUCCESS;
uint32_t keyaddr = (uint32_t)Key;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
uint32_t ivaddr = (uint32_t)InitVectors;
uint32_t headeraddr = (uint32_t)Header;
uint32_t tagaddr = (uint32_t)AuthTAG;
uint64_t headerlength = HLength * 8;/* header length in bits */
uint64_t inputlength = ILength * 8;/* input length in bits */
uint32_t loopcounter = 0;
/* Crypto structures initialisation*/
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure);
switch(Keysize)
{
case 128:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
case 192:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
case 256:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b;
AES_CRYP_KeyInitStructure.CRYP_Key0Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key0Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
default:
break;
}
/* CRYP Initialization Vectors */
AES_CRYP_IVInitStructure.CRYP_IV0Left = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
AES_CRYP_IVInitStructure.CRYP_IV0Right= __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
AES_CRYP_IVInitStructure.CRYP_IV1Left = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4;
AES_CRYP_IVInitStructure.CRYP_IV1Right= __REV(*(uint32_t*)(ivaddr));
/*------------------ AES Encryption ------------------*/
if(Mode == MODE_ENCRYPT) /* AES encryption */
{
/* Flush IN/OUT FIFOs */
CRYP_FIFOFlush();
/* Key Initialisation */
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/* CRYP Initialization Vectors */
CRYP_IVInit(&AES_CRYP_IVInitStructure);
/* Crypto Init for Key preparation for decryption process */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_GCM;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
CRYP_Init(&AES_CRYP_InitStructure);
/***************************** Init phase *********************************/
/* Select init phase */
CRYP_PhaseConfig(CRYP_Phase_Init);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
/* Wait for CRYPEN bit to be 0 */
while(CRYP_GetCmdStatus() == ENABLE)
{
}
/***************************** header phase *******************************/
if(HLength != 0)
{
/* Select header phase */
CRYP_PhaseConfig(CRYP_Phase_Header);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
for(loopcounter = 0; (loopcounter < HLength); loopcounter+=16)
{
/* Wait until the IFEM flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET)
{
}
/* Write the Input block in the IN FIFO */
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
}
/* Wait until the complete message has been processed */
counter = 0;
do
{
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
counter++;
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
if (busystatus != RESET)
{
status = ERROR;
}
}
/**************************** payload phase *******************************/
if(ILength != 0)
{
/* Select payload phase */
CRYP_PhaseConfig(CRYP_Phase_Payload);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
for(loopcounter = 0; ((loopcounter < ILength) && (status != ERROR)); loopcounter+=16)
{
/* Wait until the IFEM flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET)
{
}
/* Write the Input block in the IN FIFO */
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
/* Wait until the complete message has been processed */
counter = 0;
do
{
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
counter++;
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
if (busystatus != RESET)
{
status = ERROR;
}
else
{
/* Wait until the OFNE flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET)
{
}
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
}
}
}
/***************************** final phase ********************************/
/* Select final phase */
CRYP_PhaseConfig(CRYP_Phase_Final);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
/* Write number of bits concatenated with header in the IN FIFO */
CRYP_DataIn(__REV(headerlength>>32));
CRYP_DataIn(__REV(headerlength));
CRYP_DataIn(__REV(inputlength>>32));
CRYP_DataIn(__REV(inputlength));
/* Wait until the OFNE flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET)
{
}
tagaddr = (uint32_t)AuthTAG;
/* Read the Auth TAG in the IN FIFO */
*(uint32_t*)(tagaddr) = CRYP_DataOut();
tagaddr+=4;
*(uint32_t*)(tagaddr) = CRYP_DataOut();
tagaddr+=4;
*(uint32_t*)(tagaddr) = CRYP_DataOut();
tagaddr+=4;
*(uint32_t*)(tagaddr) = CRYP_DataOut();
tagaddr+=4;
}
/*------------------ AES Decryption ------------------*/
else /* AES decryption */
{
/* Flush IN/OUT FIFOs */
CRYP_FIFOFlush();
/* Key Initialisation */
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/* CRYP Initialization Vectors */
CRYP_IVInit(&AES_CRYP_IVInitStructure);
/* Crypto Init for Key preparation for decryption process */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_GCM;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
CRYP_Init(&AES_CRYP_InitStructure);
/***************************** Init phase *********************************/
/* Select init phase */
CRYP_PhaseConfig(CRYP_Phase_Init);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
/* Wait for CRYPEN bit to be 0 */
while(CRYP_GetCmdStatus() == ENABLE);
/***************************** header phase *******************************/
if(HLength != 0)
{
/* Select header phase */
CRYP_PhaseConfig(CRYP_Phase_Header);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
for(loopcounter = 0; (loopcounter < HLength); loopcounter+=16)
{
/* Wait until the IFEM flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET);
/* Write the Input block in the IN FIFO */
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
}
/* Wait until the complete message has been processed */
counter = 0;
do
{
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
counter++;
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
if (busystatus != RESET)
{
status = ERROR;
}
}
/**************************** payload phase *******************************/
if(ILength != 0)
{
/* Select payload phase */
CRYP_PhaseConfig(CRYP_Phase_Payload);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
for(loopcounter = 0; ((loopcounter < ILength) && (status != ERROR)); loopcounter+=16)
{
/* Wait until the IFEM flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET);
/* Write the Input block in the IN FIFO */
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
/* Wait until the complete message has been processed */
counter = 0;
do
{
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
counter++;
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
if (busystatus != RESET)
{
status = ERROR;
}
else
{
/* Wait until the OFNE flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET);
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
}
}
}
/***************************** final phase ********************************/
/* Select final phase */
CRYP_PhaseConfig(CRYP_Phase_Final);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
/* Write number of bits concatenated with header in the IN FIFO */
CRYP_DataIn(__REV(headerlength>>32));
CRYP_DataIn(__REV(headerlength));
CRYP_DataIn(__REV(inputlength>>32));
CRYP_DataIn(__REV(inputlength));
/* Wait until the OFNE flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET);
tagaddr = (uint32_t)AuthTAG;
/* Read the Auth TAG in the IN FIFO */
*(uint32_t*)(tagaddr) = CRYP_DataOut();
tagaddr+=4;
*(uint32_t*)(tagaddr) = CRYP_DataOut();
tagaddr+=4;
*(uint32_t*)(tagaddr) = CRYP_DataOut();
tagaddr+=4;
*(uint32_t*)(tagaddr) = CRYP_DataOut();
tagaddr+=4;
}
/* Disable Crypto */
CRYP_Cmd(DISABLE);
return status;
}
/**
* @brief Encrypt and decrypt using AES in CCM Mode. The GCM and CCM modes
* are available only on STM32F437x Devices.
* @param Mode: encryption or decryption Mode.
* This parameter can be one of the following values:
* @arg MODE_ENCRYPT: Encryption
* @arg MODE_DECRYPT: Decryption
* @param Nonce: the nounce used for AES algorithm. It shall be unique for each processing.
* @param Key: Key used for AES algorithm.
* @param Keysize: length of the Key, must be a 128, 192 or 256.
* @param Input: pointer to the Input buffer.
* @param Ilength: length of the Input buffer in bytes, must be a multiple of 16.
* @param Header: pointer to the header buffer.
* @param Hlength: length of the header buffer in bytes.
* @param HBuffer: pointer to temporary buffer used to append the header
* HBuffer size must be equal to Hlength + 21
* @param Output: pointer to the returned buffer.
* @param AuthTAG: pointer to the authentication TAG buffer.
* @param TAGSize: the size of the TAG (called also MAC).
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Operation done
* - ERROR: Operation failed
*/
ErrorStatus CRYP_AES_CCM(uint8_t Mode,
uint8_t* Nonce, uint32_t NonceSize,
uint8_t *Key, uint16_t Keysize,
uint8_t *Input, uint32_t ILength,
uint8_t *Header, uint32_t HLength, uint8_t *HBuffer,
uint8_t *Output,
uint8_t *AuthTAG, uint32_t TAGSize)
{
CRYP_InitTypeDef AES_CRYP_InitStructure;
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure;
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure;
__IO uint32_t counter = 0;
uint32_t busystatus = 0;
ErrorStatus status = SUCCESS;
uint32_t keyaddr = (uint32_t)Key;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
uint32_t headeraddr = (uint32_t)Header;
uint32_t tagaddr = (uint32_t)AuthTAG;
uint32_t headersize = HLength;
uint32_t loopcounter = 0;
uint32_t bufferidx = 0;
uint8_t blockb0[16] = {0};/* Block B0 */
uint8_t ctr[16] = {0}; /* Counter */
uint32_t temptag[4] = {0}; /* temporary TAG (MAC) */
uint32_t ctraddr = (uint32_t)ctr;
uint32_t b0addr = (uint32_t)blockb0;
/************************ Formatting the header block ***********************/
if(headersize != 0)
{
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
if(headersize < 65280)
{
HBuffer[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
HBuffer[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
headersize += 2;
}
else
{
/* header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
HBuffer[bufferidx++] = 0xFF;
HBuffer[bufferidx++] = 0xFE;
HBuffer[bufferidx++] = headersize & 0xff000000;
HBuffer[bufferidx++] = headersize & 0x00ff0000;
HBuffer[bufferidx++] = headersize & 0x0000ff00;
HBuffer[bufferidx++] = headersize & 0x000000ff;
headersize += 6;
}
/* Copy the header buffer in internal buffer "HBuffer" */
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
{
HBuffer[bufferidx++] = Header[loopcounter];
}
/* Check if the header size is modulo 16 */
if ((headersize % 16) != 0)
{
/* Padd the header buffer with 0s till the HBuffer length is modulo 16 */
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
{
HBuffer[loopcounter] = 0;
}
/* Set the header size to modulo 16 */
headersize = ((headersize/16) + 1) * 16;
}
/* set the pointer headeraddr to HBuffer */
headeraddr = (uint32_t)HBuffer;
}
/************************* Formatting the block B0 **************************/
if(headersize != 0)
{
blockb0[0] = 0x40;
}
/* Flags byte */
blockb0[0] |= 0u | (((( (uint8_t) TAGSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - NonceSize) - 1) & 0x07);
for (loopcounter = 0; loopcounter < NonceSize; loopcounter++)
{
blockb0[loopcounter+1] = Nonce[loopcounter];
}
for ( ; loopcounter < 13; loopcounter++)
{
blockb0[loopcounter+1] = 0;
}
blockb0[14] = ((ILength >> 8) & 0xFF);
blockb0[15] = (ILength & 0xFF);
/************************* Formatting the initial counter *******************/
/* Byte 0:
Bits 7 and 6 are reserved and shall be set to 0
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter blocks
are distinct from B0
Bits 0, 1, and 2 contain the same encoding of q as in B0
*/
ctr[0] = blockb0[0] & 0x07;
/* byte 1 to NonceSize is the IV (Nonce) */
for(loopcounter = 1; loopcounter < NonceSize + 1; loopcounter++)
{
ctr[loopcounter] = blockb0[loopcounter];
}
/* Set the LSB to 1 */
ctr[15] |= 0x01;
/* Crypto structures initialisation*/
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure);
switch(Keysize)
{
case 128:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
case 192:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
case 256:
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b;
AES_CRYP_KeyInitStructure.CRYP_Key0Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key0Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4;
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr));
break;
default:
break;
}
/* CRYP Initialization Vectors */
AES_CRYP_IVInitStructure.CRYP_IV0Left = (__REV(*(uint32_t*)(ctraddr)));
ctraddr+=4;
AES_CRYP_IVInitStructure.CRYP_IV0Right= (__REV(*(uint32_t*)(ctraddr)));
ctraddr+=4;
AES_CRYP_IVInitStructure.CRYP_IV1Left = (__REV(*(uint32_t*)(ctraddr)));
ctraddr+=4;
AES_CRYP_IVInitStructure.CRYP_IV1Right= (__REV(*(uint32_t*)(ctraddr)));
/*------------------ AES Encryption ------------------*/
if(Mode == MODE_ENCRYPT) /* AES encryption */
{
/* Flush IN/OUT FIFOs */
CRYP_FIFOFlush();
/* Key Initialisation */
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/* CRYP Initialization Vectors */
CRYP_IVInit(&AES_CRYP_IVInitStructure);
/* Crypto Init for Key preparation for decryption process */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CCM;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
CRYP_Init(&AES_CRYP_InitStructure);
/***************************** Init phase *********************************/
/* Select init phase */
CRYP_PhaseConfig(CRYP_Phase_Init);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
CRYP_DataIn((*(uint32_t*)(b0addr)));
b0addr+=4;
CRYP_DataIn((*(uint32_t*)(b0addr)));
b0addr+=4;
CRYP_DataIn((*(uint32_t*)(b0addr)));
b0addr+=4;
CRYP_DataIn((*(uint32_t*)(b0addr)));
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
/* Wait for CRYPEN bit to be 0 */
while(CRYP_GetCmdStatus() == ENABLE);
/***************************** header phase *******************************/
if(headersize != 0)
{
/* Select header phase */
CRYP_PhaseConfig(CRYP_Phase_Header);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Wait until the IFEM flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET);
/* Write the Input block in the IN FIFO */
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
}
/* Wait until the complete message has been processed */
counter = 0;
do
{
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
counter++;
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
if (busystatus != RESET)
{
status = ERROR;
}
}
/**************************** payload phase *******************************/
if(ILength != 0)
{
/* Select payload phase */
CRYP_PhaseConfig(CRYP_Phase_Payload);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
for(loopcounter = 0; ((loopcounter < ILength) && (status != ERROR)); loopcounter+=16)
{
/* Wait until the IFEM flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET);
/* Write the Input block in the IN FIFO */
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
/* Wait until the complete message has been processed */
counter = 0;
do
{
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
counter++;
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
if (busystatus != RESET)
{
status = ERROR;
}
else
{
/* Wait until the OFNE flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET);
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
}
}
}
/***************************** final phase ********************************/
/* Select final phase */
CRYP_PhaseConfig(CRYP_Phase_Final);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
ctraddr = (uint32_t)ctr;
/* Write the counter block in the IN FIFO */
CRYP_DataIn(*(uint32_t*)(ctraddr));
ctraddr+=4;
CRYP_DataIn(*(uint32_t*)(ctraddr));
ctraddr+=4;
CRYP_DataIn(*(uint32_t*)(ctraddr));
ctraddr+=4;
/* Reset bit 0 (after 8-bit swap) is equivalent to reset bit 24 (before 8-bit swap) */
CRYP_DataIn(*(uint32_t*)(ctraddr) & 0xfeffffff);
/* Wait until the OFNE flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET);
/* Read the Auth TAG in the IN FIFO */
temptag[0] = CRYP_DataOut();
temptag[1] = CRYP_DataOut();
temptag[2] = CRYP_DataOut();
temptag[3] = CRYP_DataOut();
}
/*------------------ AES Decryption ------------------*/
else /* AES decryption */
{
/* Flush IN/OUT FIFOs */
CRYP_FIFOFlush();
/* Key Initialisation */
CRYP_KeyInit(&AES_CRYP_KeyInitStructure);
/* CRYP Initialization Vectors */
CRYP_IVInit(&AES_CRYP_IVInitStructure);
/* Crypto Init for Key preparation for decryption process */
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt;
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CCM;
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b;
CRYP_Init(&AES_CRYP_InitStructure);
/***************************** Init phase *********************************/
/* Select init phase */
CRYP_PhaseConfig(CRYP_Phase_Init);
b0addr = (uint32_t)blockb0;
/* Write the blockb0 block in the IN FIFO */
CRYP_DataIn((*(uint32_t*)(b0addr)));
b0addr+=4;
CRYP_DataIn((*(uint32_t*)(b0addr)));
b0addr+=4;
CRYP_DataIn((*(uint32_t*)(b0addr)));
b0addr+=4;
CRYP_DataIn((*(uint32_t*)(b0addr)));
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
/* Wait for CRYPEN bit to be 0 */
while(CRYP_GetCmdStatus() == ENABLE);
/***************************** header phase *******************************/
if(headersize != 0)
{
/* Select header phase */
CRYP_PhaseConfig(CRYP_Phase_Header);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
{
/* Wait until the IFEM flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET);
/* Write the Input block in the IN FIFO */
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
CRYP_DataIn(*(uint32_t*)(headeraddr));
headeraddr+=4;
}
/* Wait until the complete message has been processed */
counter = 0;
do
{
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
counter++;
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
if (busystatus != RESET)
{
status = ERROR;
}
}
/**************************** payload phase *******************************/
if(ILength != 0)
{
/* Select payload phase */
CRYP_PhaseConfig(CRYP_Phase_Payload);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
for(loopcounter = 0; ((loopcounter < ILength) && (status != ERROR)); loopcounter+=16)
{
/* Wait until the IFEM flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET);
/* Write the Input block in the IN FIFO */
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
CRYP_DataIn(*(uint32_t*)(inputaddr));
inputaddr+=4;
/* Wait until the complete message has been processed */
counter = 0;
do
{
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY);
counter++;
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
if (busystatus != RESET)
{
status = ERROR;
}
else
{
/* Wait until the OFNE flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET);
/* Read the Output block from the Output FIFO */
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
*(uint32_t*)(outputaddr) = CRYP_DataOut();
outputaddr+=4;
}
}
}
/***************************** final phase ********************************/
/* Select final phase */
CRYP_PhaseConfig(CRYP_Phase_Final);
/* Enable Crypto processor */
CRYP_Cmd(ENABLE);
if(CRYP_GetCmdStatus() == DISABLE)
{
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
the CRYP peripheral (please check the device sales type. */
return(ERROR);
}
ctraddr = (uint32_t)ctr;
/* Write the counter block in the IN FIFO */
CRYP_DataIn(*(uint32_t*)(ctraddr));
ctraddr+=4;
CRYP_DataIn(*(uint32_t*)(ctraddr));
ctraddr+=4;
CRYP_DataIn(*(uint32_t*)(ctraddr));
ctraddr+=4;
/* Reset bit 0 (after 8-bit swap) is equivalent to reset bit 24 (before 8-bit swap) */
CRYP_DataIn(*(uint32_t*)(ctraddr) & 0xfeffffff);
/* Wait until the OFNE flag is reset */
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET);
/* Read the Authentaication TAG (MAC) in the IN FIFO */
temptag[0] = CRYP_DataOut();
temptag[1] = CRYP_DataOut();
temptag[2] = CRYP_DataOut();
temptag[3] = CRYP_DataOut();
}
/* Copy temporary authentication TAG in user TAG buffer */
for(loopcounter = 0; (loopcounter < TAGSize); loopcounter++)
{
/* Set the authentication TAG buffer */
*((uint8_t*)tagaddr+loopcounter) = *((uint8_t*)temptag+loopcounter);
}
/* Disable Crypto */
CRYP_Cmd(DISABLE);
return status;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/